Search results for: biochemical parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9342

Search results for: biochemical parameters

6132 Physics-Based Earthquake Source Models for Seismic Engineering: Analysis and Validation for Dip-Slip Faults

Authors: Percy Galvez, Anatoly Petukhin, Paul Somerville, Ken Miyakoshi, Kojiro Irikura, Daniel Peter

Abstract:

Physics-based dynamic rupture modelling is necessary for estimating parameters such as rupture velocity and slip rate function that are important for ground motion simulation, but poorly resolved by observations, e.g. by seismic source inversion. In order to generate a large number of physically self-consistent rupture models, whose rupture process is consistent with the spatio-temporal heterogeneity of past earthquakes, we use multicycle simulations under the heterogeneous rate-and-state (RS) friction law for a 45deg dip-slip fault. We performed a parametrization study by fully dynamic rupture modeling, and then, a set of spontaneous source models was generated in a large magnitude range (Mw > 7.0). In order to validate rupture models, we compare the source scaling relations vs. seismic moment Mo for the modeled rupture area S, as well as average slip Dave and the slip asperity area Sa, with similar scaling relations from the source inversions. Ground motions were also computed from our models. Their peak ground velocities (PGV) agree well with the GMPE values. We obtained good agreement of the permanent surface offset values with empirical relations. From the heterogeneous rupture models, we analyzed parameters, which are critical for ground motion simulations, i.e. distributions of slip, slip rate, rupture initiation points, rupture velocities, and source time functions. We studied cross-correlations between them and with the friction weakening distance Dc value, the only initial heterogeneity parameter in our modeling. The main findings are: (1) high slip-rate areas coincide with or are located on an outer edge of the large slip areas, (2) ruptures have a tendency to initiate in small Dc areas, and (3) high slip-rate areas correlate with areas of small Dc, large rupture velocity and short rise-time.

Keywords: earthquake dynamics, strong ground motion prediction, seismic engineering, source characterization

Procedia PDF Downloads 144
6131 Understanding the Origins of Pesticides Metabolites in Natural Waters through the Land Use, Hydroclimatic Conditions and Water Quality

Authors: Alexis Grandcoin, Stephanie Piel, Estelle Baures

Abstract:

Brittany (France) is an agricultural region, where emerging pollutants are highly at risk to reach water bodies. Among them, pesticides metabolites are frequently detected in surface waters. The Vilaine watershed (11 000 km²) is of great interest, as a large drinking water treatment plant (100 000 m³/day) is located at the extreme downstream of it. This study aims to provide an evaluation of the pesticides metabolites pollution in the Vilaine watershed, and an understanding of their availability, in order to protect the water resource. Hydroclimatic conditions, land use, and water quality parameters controlling metabolites availability are emphasized. Later this knowledge will be used to understand the favoring conditions resulting in metabolites export towards surface water. 19 sampling points have been strategically chosen along the 220 km of the Vilaine river and its 3 main influents. Furthermore, the intakes of two drinking water plants have been sampled, one is located at the extreme downstream of the Vilaine river and the other is the riparian groundwater under the Vilaine river. 5 sampling campaigns with various hydroclimatic conditions have been carried out. Water quality parameters and hydroclimatic conditions have been measured. 15 environmentally relevant pesticides and metabolites have been analyzed. Also, these compounds are recalcitrant to classic water treatment that is why they have been selected. An evaluation of the watershed contamination has been done in 2016-2017. First observations showed that aminomethylphosphonic acid (AMPA) and metolachlor ethanesulfonic acid (MESA) are the most detected compounds in surface waters samples with 100 % and 98 % frequency of detection respectively. They are the main pollutants of the watershed regardless of the hydroclimatic conditions. AMPA concentration in the river strongly increases downstream of Rennes agglomeration (220k inhabitants) and reaches a maximum of 2.3 µg/l in low waters conditions. Groundwater contains mainly MESA, Diuron and metazachlor ESA at concentrations close to limits of quantification (LOQ) (0.02 µg/L). Metolachlor, metazachlor and alachlor due to their fast degradation in soils were found in small amounts (LOQ – 0.2 µg/L). Conversely glyphosate was regularly found during warm and sunny periods up to 0.6 µg/L. Soil uses (agricultural cultures types, urban areas, forests, wastewater treatment plants implementation), water quality parameters, and hydroclimatic conditions have been correlated to pesticides and metabolites concentration in waters. Statistical treatments showed that chloroacetamides metabolites and AMPA behave differently regardless of the hydroclimatic conditions. Chloroacetamides are correlated to each other, to agricultural areas and to typical agricultural tracers as nitrates. They are present in waters the whole year, especially during rainy periods, suggesting important stocks in soils. Also Chloroacetamides are negatively correlated with AMPA, the different forms of phosphorus, and organic matter. AMPA is ubiquitous but strongly correlated with urban areas despite the recent French regulation, restricting glyphosate to agricultural and private uses. This work helps to predict and understand metabolites present in the water resource used to craft drinking water. As the studied metabolites are difficult to remove, this project will be completed by a water treatment part.

Keywords: agricultural watershed, AMPA, metolachlor-ESA, water resource

Procedia PDF Downloads 159
6130 Cotton Transplantation as a Practice to Escape Infection with Some Soil-Borne Pathogens

Authors: E. M. H. Maggie, M. N. A. Nazmey, M. A. Abdel-Sattar, S. A. Saied

Abstract:

A successful trial of transplanting cotton is reported. Seeds grown in trays for 4-5 weeks in an easily prepared supporting medium such as peat moss or similar plant waste are tried. Careful transplanting of seedlings, with root system as intact as possible, is being made in the permanent field. The practice reduced damping-off incidence rate and allowed full winter crop revenues. Further work is needed to evaluate certain parameters such as growth curve, flowering curve, and yield at economic bases.

Keywords: cotton, transplanting cotton, damping-off diseases, environment sciences

Procedia PDF Downloads 367
6129 Electro Spinning in Nanotechnology

Authors: Mahoud Alfama, Meloud Yones, Abdelbaset Zroga, Abdelati Elalem

Abstract:

Electrospinning has been recognized as an efficient technique for the fabrication of polymer nanofibers. Various polymers have been successfully electrospun into ultrafine fibers in recent years mostly in solvent solution and some in melt form. Potential applications based on such fibers specifically their use as reinforcement in nanocomposite development have been realized. In this paper we examine -electrospinning by providing a brief description of the theory behind the process examining the effect of changing the process parameters on fiber morphology, and discussing the potential applications and impacts of electrospinning on the field of tissue engineering.

Keywords: nanotechnology, electro spinning, reinforced materials

Procedia PDF Downloads 289
6128 Study on Control Techniques for Adaptive Impact Mitigation

Authors: Rami Faraj, Cezary Graczykowski, Błażej Popławski, Grzegorz Mikułowski, Rafał Wiszowaty

Abstract:

Progress in the field of sensors, electronics and computing results in more and more often applications of adaptive techniques for dynamic response mitigation. When it comes to systems excited with mechanical impacts, the control system has to take into account the significant limitations of actuators responsible for system adaptation. The paper provides a comprehensive discussion of the problem of appropriate design and implementation of adaptation techniques and mechanisms. Two case studies are presented in order to compare completely different adaptation schemes. The first example concerns a double-chamber pneumatic shock absorber with a fast piezo-electric valve and parameters corresponding to the suspension of a small unmanned aerial vehicle, whereas the second considered system is a safety air cushion applied for evacuation of people from heights during a fire. For both systems, it is possible to ensure adaptive performance, but a realization of the system’s adaptation is completely different. The reason for this is technical limitations corresponding to specific types of shock-absorbing devices and their parameters. Impact mitigation using a pneumatic shock absorber corresponds to much higher pressures and small mass flow rates, which can be achieved with minimal change of valve opening. In turn, mass flow rates in safety air cushions relate to gas release areas counted in thousands of sq. cm. Because of these facts, both shock-absorbing systems are controlled based on completely different approaches. Pneumatic shock-absorber takes advantage of real-time control with valve opening recalculated at least every millisecond. In contrast, safety air cushion is controlled using the semi-passive technique, where adaptation is provided using prediction of the entire impact mitigation process. Similarities of both approaches, including applied models, algorithms and equipment, are discussed. The entire study is supported by numerical simulations and experimental tests, which prove the effectiveness of both adaptive impact mitigation techniques.

Keywords: adaptive control, adaptive system, impact mitigation, pneumatic system, shock-absorber

Procedia PDF Downloads 91
6127 Eco-Biological Study of Artemia salina (Branchiopoda, Anostraca) in Sahline Salt Lake, Tunisia

Authors: Khalil Trigui, Rafik Ben Said, Fourat Akrout, Neji Aloui

Abstract:

In this study, we examined in the first part the eco-biology of Artemia (A.salina) collected from Sahline Salt Lake (governorate of Monastir: Tunisia) during an annual cycle. The correlations between environmental factors and some biological parameters of Artemia were determined. The results obtained showed that the environmental factors affected the biology of Artemia. The highest abundance was recorded in May (550 ± 2,16 ind/l) and all life history stages existed with different seasonal proportions. The Artemia population is bisexual with ovoviviparous reproduction at the beginning and oviparous at the end of the life cycle. We also recorded the dominance of males at the start and the females at the end of the cycle. During all the study period, the size of mature females is bigger than that of males. The fertility obtained resulted in a significant production of cysts compared to the nauplii. A negative correlation with highly significant effect was deduced between environmental factors (temperature and salinity) and the production of nauplii (ovoviviparity) in contrast with dissolved oxygen. In the second part of our work is consecrated to the mastery of breeding Artemia. For this, we tested the effect of five external factors (temperature, salinity, dissolved oxygen, light intensity and food) on the survival of this crustacean. Thereby, the survival rates of Artemia were affected by the different values of studied factors. The recorded results showed that Artemia salina has an optimum temperature ranged from 25 to 27°C with a survival rate ranging from 84 to 88%. The optimal salinity to breed Artemia salina was 37 psu (62 ± 0,23%). Nevertheless, this crustacean was able to survive and withstand the salinity of 0 psu (freshwater). The optimum concentration of dissolved oxygen was 7mg/l with a survival rate of 87,11 ± 0,04%. An optimum light intensity of 10 lux revealed a survival rate equal to 85,33 ± 0,01%. The results also showed that the preferred micro-algae by Artemia is Dunaliella salina with a maximum survival rate of the order of 80 ± 0,15%. There is a significant effect for all experienced parameters on the survival of Artemia reared except the nature of food.

Keywords: Artemia salina, biology, breeding, ecology, Sahline salt lake

Procedia PDF Downloads 359
6126 Analysis of Friction Stir Welding Process for Joining Aluminum Alloy

Authors: A. M. Khourshid, I. Sabry

Abstract:

Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2 mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical feasibility of friction stir welding for joining Al 6061 aluminum alloy welding was performed on pipe with different thickness 2, 3 and 4 mm,five rotational speeds (485,710,910,1120 and 1400) rpm and a traverse speed (4, 8 and 10)mm/min was applied. This work focuses on two methods such as artificial neural networks using software (pythia) and response surface methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminum alloy. An artificial neural network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. The tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters Tool rotation speed, material thickness and travel speed as a function. A comparison was made between measured and predicted data. Response surface methodology (RSM) also developed and the values obtained for the response Tensile strengths, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameter on mechanical properties of 6061 aluminum alloy has been analyzed in detail.

Keywords: friction stir welding (FSW), al alloys, mechanical properties, microstructure

Procedia PDF Downloads 462
6125 The Impact of Water Reservoirs on Biodiversity and Food Security and the Creation of Adaptation Mechanisms

Authors: Inom S. Normatov, Abulqosim Muminov, Parviz I. Normatov

Abstract:

Problems of food security and the preservation of reserved zones in the region of Central Asia under the conditions of the climate change induced by the placement and construction of large reservoirs are considered. The criteria for the optimum placement and construction of reservoirs that entail the minimum impact on the environment are established. The need for the accounting of climatic parameters is shown by the calculation of the water quantity required for the irrigation of agricultural lands.

Keywords: adaptation, biodiversity, food security, water reservoir, risk

Procedia PDF Downloads 256
6124 Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite

Authors: Jayson Cheyne, David Butler, Iain Bomphray

Abstract:

In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk.

Keywords: battery safety, electric vehicles, phase change materials, thermal management, thermal runaway

Procedia PDF Downloads 145
6123 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior

Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami

Abstract:

The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.

Keywords: cyclic voltammetry, EIS, electroless Ni–P coating, heat treatment, potentiodynamic polarization

Procedia PDF Downloads 302
6122 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia PDF Downloads 144
6121 Effect of Neem (Aziradicta Indica) Leaf Meal on Growth Performance, Haematology and Serum Biochemistry Indices of Broilers Not Administered Vaccines and Antibiotics

Authors: Ugwuowo Leonard Chidi, Oparaji Chetachukwu Jecinta., Ogidi Chibuzor Agafenachukwu, Onuoha Rebecca Obianuju

Abstract:

This experiment was conducted to investigate the growth performance, haematology and serum biochemistry indices of broiler birds fed diets containing Neem leaf meal. A total of 96 unsexed day-old broiler birds were allocated to four treatments of T1, T2, T3 and T4 and replicated three times with eight birds per replicate in a Completely Randomized Design. The treatments were diets containing 2.0, 4.0, 6.0 and 8.0% Neem leaf meal respectively. Growth performances, packed cell volume, red blood cell count, haemoglobin, white blood cell count, lymphocytes, mean corpuscular volume, mean corpuscular haemoglobin concentration, platelet count, aspartate amino transaminase, alanine amino transaminase, alkaline phosphate, cholesterol, albumin, globulin, urea, glucose, total protein and creatinine were evaluated. Results showed that there were no significant differences (P>0.05) in all the growth performance parameters among the treatments. The results of the experiment showed that there were significant differences (P<0.05) in all the heamatological and serum biochemistry parameters at finisher phases. Mean corpuscular volume, white blood cell count, lymphocytes, red blood cell count, haemoglobin, platelet count, creatinine and triglyceride increased and were highest in treatment two while treatment four had the least values in mean corpuscular volume, urea, white blood cell, haemoglobin and triglyceride. This implies that the levels of inclusion of Neem leaf meal in this experiment did not affect the growth performance of the broiler chicks but the haematological and serum biochemistry indices were affected. Treatment two with a 4% inclusion level of Neem leaf meal has shown the capacity to replace vaccines and antibiotics in broilers due to the positive effects it had on both the haematological and serum biochemistry.

Keywords: leaf meal, broiler, Aziradicta indica, serum biochemistry, haematology

Procedia PDF Downloads 76
6120 Formulation of Value Added Beff Meatballs with the Addition of Pomegranate (Punica granatum) Extract as a Source of Natural Antioxident

Authors: M. A. Hashem, I. Jahan

Abstract:

The experiment was conducted to find out the effect of different levels of Pomegranate (Punica granatum) extract and synthetic antioxidant BHA (Beta Hydroxyl Anisole) on fresh and preserved beef meatballs in order to make functional food. For this purpose, ground beef samples were divided into five treatment groups. They were treated as control group, 0.1% synthetic antioxidant group, 0.1%, 0.2% and 0.3% pomegranate extract group as T1, T2, T3, T4 and T5 respectively. Proximate analysis, sensory tests (color, flavor, tenderness, juiciness, overall acceptability), cooking loss, pH value, free fatty acids (FFA), thiobarbituric acid values (TBARS), peroxide value (POV) and microbiological examination were determined in order to evaluate the effect of pomegranate extract as natural antioxidant and antimicrobial activities compared to BHA (Beta Hydroxyl Anisole) at first day before freezing and for maintaining meatballs qualities on the shelf life of beef meat balls stored for 60 days under frozen condition. Freezing temperature was -20˚C. Days of intervals of experiment were on 0, 15th, 30th and 60th days. Dry matter content of all the treatment groups differ significantly (p<0.05). On the contrary, DM content increased significantly (p<0.05) with the advancement of different days of intervals. CP content of all the treatments were increased significantly (p<0.05) among the different treatment groups. EE and Ash content were decreased significantly (p<0.05) at different treatment levels. FFA values, TBARS, POV were decreased significantly (p<0.05) at different treatment levels. Color, odor, tenderness, juiciness, overall acceptability decreased significantly (p<0.05) at different days of intervals. Raw PH, cooked pH were increased at different treatment levels significantly (p<0.05). The cooking loss (%) at different treatment levels were differ significantly (p<0.05). TVC (logCFU/g), TCC (logCFU/g) and TYMC (logCFU/g) was decreased significantly (p<0.05) at different treatment levels and at different days of intervals comparison to control. Considering CP, tenderness, juiciness, overall acceptability, cooking loss, FFA, POV, TBARS value and microbial analysis it can be concluded that pomegranate extract at 0.1%, 0.2% and 0.3% can be used instead of synthetic antioxidant BHA in beef meatballs. On the basis of sensory evaluation, nutrient quality, physicochemical properties, biochemical analysis and microbial analysis 0.3% Pomegranate extract can be recommended for formulation of value added beef meatball enriched with natural antioxidant.

Keywords: antioxidant, pomegranate, BHA, value added meat products

Procedia PDF Downloads 246
6119 Protecting Physicochemical Properties of Black Cumin Seed (Nigella sativa) Oil and Developing Value Added Products

Authors: Zeliha Ustun, Mustafa Ersoz

Abstract:

In the study, a traditional herbal supplement black cumin seed (Nigella sativa) oil properties has been studied to protect the main quality parameters by a new supplement application. Black cumin seed and its oil is used as a dietary supplement and preferred traditional remedy in Africa, Asia and Middle East for centuries. Now it has been consuming by millions of people in America and Europe as natural supplements and/or phytotherapeutic agents to support immune system, asthma, allergic rinnitis etc. by the scientists’ advices. With the study, it is aimed to prove that soft gelatin capsules are a new and more practical way of usage for Nigella sativa oil that has a longer stability. With the study soft gelatin capsules formulation has been developed to protect cold pressed black cumin seed oil physicochemical properties for a longer period. The product design has been developed in laboratory and implemented in pilot scale soft gelatin capsule manufacturing. Physicochemical properties (peroxide value, free fatty acids, fatty acid composition, refractive index, iodine value, saponification value, unsaponifiable matters) of Nigella sativa oil soft gelatin capsules and Nigella sativa oil in liquid form in amber glass bottles have been compared and followed for 8 months. The main parameters for capsules and liquid form found that for free fatty acids 2.29±0.03, 3.92±0.11 % oleic acid, peroxide 23.11±1.18, 27.85±2.50 meqO2/kg, refractive index at 20 0C 1.4738±0.00, 1.4737±0.00, soap 0 ppm, moisture and volatility 0.32±0.01, 0.36±0.01 %, iodine value 123.00±0.00, 122.00±0.00 wijs, saponification value 196.25±0.46, 194.13±0.35 mg KOH/g and unsaponifiable matter 7.72±0.13, 6.88±0.36 g/kg respectively. The main fatty acids are found that linoleic acid 56.17%, oleic acid 24.64%, palmitic acid 11,94 %. As a result, it is found that cold pressed Nigella sativa oil soft gelatin capsules physicochemical properties are more stable than the Nigella sativa oil stored in glass bottles.

Keywords: black cumin seed (Nigella sativa) oil, cold press, nutritional supplements, soft gelatin capsule

Procedia PDF Downloads 377
6118 Novel Numerical Technique for Dusty Plasma Dynamics (Yukawa Liquids): Microfluidic and Role of Heat Transport

Authors: Aamir Shahzad, Mao-Gang He

Abstract:

Currently, dusty plasmas motivated the researchers' widespread interest. Since the last two decades, substantial efforts have been made by the scientific and technological community to investigate the transport properties and their nonlinear behavior of three-dimensional and two-dimensional nonideal complex (dusty plasma) liquids (NICDPLs). Different calculations have been made to sustain and utilize strongly coupled NICDPLs because of their remarkable scientific and industrial applications. Understanding of the thermophysical properties of complex liquids under various conditions is of practical interest in the field of science and technology. The determination of thermal conductivity is also a demanding question for thermophysical researchers, due to some reasons; very few results are offered for this significant property. Lack of information of the thermal conductivity of dense and complex liquids at different parameters related to the industrial developments is a major barrier to quantitative knowledge of the heat flux flow from one medium to another medium or surface. The exact numerical investigation of transport properties of complex liquids is a fundamental research task in the field of thermophysics, as various transport data are closely related with the setup and confirmation of equations of state. A reliable knowledge of transport data is also important for an optimized design of processes and apparatus in various engineering and science fields (thermoelectric devices), and, in particular, the provision of precise data for the parameters of heat, mass, and momentum transport is required. One of the promising computational techniques, the homogenous nonequilibrium molecular dynamics (HNEMD) simulation, is over viewed with a special importance on the application to transport problems of complex liquids. This proposed work is particularly motivated by the FIRST TIME to modify the problem of heat conduction equations leads to polynomial velocity and temperature profiles algorithm for the investigation of transport properties with their nonlinear behaviors in the NICDPLs. The aim of proposed work is to implement a NEMDS algorithm (Poiseuille flow) and to delve the understanding of thermal conductivity behaviors in Yukawa liquids. The Yukawa system is equilibrated through the Gaussian thermostat in order to maintain the constant system temperature (canonical ensemble ≡ NVT)). The output steps will be developed between 3.0×105/ωp and 1.5×105/ωp simulation time steps for the computation of λ data. The HNEMD algorithm shows that the thermal conductivity is dependent on plasma parameters and the minimum value of lmin shifts toward higher G with an increase in k, as expected. New investigations give more reliable simulated data for the plasma conductivity than earlier known simulation data and generally the plasma λ0 by 2%-20%, depending on Γ and κ. It has been shown that the obtained results at normalized force field are in satisfactory agreement with various earlier simulation results. This algorithm shows that the new technique provides more accurate results with fast convergence and small size effects over a wide range of plasma states.

Keywords: molecular dynamics simulation, thermal conductivity, nonideal complex plasma, Poiseuille flow

Procedia PDF Downloads 274
6117 Kinetics and Mechanism of Oxidation of Dimethylglyoxime Chromium (III) Complex by Periodate

Authors: Ahmed A. Abdel-Khalek, Reham A. Mohamed

Abstract:

The kinetics of oxidation of binary complex [CrIII(DMG)2(H2O)4 ]+ to Cr(VI) by periodate has been investigated spectrophotometrically where, [DMG= Dimethylglyoxime] at 370nm under pseudo first order reaction conditions in aqueous medium over 20- 40ºC range, PH 2-3, and I=0.07 mol dm-3. The reaction is first order with respect to both [IO4-] and Cr(III), and the reaction increased with PH increased. Thermodymanic activation parameters have been calculated. It is suggested that electron transfer proceeds through an inner sphere mechanism via coordination of IO4- to Cr (III). The reaction obeys the following rate law Rate= {k1 K5+ k2 K6 K2 } [Cr III (DMG)2(H2O)4 ]+ [H5IO6].

Keywords: chromium, dimethylglyoxime, kinetics, oxidation, periodate

Procedia PDF Downloads 424
6116 Engineering Microstructural Evolution during Arc Wire Directed Energy Deposition of Magnesium Alloy (AZ31)

Authors: Nivatha Elangovan, Lakshman Neelakantan, Murugaiyan Amirthalingam

Abstract:

Magnesium and its alloys are widely used for various lightweight engineering and biomedical applications as they render high strength to low weight ratio and excellent corrosion resistance. These alloys possess good bio-compatibility and similar mechanical properties to natural bone. However, manufacturing magnesium alloy components by conventional formative and subtractive methods is challenging due to their poor castability, oxidation potential, and machinability. Therefore, efforts are made to produce complex-design containing magnesium alloy components by additive manufacturing (AM). Arc-wire directed energy deposition (AW-DED), also known as wire arc additive manufacturing (WAAM), is more attractive to produce large volume components with increased productivity than any other AM technique. In this research work, efforts were made to optimise the deposition parameters to build thick-walled (about 10 mm) AZ31 magnesium alloy components by a gas metal arc (GMA) based AW-DED process. By using controlled dip short-circuiting metal transfer in a GMA process, depositions were carried out without defects and spatter formation. Current and voltage waveforms were suitably modified to achieve stable metal transfer. Moreover, the droplet transfer behaviour was analysed using high-speed image analysis and correlated with arc energy. Optical and scanning electron microscopy analyses were carried out to correlate the influence of deposition parameters with the microstructural evolution during deposition. The investigation reveals that by carefully controlling the current-voltage waveform and droplet transfer behaviour, it is possible to stabilise equiaxed grain microstructures in the deposited AZ31 components. The printed component exhibited an improved mechanical property as equiaxed grains improve the ductility and enhance the toughness. The equiaxed grains in the component improved the corrosion-resistant behaviour of other conventionally manufactured components.

Keywords: arc wire directed energy deposition, AZ31 magnesium alloy, equiaxed grain, corrosion

Procedia PDF Downloads 124
6115 Study of the Uncertainty Behaviour for the Specific Total Enthalpy of the Hypersonic Plasma Wind Tunnel Scirocco at Italian Aerospace Research Center

Authors: Adolfo Martucci, Iulian Mihai

Abstract:

By means of the expansion through a Conical Nozzle and the low pressure inside the Test Chamber, a large hypersonic stable flow takes place for a duration of up to 30 minutes. Downstream the Test Chamber, the diffuser has the function of reducing the flow velocity to subsonic values, and as a consequence, the temperature increases again. In order to cool down the flow, a heat exchanger is present at the end of the diffuser. The Vacuum System generates the necessary vacuum conditions for the correct hypersonic flow generation, and the DeNOx system, which follows the Vacuum System, reduces the nitrogen oxide concentrations created inside the plasma flow behind the limits imposed by Italian law. This very large, powerful, and complex facility allows researchers and engineers to reproduce entire re-entry trajectories of space vehicles into the atmosphere. One of the most important parameters for a hypersonic flowfield representative of re-entry conditions is the specific total enthalpy. This is the whole energy content of the fluid, and it represents how severe could be the conditions around a spacecraft re-entering from a space mission or, in our case, inside a hypersonic wind tunnel. It is possible to reach very high values of enthalpy (up to 45 MJ/kg) that, together with the large allowable size of the models, represent huge possibilities for making on-ground experiments regarding the atmospheric re-entry field. The maximum nozzle exit section diameter is 1950 mm, where values of Mach number very much higher than 1 can be reached. The specific total enthalpy is evaluated by means of a number of measurements, each of them concurring with its value and its uncertainty. The scope of the present paper is the evaluation of the sensibility of the uncertainty of the specific total enthalpy versus all the parameters and measurements involved. The sensors that, if improved, could give the highest advantages have so been individuated. Several simulations in Python with the METAS library and by means of Monte Carlo simulations are presented together with the obtained results and discussions about them.

Keywords: hypersonic, uncertainty, enthalpy, simulations

Procedia PDF Downloads 97
6114 Flow Transformation: An Investigation on Theoretical Aspects and Numerical Computation

Authors: Abhisek Sarkar, Abhimanyu Gaur

Abstract:

In this report we have discussed the theoretical aspects of the flow transformation, occurring through a series of bifurcations. The parameters and their continuous diversion, the intermittent bursts in the transition zone, variation of velocity and pressure with time, effect of roughness in turbulent zone, and changes in friction factor and head loss coefficient as a function of Reynolds number for a transverse flow across a cylinder have been discussed. An analysis of the variation in the wake length with Reynolds number was done in FORTRAN.

Keywords: bifurcation, attractor, intermittence, energy cascade, energy spectra, vortex stretching

Procedia PDF Downloads 398
6113 Monitoring of Sustainability of Extruded Soya Product TRADKON SPC-TEX in Order to Define Expiration Date

Authors: Radovan Čobanović, Milica Rankov Šicar

Abstract:

New attitudes about nutrition impose new styles, and therefore a neNew attitudes about nutrition impose new styles, and therefore a new kind of food. The goal of our work was to define the shelf life of new extruded soya product with minimum 65% of protein based on the analyses. According to the plan it was defined that a certain quantity of the same batch of new product (soybean flakes) which had predicted shelf life of 2 years had to be stored for 24 months in storage and analyzed at the beginning and end of sustainability plan on instrumental analyses (heavy metals, pesticides and mycotoxins) and every month on sensory analyses (odor, taste, color, consistency), microbiological analyses (Salmonella spp., Escherichia coli, Enterobacteriaceae, sulfite-reducing clostridia, Listeria monocytogenes), chemical analyses (protein, ash, fat, crude cellulose, granulation) and at the beginning on GMO analyses. All analyses were tested according to: sensory analyses ISO 6658, Salmonella spp ISO 6579, Escherichia coli ISO 16649-2, Enterobacteriaceae ISO 21528-2, sulfite-reducing clostridia ISO 15213 and Listeria monocytogenes ISO 11290-2, chemical and instrumental analyses Serbian ordinance on the methods of physico-chemical analyses and GMO analyses JRC Compendium. The results obtained after the analyses which were done according to the plan during the 24 months indicate that are no changes of products concerning both sensory and chemical analyses. As far as microbiological results are concerned Salmonella spp was not detected and all other quantitative analyses showed values <10 cfu/g. The other parameters for food safety (heavy metals, pesticides and mycotoxins) were not present in analyzed samples and also all analyzed samples were negative concerning genetic testing. On the basis of monitoring the sample under defined storage conditions and analyses of quality control, GMO analyses and food safety of the sample during the shelf within two years, the results showed that all the parameters of the sample during defined period is in accordance with Serbian regulative so that indicate that predicted shelf life can be adopted.w kind of food. The goal of our work was to define the shelf life of new extruded soya product with minimum 65% of protein based on the analyses. According to the plan it was defined that a certain quantity of the same batch of new product (soybean flakes) which had predicted shelf life of 2 years had to be stored for 24 months in storage and analyzed at the beginning and end of sustainability plan on instrumental analyses (heavy metals, pesticides and mycotoxins) and every month on sensory analyses (odor, taste, color, consistency), microbiological analyses (Salmonella spp., Escherichia coli, Enterobacteriaceae, sulfite-reducin clostridia, Listeria monocytogenes), chemical analyses (protein, ash, fat, crude cellulose, granulation) and at the beginning on GMO analyses. All analyses were tested according: sensory analyses ISO 6658, Salmonella spp ISO 6579, Escherichia coli ISO 16649-2, Enterobacteriaceae ISO 21528-2, sulfite-reducing clostridia ISO 15213 and Listeria monocytogenes ISO 11290-2, chemical and instrumental analyses Serbian ordinance on the methods of physico-chemical analyses and GMO analyses JRC Compendium. The results obtained after the analyses which were done according to the plan during the 24 months indicate that are no changes of products concerning both sensory and chemical analyses. As far as microbiological results are concerned Salmonella spp was not detected and all other quantitative analyses showed values <10 cfu/g. The other parameters for food safety (heavy metals, pesticides and mycotoxins) were not present in analyzed samples and also all analyzed samples were negative concerning genetic testing. On the basis of monitoring the sample under defined storage conditions and analyses of quality control, GMO analyses and food safety of the sample during the shelf within two years, the results showed that all the parameters of the sample during defined period is in accordance with Serbian regulative so that indicate that predicted shelf life can be adopted.

Keywords: extruded soya product, food safety analyses, GMO analyses, shelf life

Procedia PDF Downloads 296
6112 Optimization of the Numerical Fracture Mechanics

Authors: H. Hentati, R. Abdelmoula, Li Jia, A. Maalej

Abstract:

In this work, we present numerical simulations of the quasi-static crack propagation based on the variation approach. We perform numerical simulations of a piece of brittle material without initial crack. An alternate minimization algorithm is used. Based on these numerical results, we determine the influence of numerical parameters on the location of crack. We show the importance of trying to optimize the time of numerical computation and we present the first attempt to develop a simple numerical method to optimize this time.

Keywords: fracture mechanics, optimization, variation approach, mechanic

Procedia PDF Downloads 606
6111 Prioritization of Sub-Watersheds in Semi Arid Region: A Case Study of Shevgaon and Pathardi Tahsils in Maharashtra

Authors: Dadasaheb R. Jawre, Maya G. Unde

Abstract:

Prioritization of sub-watershed plays important role in watershed management. It shows the requirement of watershed to give a treatment for the green growth of the region and conservation of the sub-watersheds. There is a number of factors like topography of the region, climatic characteristics like rainfall and runoff, land-use land-cover, social factors which are related to the development of watershed for agricultural uses and domestic purposes in the region. The present research is throwing a focus on how morphometric parameters in association with GIS analysis will help in identifying the ranking of the sub-watersheds for further development which help of suggested watershed structures. Shevgaon and Pathardi tahsils are drought prone tahsils of Ahmednagar district in Maharashtra. These tahsils come under the semi-arid region. Sub-watershed prioritization is necessary for proper planning and management of natural resources for sustainable development of the study area. Less rainfall and increasing population pressure on the land as well as water resources lead to scarcity of the water in the region. Hence, researcher has selected Shevgaon and Pathardi tahsils for sub-watershed prioritization. There are seven sub-watersheds which selected for the present research paper. In the morphological analysis linear aspects, aerial aspects and relief aspects are considered for the prioritization. The largest sub-watershed is Erdha which is located at Karanji in Pathardi tahsil having an area of 145.06 km2 and smallest sub-watershed is Erandgaon which is located in Shevgaon tahsil having an area of 40.143 km2. For all seven sub-watersheds, seven morphometric parameters were considered for calculating the compound parameter values. Finally, compound parameter values are grouped into three groups such as, high priority (below 4.0), moderate priority (4.0 to 5.0) and low priority (above 5.0) according to the compound value Erandgaon, Chapadgaon and Tarak sub-watersheds comes under high priority group, Erdha and Domeshwar sub-watersheds come under moderate priority group and Chandani and Kasichi sub-watershed come under low priority group. Both the tahsils falls in drought prone area, after getting the watershed structure overall development of the region will take place.

Keywords: sub-watersheds, GIS and remote sensing, morphometric analysis, compound parameter value, prioritization

Procedia PDF Downloads 153
6110 Hypoglycaemic and Hypolipidemic Activity of Cassia occidentalis Linn. Stem Bark Extract in Streptozotocin Induced Diabetes

Authors: Manjusha Choudhary

Abstract:

Objective: Cassia occidentalis Linn. belongs to Family Caesalpiniaceae is a common weed scattered from the foothills of Himalayas to West Bengal, South India, Burma, and Sri Lanka. It is used widely in folklore medicine in India as laxative, expectorant, analgesic, anti-malarial, hepatoprotective, relaxant, anti-inflammatory and antidiabetic. The present study was carried out to investigate the hypoglycaemic and hypolipidemic activities of ethanolic extract of Cassia occidentalis stem bark. Methods: Stem bark extract of Cassia occidentalis (SBCO) was administered orally at 250 and 500 mg/kg doses to normal and streptozotocin (STZ) induced type-2 diabetic mice. Various parameters like fasting blood glucose (FBG) level, serum cholesterol, high density lipoprotein (HDL) cholesterol, triglycerides (TG), total protein, urea, creatinine, serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) levels and physical parameters like change in body weight, food intake, water intake were performed for the evaluation of antidiabetic effects. Results: Both the doses of extract caused a marked decrease in FBG levels in STZ induced type 2 diabetic mice. Administration of SBCO led to the decrease in the blood glucose, food intake, water intake, organ weight, SGOT, SGPT levels with significant value and increased the levels of TG, HDL cholesterol, creatinine, cholesterol, total protein with a significant value (p < 0.05-0.01). The decrease in body weight induced by STZ was restored to normal with a significant value (p < 0.01) at both doses. Conclusion: Present study reveals that SBCO possess potent hypoglycaemic and hypolipidemic activities and supports the folklore use of the stem bark of plant as antidiabetic agent.

Keywords: Cassia occidentalis, diabetes, folklore, herbs, hypoglycemia, streptozotocin

Procedia PDF Downloads 406
6109 Comparing Radiographic Detection of Simulated Syndesmosis Instability Using Standard 2D Fluoroscopy Versus 3D Cone-Beam Computed Tomography

Authors: Diane Ghanem, Arjun Gupta, Rohan Vijayan, Ali Uneri, Babar Shafiq

Abstract:

Introduction: Ankle sprains and fractures often result in syndesmosis injuries. Unstable syndesmotic injuries result from relative motion between the distal ends of the tibia and fibula, anatomic juncture which should otherwise be rigid, and warrant operative management. Clinical and radiological evaluations of intraoperative syndesmosis stability remain a challenging task as traditional 2D fluoroscopy is limited to a uniplanar translational displacement. The purpose of this pilot cadaveric study is to compare the 2D fluoroscopy and 3D cone beam computed tomography (CBCT) stress-induced syndesmosis displacements. Methods: Three fresh-frozen lower legs underwent 2D fluoroscopy and 3D CIOS CBCT to measure syndesmosis position before dissection. Syndesmotic injury was simulated by resecting the (1) anterior inferior tibiofibular ligament (AITFL), the (2) posterior inferior tibiofibular ligament (PITFL) and the inferior transverse ligament (ITL) simultaneously, followed by the (3) interosseous membrane (IOM). Manual external rotation and Cotton stress test were performed after each of the three resections and 2D and 3D images were acquired. Relevant 2D and 3D parameters included the tibiofibular overlap (TFO), tibiofibular clear space (TCS), relative rotation of the fibula, and anterior-posterior (AP) and medial-lateral (ML) translations of the fibula relative to the tibia. Parameters were measured by two independent observers. Inter-rater reliability was assessed by intraclass correlation coefficient (ICC) to determine measurement precision. Results: Significant mismatches were found in the trends between the 2D and 3D measurements when assessing for TFO, TCS and AP translation across the different resection states. Using 3D CBCT, TFO was inversely proportional to the number of resected ligaments while TCS was directly proportional to the latter across all cadavers and ‘resection + stress’ states. Using 2D fluoroscopy, this trend was not respected under the Cotton stress test. 3D AP translation did not show a reliable trend whereas 2D AP translation of the fibula was positive under the Cotton stress test and negative under the external rotation. 3D relative rotation of the fibula, assessed using the Tang et al. ratio method and Beisemann et al. angular method, suggested slight overall internal rotation with complete resection of the ligaments, with a change < 2mm - threshold which corresponds to the commonly used buffer to account for physiologic laxity as per clinical judgment of the surgeon. Excellent agreement (>0.90) was found between the two independent observers for each of the parameters in both 2D and 3D (overall ICC 0.9968, 95% CI 0.995 - 0.999). Conclusions: The 3D CIOS CBCT appears to reliably depict the trend in TFO and TCS. This might be due to the additional detection of relevant rotational malpositions of the fibula in comparison to the standard 2D fluoroscopy which is limited to a single plane translation. A better understanding of 3D imaging may help surgeons identify the precise measurements planes needed to achieve better syndesmosis repair.

Keywords: 2D fluoroscopy, 3D computed tomography, image processing, syndesmosis injury

Procedia PDF Downloads 70
6108 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models

Authors: Benbiao Song, Yan Gao, Zhuo Liu

Abstract:

Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.

Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram

Procedia PDF Downloads 264
6107 Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics

Authors: S. Gómez, G. Sánchez, J. Zarama, M. Castañeda Ramos, J. Escoto Alcántar, J. Torres, A. Núñez, S. Santana, F. Nájera, J. A. Lopez

Abstract:

This paper shows in detail the mathematical model of direct and inverse kinematics for a robot manipulator (welding type) with four degrees of freedom. Using the D-H parameters, screw theory, numerical, geometric and interpolation methods, the theoretical and practical values of the position of robot were determined using an optimized algorithm for inverse kinematics obtaining the values of the particular joints in order to determine the virtual paths in a relatively short time.

Keywords: kinematics, degree of freedom, optimization, robot manipulator

Procedia PDF Downloads 466
6106 Identification of the Most Effective Dosage of Clove Oil Solution as an Alternative for Synthetic Anaesthetics on Zebrafish (Danio rerio)

Authors: D. P. N. De Silva, N. P. P. Liyanage

Abstract:

Zebrafish (Danio rerio) in the family Cyprinidae, is a tropical freshwater fish widely used as a model organism in scientific research. Use of effective and economical anaesthetic is very important when handling fish. Clove oil (active ingredient: eugenol) was identified as a natural product which is safer and economical compared to synthetic chemicals like methanesulfonate (MS-222). Therefore, the aim of this study was to identify the most effective dosage of clove oil solution as an anaesthetic on mature Zebrafish. Clove oil solution was prepared by mixing pure clove oil with 94% ethanol at a ratio of 1:9 respectively. From that solution, different volumes were selected as (0.4 ml, 0.6 ml and 0.8 ml) and dissolved in one liter of conditioned water (dosages : 0.4 ml/L, 0.6 ml/L and 0.8 ml/L). Water quality parameters (pH, temperature and conductivity) were measured before and after adding clove oil solution. Mature Zebrafish with similar standard length (2.76 ± 0.1 cm) and weight (0.524 ± 0.1 g) were selected for this experiment. Time taken for loss of equilibrium (initiation phase) and complete loss of movements including opercular movement (anaesthetic phase) were measured. To detect the efficacy on anaesthetic recovery, time taken to begin opercular movements (initiation of recovery phase) until swimming (post anaesthetic phase) were observed. The results obtained were analyzed according to the analysis of variance (ANOVA) and Tukeys’ method using SPSS version 17.0 at 95% confidence interval (p<0.5). According to the results, there was no significant difference at the initiation phase of anaesthesia in all three doses though the time taken was varied from 0.14 to 0.41 minutes. Mean value of the time taken to complete the anaesthetic phase at 0.4 ml/L dosage was significantly different with 0.6 ml/L and 0.8 ml/L dosages independently (p=0.01). There was no significant difference among recovery times at all dosages but 0.8 ml/L dosage took longer time compared to 0.6 ml/L dosage. The water quality parameters (pH and temperature) were stable throughout the experiment except conductivity, which increased with the higher dosage. In conclusion, the best dosage need to anaesthetize Zebrafish using clove oil solution was 0.6 ml/L due to its fast initiation of anaesthesia and quick recovery compared to the other two dosages. Therefore clove oil can be used as a good substitute for synthetic anaesthetics because of its efficacy at a lower dosage with higher safety at a low cost.

Keywords: anaesthetics, clove oil, zebrafish, Cyprinidae

Procedia PDF Downloads 716
6105 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel

Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler

Abstract:

Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.

Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process

Procedia PDF Downloads 135
6104 Combined Effect of Gender Differences and Fatiguing Task on Unipedal Postural Balance and Functional Mobility in Adults with Multiple Sclerosis

Authors: Sonda Jallouli, Omar Hammouda, Imen Ben Dhia, Salma Sakka, Chokri Mhiri, Mohamed Habib Elleuch, Abedlmoneem Yahia, Sameh Ghroubi

Abstract:

Multiple sclerosis (MS) is characterized by gender differences with affecting women two to four times more than men, but the disease progression is faster and more severe in men. Fatigue represents one of the most frequent and disabling symptoms related to MS. Results of previous studies regarding gender differences in fatigue perception in MS persons are contradictory. Besides, fatigue has been shown to affect negatively postural balance and functional mobility in MS persons. However, no study has taken into account gender differences in the response of these physical parameters to a fatiguing protocol in MS persons. Given the reduction of autonomy due to the alteration of these parameters induced by fatigue and the importance of gender differences in postural balance training programs in fatigued men and women with MS, the aim of this study was to investigate the effect of gender difference on unipedal postural balance and functional mobility after performing a fatiguing task in MS adults. Methods: Eleven women (30.29 ± 7.99 years) and seven men (30.91 ± 8.19 years) with relapsing-remitting MS performed a fatiguing protocol: three sets of the 5×sit to stand test (5-STST), six-minute walk test (6MWT) followed by three sets of the 5-STST. Unipedal balance, functional mobility, and fatigue perception were measured prefatigue (T0) and post fatigue (T3) using a clinical unipedal balance test, timed up and go test (TUGT), and analogic visual scale of fatigue (VASF), respectively. Heart rate (HR) and rate of perceived exertion (RPE) were recorded before, during and after the fatiguing task. Results: Compared to women, men showed an impairment of unipedal balance on the dominant leg (p<0.001, d=0.52) and mobility (p<0.001, d=3) via reducing unipedal stance time and increasing duration of TUGT execution, respectively. No gender differences were observed in 6MWT, 5-STST, HR, RPE and VASF scores. Conclusion: Fatiguing protocol negatively affected unipedal postural balance and mobility only in men. These gender differences were inconclusive but can be taken into account in postural balance rehabilitation programs for persons with MS.

Keywords: functional mobility, fatiguing exercises, multiple sclerosis, sex differences, unipedal balance

Procedia PDF Downloads 138
6103 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 184