Search results for: back-propagation algorithm
405 Land Use Dynamics of Ikere Forest Reserve, Nigeria Using Geographic Information System
Authors: Akintunde Alo
Abstract:
The incessant encroachments into the forest ecosystem by the farmers and local contractors constitute a major threat to the conservation of genetic resources and biodiversity in Nigeria. To propose a viable monitoring system, this study employed Geographic Information System (GIS) technology to assess the changes that occurred for a period of five years (between 2011 and 2016) in Ikere forest reserve. Landsat imagery of the forest reserve was obtained. For the purpose of geo-referencing the acquired satellite imagery, ground-truth coordinates of some benchmark places within the forest reserve was relied on. Supervised classification algorithm, image processing, vectorization and map production were realized using ArcGIS. Various land use systems within the forest ecosystem were digitized into polygons of different types and colours for 2011 and 2016, roads were represented with lines of different thickness and colours. Of the six land-use delineated, the grassland increased from 26.50 % in 2011 to 45.53% in 2016 of the total land area with a percentage change of 71.81 %. Plantations of Gmelina arborea and Tectona grandis on the other hand reduced from 62.16 % in 2011 to 27.41% in 2016. The farmland and degraded land recorded percentage change of about 176.80 % and 8.70 % respectively from 2011 to 2016. Overall, the rate of deforestation in the study area is on the increase and becoming severe. About 72.59% of the total land area has been converted to non-forestry uses while the remnant 27.41% is occupied by plantations of Gmelina arborea and Tectona grandis. Interestingly, over 55 % of the plantation area in 2011 has changed to grassland, or converted to farmland and degraded land in 2016. The rate of change over time was about 9.79 % annually. Based on the results, rapid actions to prevail on the encroachers to stop deforestation and encouraged re-afforestation in the study area are recommended.Keywords: land use change, forest reserve, satellite imagery, geographical information system
Procedia PDF Downloads 356404 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on
Authors: Mahesh Kumar Jat, Manisha Choudhary
Abstract:
Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.Keywords: remote sensing, GIS, object based, classification
Procedia PDF Downloads 130403 Day Ahead and Intraday Electricity Demand Forecasting in Himachal Region using Machine Learning
Authors: Milan Joshi, Harsh Agrawal, Pallaw Mishra, Sanand Sule
Abstract:
Predicting electricity usage is a crucial aspect of organizing and controlling sustainable energy systems. The task of forecasting electricity load is intricate and requires a lot of effort due to the combined impact of social, economic, technical, environmental, and cultural factors on power consumption in communities. As a result, it is important to create strong models that can handle the significant non-linear and complex nature of the task. The objective of this study is to create and compare three machine learning techniques for predicting electricity load for both the day ahead and intraday, taking into account various factors such as meteorological data and social events including holidays and festivals. The proposed methods include a LightGBM, FBProphet, combination of FBProphet and LightGBM for day ahead and Motifs( Stumpy) based on Mueens algorithm for similarity search for intraday. We utilize these techniques to predict electricity usage during normal days and social events in the Himachal Region. We then assess their performance by measuring the MSE, RMSE, and MAPE values. The outcomes demonstrate that the combination of FBProphet and LightGBM method is the most accurate for day ahead and Motifs for intraday forecasting of electricity usage, surpassing other models in terms of MAPE, RMSE, and MSE. Moreover, the FBProphet - LightGBM approach proves to be highly effective in forecasting electricity load during social events, exhibiting precise day ahead predictions. In summary, our proposed electricity forecasting techniques display excellent performance in predicting electricity usage during normal days and special events in the Himachal Region.Keywords: feature engineering, FBProphet, LightGBM, MASS, Motifs, MAPE
Procedia PDF Downloads 72402 Monitoring the Change of Padma River Bank at Faridpur, Bangladesh Using Remote Sensing Approach
Authors: Ilme Faridatul, Bo Wu
Abstract:
Bangladesh is often called as a motherland of rivers. It contains about 700 rivers among all these the Padma River is one of the largest rivers of Bangladesh. The change of river bank and erosion has become a common environmental natural hazard in Bangladesh. The river banks are under intense pressure from natural processes such as erosion and accretion as well as anthropogenic processes such as urban growth and pollution. The Padma River is flowing along ten districts of Bangladesh among all these Faridpur district is most vulnerable to river bank erosion. The severity of the river erosion is so high that each year a thousand of populations become homeless and lose their agricultural lands. Though the Faridpur district is most vulnerable to river bank erosion no specific research has been conducted to identify the changing pattern of river bank along this district. The outcome of the research may serve as guidance to prepare river bank monitoring program and management. This research has utilized integrated techniques of remote sensing and geographic information system to monitor the changes from 1995 to 2015 at Faridpur district. To discriminate the land water interface Modified Normalized Difference Water Index (MNDWI) algorithm is applied and on screen digitization approach is used over MNDWI images of 1995, 2002 and 2015 for river bank line extraction. The extent of changes in the river bank along Faridpur district is estimated through overlaying the digitized maps of all three years. The river bank lines are highlighted to infer the erosion and accretion and the changes are calculated. The result shows that the middle of the river is gaining land through sedimentation and the both side river bank is shifting causing severe erosion that consequently resulting the loss of farmland and homestead. Over the study period from 1995 to 2015 it witnessed huge erosion and accretion that played an active role in the changes of the river bank.Keywords: river bank, erosion and accretion, change monitoring, remote sensing
Procedia PDF Downloads 325401 Implementation of Research Papers and Industry Related Experiments by Undergraduate Students in the Field of Automation
Authors: Veena N. Hegde, S. R. Desai
Abstract:
Motivating a heterogeneous group of students towards engagement in research related activities is a challenging task in engineering education. An effort is being made at the Department of Electronics and Instrumentation Engineering, where two courses are taken up on a pilot basis to kindle research interests in students at the undergraduate level. The courses, namely algorithm and system design (ASD) and automation in process control (APC), are selected for experimentation purposes. The task is being accomplished by providing scope for implementation of research papers and proposing solutions for the current industrial problems by the student teams. The course instructors have proposed an alternative assessment tool to evaluate the undergraduate students that involve activities beyond the curriculum. The method was tested for the aforementioned two courses in a particular academic year, and as per the observations, there is a considerable improvement in the number of student engagement towards research in the subsequent years of their undergraduate course. The student groups from the third-year engineering were made to read, implement the research papers, and they were also instructed to develop simulation modules for certain processes aiming towards automation. The target audience being students, were common for both the courses and the students' strength was 30. Around 50% of successful students were given the continued tasks in the subsequent two semesters, and out of 15 students who continued from sixth semesters were able to follow the research methodology well in the seventh and eighth semesters. Further, around 30% of the students out of 15 ended up carrying out project work with a research component involved and were successful in producing four conference papers. The methodology adopted is justified using a sample data set, and the outcomes are highlighted. The quantitative and qualitative results obtained through this study prove that such practices will enhance learning experiences substantially at the undergraduate level.Keywords: industrial problems, learning experiences, research related activities, student engagement
Procedia PDF Downloads 165400 Pneumoperitoneum Creation Assisted with Optical Coherence Tomography and Automatic Identification
Authors: Eric Yi-Hsiu Huang, Meng-Chun Kao, Wen-Chuan Kuo
Abstract:
For every laparoscopic surgery, a safe pneumoperitoneumcreation (gaining access to the peritoneal cavity) is the first and essential step. However, closed pneumoperitoneum is usually obtained by blind insertion of a Veress needle into the peritoneal cavity, which may carry potential risks suchas bowel and vascular injury.Until now, there remains no definite measure to visually confirm the position of the needle tip inside the peritoneal cavity. Therefore, this study established an image-guided Veress needle method by combining a fiber probe with optical coherence tomography (OCT). An algorithm was also proposed for determining the exact location of the needle tip through the acquisition of OCT images. Our method not only generates a series of “live” two-dimensional (2D) images during the needle puncture toward the peritoneal cavity but also can eliminate operator variation in image judgment, thus improving peritoneal access safety. This study was approved by the Ethics Committee of Taipei Veterans General Hospital (Taipei VGH IACUC 2020-144). A total of 2400 in vivo OCT images, independent of each other, were acquired from experiments of forty peritoneal punctures on two piglets. Characteristic OCT image patterns could be observed during the puncturing process. The ROC curve demonstrates the discrimination capability of these quantitative image features of the classifier, showing the accuracy of the classifier for determining the inside vs. outside of the peritoneal was 98% (AUC=0.98). In summary, the present study demonstrates the ability of the combination of our proposed automatic identification method and OCT imaging for automatically and objectively identifying the location of the needle tip. OCT images translate the blind closed technique of peritoneal access into a visualized procedure, thus improving peritoneal access safety.Keywords: pneumoperitoneum, optical coherence tomography, automatic identification, veress needle
Procedia PDF Downloads 134399 Improving 99mTc-tetrofosmin Myocardial Perfusion Images by Time Subtraction Technique
Authors: Yasuyuki Takahashi, Hayato Ishimura, Masao Miyagawa, Teruhito Mochizuki
Abstract:
Quantitative measurement of myocardium perfusion is possible with single photon emission computed tomography (SPECT) using a semiconductor detector. However, accumulation of 99mTc-tetrofosmin in the liver may make it difficult to assess that accurately in the inferior myocardium. Our idea is to reduce the high accumulation in the liver by using dynamic SPECT imaging and a technique called time subtraction. We evaluated the performance of a new SPECT system with a cadmium-zinc-telluride solid-state semi- conductor detector (Discovery NM 530c; GE Healthcare). Our system acquired list-mode raw data over 10 minutes for a typical patient. From the data, ten SPECT images were reconstructed, one for every minute of acquired data. Reconstruction with the semiconductor detector was based on an implementation of a 3-D iterative Bayesian reconstruction algorithm. We studied 20 patients with coronary artery disease (mean age 75.4 ± 12.1 years; range 42-86; 16 males and 4 females). In each subject, 259 MBq of 99mTc-tetrofosmin was injected intravenously. We performed both a phantom and a clinical study using dynamic SPECT. An approximation to a liver-only image is obtained by reconstructing an image from the early projections during which time the liver accumulation dominates (0.5~2.5 minutes SPECT image-5~10 minutes SPECT image). The extracted liver-only image is then subtracted from a later SPECT image that shows both the liver and the myocardial uptake (5~10 minutes SPECT image-liver-only image). The time subtraction of liver was possible in both a phantom and the clinical study. The visualization of the inferior myocardium was improved. In past reports, higher accumulation in the myocardium due to the overlap of the liver is un-diagnosable. Using our time subtraction method, the image quality of the 99mTc-tetorofosmin myocardial SPECT image is considerably improved.Keywords: 99mTc-tetrofosmin, dynamic SPECT, time subtraction, semiconductor detector
Procedia PDF Downloads 335398 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 375397 Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index
Authors: Minjeong Kim, Seungchul Lee, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo
Abstract:
A trajectory of set-point of ventilation control systems plays an important role for efficient ventilation inside subway stations since it affects the level of indoor air pollutants and ventilation energy consumption. To maintain indoor air quality (IAQ) at a comfortable range with lower ventilation energy consumption, the optimal trajectory of the ventilation control system needs to be determined. The concentration of air pollutants inside the station shows a diurnal variation in accordance with the variations in the number of passengers and subway frequency. To consider the diurnal variation of IAQ, an iterative dynamic programming (IDP) that searches for a piecewise control policy by separating whole duration into several stages is used. When outdoor air is contaminated by pollutants, it enters the subway station through the ventilation system, which results in the deteriorated IAQ and adverse effects on passenger health. In this study, to consider the influence of outdoor air quality (OAQ), a new performance index of the IDP with the passenger health risk and OAQ is proposed. This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station.Keywords: indoor air quality, iterative dynamic algorithm, outdoor air information, ventilation control system
Procedia PDF Downloads 501396 Investigating the Energy Harvesting Potential of a Pitch-Plunge Airfoil Subjected to Fluctuating Wind
Authors: Magu Raam Prasaad R., Venkatramani Jagadish
Abstract:
Recent studies in the literature have shown that randomly fluctuating wind flows can give rise to a distinct regime of pre-flutter oscillations called intermittency. Intermittency is characterized by the presence of sporadic bursts of high amplitude oscillations interspersed amidst low-amplitude aperiodic fluctuations. The focus of this study is on investigating the energy harvesting potential of these intermittent oscillations. Available literature has by and large devoted its attention on extracting energy from flutter oscillations. The possibility of harvesting energy from pre-flutter regimes have remained largely unexplored. However, extracting energy from violent flutter oscillations can be severely detrimental to the structural integrity of airfoil structures. Consequently, investigating the relatively stable pre-flutter responses for energy extraction applications is of practical importance. The present study is devoted towards addressing these concerns. A pitch-plunge airfoil with cubic hardening nonlinearity in the plunge and pitch degree of freedom is considered. The input flow fluctuations are modelled using a sinusoidal term with randomly perturbed frequencies. An electromagnetic coupling is provided to the pitch-plunge equations, such that, energy from the wind induced vibrations of the structural response are extracted. With the mean flow speed as the bifurcation parameter, a fourth order Runge-Kutta based time marching algorithm is used to solve the governing aeroelastic equations with electro-magnetic coupling. The harnessed energy from the intermittency regime is presented and the results are discussed in comparison to that obtained from the flutter regime. The insights from this study could be useful in health monitoring of aeroelastic structures.Keywords: aeroelasticity, energy harvesting, intermittency, randomly fluctuating flows
Procedia PDF Downloads 186395 Action Potential of Lateral Geniculate Neurons at Low Threshold Currents: Simulation Study
Authors: Faris Tarlochan, Siva Mahesh Tangutooru
Abstract:
Lateral Geniculate Nucleus (LGN) is the relay center in the visual pathway as it receives most of the input information from retinal ganglion cells (RGC) and sends to visual cortex. Low threshold calcium currents (IT) at the membrane are the unique indicator to characterize this firing functionality of the LGN neurons gained by the RGC input. According to the LGN functional requirements such as functional mapping of RGC to LGN, the morphologies of the LGN neurons were developed. During the neurological disorders like glaucoma, the mapping between RGC and LGN is disconnected and hence stimulating LGN electrically using deep brain electrodes can restore the functionalities of LGN. A computational model was developed for simulating the LGN neurons with three predominant morphologies, each representing different functional mapping of RGC to LGN. The firings of action potentials at LGN neuron due to IT were characterized by varying the stimulation parameters, morphological parameters and orientation. A wide range of stimulation parameters (stimulus amplitude, duration and frequency) represents the various strengths of the electrical stimulation with different morphological parameters (soma size, dendrites size and structure). The orientation (0-1800) of LGN neuron with respect to the stimulating electrode represents the angle at which the extracellular deep brain stimulation towards LGN neuron is performed. A reduced dendrite structure was used in the model using Bush–Sejnowski algorithm to decrease the computational time while conserving its input resistance and total surface area. The major finding is that an input potential of 0.4 V is required to produce the action potential in the LGN neuron which is placed at 100 µm distance from the electrode. From this study, it can be concluded that the neuroprostheses under design would need to consider the capability of inducing at least 0.4V to produce action potentials in LGN.Keywords: Lateral Geniculate Nucleus, visual cortex, finite element, glaucoma, neuroprostheses
Procedia PDF Downloads 277394 Simplified INS\GPS Integration Algorithm in Land Vehicle Navigation
Authors: Othman Maklouf, Abdunnaser Tresh
Abstract:
Land vehicle navigation is subject of great interest today. Global Positioning System (GPS) is the main navigation system for positioning in such systems. GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation (INS) is the implementation of inertial sensors to determine the position and orientation of a vehicle. The availability of low-cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop INS using an inertial measurement unit (IMU). INS has unbounded error growth since the error accumulates at each step. Usually, GPS and INS are integrated with a loosely coupled scheme. With the development of low-cost, MEMS inertial sensors and GPS technology, integrated INS/GPS systems are beginning to meet the growing demands of lower cost, smaller size, and seamless navigation solutions for land vehicles. Although MEMS inertial sensors are very inexpensive compared to conventional sensors, their cost (especially MEMS gyros) is still not acceptable for many low-end civilian applications (for example, commercial car navigation or personal location systems). An efficient way to reduce the expense of these systems is to reduce the number of gyros and accelerometers, therefore, to use a partial IMU (ParIMU) configuration. For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a field experiment for a low-cost strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach, we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost IMU (Inertial Measurement Unit) and because of the relatively small area of the trajectory.Keywords: GPS, IMU, Kalman filter, materials engineering
Procedia PDF Downloads 421393 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores
Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan
Abstract:
Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics
Procedia PDF Downloads 130392 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs
Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa
Abstract:
Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.Keywords: classification models, egg weight, fertilised eggs, multiple linear regression
Procedia PDF Downloads 87391 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 147390 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 93389 Analyzing Nonsimilar Convective Heat Transfer in Copper/Alumina Nanofluid with Magnetic Field and Thermal Radiations
Authors: Abdulmohsen Alruwaili
Abstract:
A partial differential system featuring momentum and energy balance is often used to describe simulations of flow initiation and thermal shifting in boundary layers. The buoyancy force in terms of temperature is factored in the momentum balance equation. Buoyancy force causes the flow quantity to fluctuate along the streamwise direction 𝑋; therefore, the problem can be, to our best knowledge, analyzed through nonsimilar modeling. In this analysis, a nonsimilar model is evolved for radiative mixed convection of a magnetized power-law nanoliquid flow on top of a vertical plate installed in a stationary fluid. The upward linear stretching initiated the flow in the vertical direction. Assuming nanofluids are composite of copper (Cu) and alumina (Al₂O₃) nanoparticles, the viscous dissipation in this case is negligible. The nonsimilar system is dealt with analytically by local nonsimilarity (LNS) via numerical algorithm bvp4c. Surface temperature and flow field are shown visually in relation to factors like mixed convection, magnetic field strength, nanoparticle volume fraction, radiation parameters, and Prandtl number. The repercussions of magnetic and mixed convection parameters on the rate of energy transfer and friction coefficient are represented in tabular forms. The results obtained are compared to the published literature. It is found that the existence of nanoparticles significantly improves the temperature profile of considered nanoliquid. It is also observed that when the estimates of the magnetic parameter increase, the velocity profile decreases. Enhancement in nanoparticle concentration and mixed convection parameter improves the velocity profile.Keywords: nanofluid, power law model, mixed convection, thermal radiation
Procedia PDF Downloads 32388 Solving LWE by Pregressive Pumps and Its Optimization
Authors: Leizhang Wang, Baocang Wang
Abstract:
General Sieve Kernel (G6K) is considered as currently the fastest algorithm for the shortest vector problem (SVP) and record holder of open SVP challenge. We study the lattice basis quality improvement effects of the Workout proposed in G6K, which is composed of a series of pumps to solve SVP. Firstly, we use a low-dimensional pump output basis to propose a predictor to predict the quality of high-dimensional Pumps output basis. Both theoretical analysis and experimental tests are performed to illustrate that it is more computationally expensive to solve the LWE problems by using a G6K default SVP solving strategy (Workout) than these lattice reduction algorithms (e.g. BKZ 2.0, Progressive BKZ, Pump, and Jump BKZ) with sieving as their SVP oracle. Secondly, the default Workout in G6K is optimized to achieve a stronger reduction and lower computational cost. Thirdly, we combine the optimized Workout and the Pump output basis quality predictor to further reduce the computational cost by optimizing LWE instances selection strategy. In fact, we can solve the TU LWE challenge (n = 65, q = 4225, = 0:005) 13.6 times faster than the G6K default Workout. Fourthly, we consider a combined two-stage (Preprocessing by BKZ- and a big Pump) LWE solving strategy. Both stages use dimension for free technology to give new theoretical security estimations of several LWE-based cryptographic schemes. The security estimations show that the securities of these schemes with the conservative Newhope’s core-SVP model are somewhat overestimated. In addition, in the case of LAC scheme, LWE instances selection strategy can be optimized to further improve the LWE-solving efficiency even by 15% and 57%. Finally, some experiments are implemented to examine the effects of our strategies on the Normal Form LWE problems, and the results demonstrate that the combined strategy is four times faster than that of Newhope.Keywords: LWE, G6K, pump estimator, LWE instances selection strategy, dimension for free
Procedia PDF Downloads 60387 3D Geological Modeling and Engineering Geological Characterization of Shallow Subsurface Soil and Rock of Addis Ababa, Ethiopia
Authors: Biruk Wolde, Atalay Ayele, Yonatan Garkabo, Trufat Hailmariam, Zemenu Germewu
Abstract:
A comprehensive three-dimensional (3D) geological modeling and engineering geological characterization of shallow subsurface soils and rocks are essential for a wide range of geotechnical and seismological engineering applications, particularly in urban environments. The spatial distribution and geological variation of the shallow subsurface of Addis Ababa city have not been studied so far in terms of geological and geotechnical modeling. This study aims at the construction of a 3D geological model, as well as provides awareness into the engineering geological characteristics of shallow subsurface soil and rock of Addis Ababa city. The 3D geological model was constructed by using more than 1500 geotechnical boreholes, well-drilling data, and geological maps. A well-known geostatistical kriging 3D interpolation algorithm was applied to visualize the spatial distribution and geological variation of the shallow subsurface. Due to the complex nature of geological formations, vertical and lateral variation of the geological profiles horizons-solid command has been selected via the Groundwater Modelling System (GMS) graphical user interface software. For the engineering geological characterization of typical soils and rocks, both index and engineering laboratory tests have been used. The geotechnical properties of soil and rocks vary from place to place due to the uneven nature of subsurface formations observed in the study areas. The constructed model ascertains the thickness, extent, and 3D distribution of the important geological units of the city. This study is the first comprehensive research work on 3D geological modeling and subsurface characterization of soils and rocks in Addis Ababa city, and the outcomes will be important for further future research on subsurface conditions in the city. Furthermore, these findings provide a reference for developing a geo-database for the city.Keywords: 3d geological modeling, addis ababa, engineering geology, geostatistics, horizons-solid
Procedia PDF Downloads 98386 Understanding the Semantic Network of Tourism Studies in Taiwan by Using Bibliometrics Analysis
Authors: Chun-Min Lin, Yuh-Jen Wu, Ching-Ting Chung
Abstract:
The formulation of tourism policies requires objective academic research and evidence as support, especially research from local academia. Taiwan is a small island, and its economic growth relies heavily on tourism revenue. Taiwanese government has been devoting to the promotion of the tourism industry over the past few decades. Scientific research outcomes by Taiwanese scholars may and will help lay the foundations for drafting future tourism policy by the government. In this study, a total of 120 full journal articles published between 2008 and 2016 from the Journal of Tourism and Leisure Studies (JTSL) were examined to explore the scientific research trend of tourism study in Taiwan. JTSL is one of the most important Taiwanese journals in the tourism discipline which focuses on tourism-related issues and uses traditional Chinese as the study language. The method of co-word analysis from bibliometrics approaches was employed for semantic analysis in this study. When analyzing Chinese words and phrases, word segmentation analysis is a crucial step. It must be carried out initially and precisely in order to obtain meaningful word or word chunks for further frequency calculation. A word segmentation system basing on N-gram algorithm was developed in this study to conduct semantic analysis, and 100 groups of meaningful phrases with the highest recurrent rates were located. Subsequently, co-word analysis was employed for semantic classification. The results showed that the themes of tourism research in Taiwan in recent years cover the scope of tourism education, environmental protection, hotel management, information technology, and senior tourism. The results can give insight on the related issues and serve as a reference for tourism-related policy making and follow-up research.Keywords: bibliometrics, co-word analysis, word segmentation, tourism research, policy
Procedia PDF Downloads 229385 Design and Development of High Strength Aluminium Alloy from Recycled 7xxx-Series Material Using Bayesian Optimisation
Authors: Alireza Vahid, Santu Rana, Sunil Gupta, Pratibha Vellanki, Svetha Venkatesh, Thomas Dorin
Abstract:
Aluminum is the preferred material for lightweight applications and its alloys are constantly improving. The high strength 7xxx alloys have been extensively used for structural components in aerospace and automobile industries for the past 50 years. In the next decade, a great number of airplanes will be retired, providing an obvious source of valuable used metals and great demand for cost-effective methods to re-use these alloys. The design of proper aerospace alloys is primarily based on optimizing strength and ductility, both of which can be improved by controlling the additional alloying elements as well as heat treatment conditions. In this project, we explore the design of high-performance alloys with 7xxx as a base material. These designed alloys have to be optimized and improved to compare with modern 7xxx-series alloys and to remain competitive for aircraft manufacturing. Aerospace alloys are extremely complex with multiple alloying elements and numerous processing steps making optimization often intensive and costly. In the present study, we used Bayesian optimization algorithm, a well-known adaptive design strategy, to optimize this multi-variable system. An Al alloy was proposed and the relevant heat treatment schedules were optimized, using the tensile yield strength as the output to maximize. The designed alloy has a maximum yield strength and ultimate tensile strength of more than 730 and 760 MPa, respectively, and is thus comparable to the modern high strength 7xxx-series alloys. The microstructure of this alloy is characterized by electron microscopy, indicating that the increased strength of the alloy is due to the presence of a high number density of refined precipitates.Keywords: aluminum alloys, Bayesian optimization, heat treatment, tensile properties
Procedia PDF Downloads 119384 FlameCens: Visualization of Expressive Deviations in Music Performance
Authors: Y. Trantafyllou, C. Alexandraki
Abstract:
Music interpretation accounts to the way musicians shape their performance by deliberately deviating from composers’ intentions, which are commonly communicated via some form of music transcription, such as a music score. For transcribed and non-improvised music, music expression is manifested by introducing subtle deviations in tempo, dynamics and articulation during the evolution of performance. This paper presents an application, named FlameCens, which, given two recordings of the same piece of music, presumably performed by different musicians, allow visualising deviations in tempo and dynamics during playback. The application may also compare a certain performance to the music score of that piece (i.e. MIDI file), which may be thought of as an expression-neutral representation of that piece, hence depicting the expressive queues employed by certain performers. FlameCens uses the Dynamic Time Warping algorithm to compare two audio sequences, based on CENS (Chroma Energy distribution Normalized Statistics) audio features. Expressive deviations are illustrated in a moving flame, which is generated by an animation of particles. The length of the flame is mapped to deviations in dynamics, while the slope of the flame is mapped to tempo deviations so that faster tempo changes the slope to the right and slower tempo changes the slope to the left. Constant slope signifies no tempo deviation. The detected deviations in tempo and dynamics can be additionally recorded in a text file, which allows for offline investigation. Moreover, in the case of monophonic music, the color of particles is used to convey the pitch of the notes during performance. FlameCens has been implemented in Python and it is openly available via GitHub. The application has been experimentally validated for different music genres including classical, contemporary, jazz and popular music. These experiments revealed that FlameCens can be a valuable tool for music specialists (i.e. musicians or musicologists) to investigate the expressive performance strategies employed by different musicians, as well as for music audience to enhance their listening experience.Keywords: audio synchronization, computational music analysis, expressive music performance, information visualization
Procedia PDF Downloads 130383 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI
Procedia PDF Downloads 153382 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 142381 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 75380 Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage
Authors: Meng H. Lean, Wei-Ping L. Chu
Abstract:
The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%.Keywords: nanocomposites, nanofillers, electrical double layer, bipolar charge transport
Procedia PDF Downloads 354379 Globally Convergent Sequential Linear Programming for Multi-Material Topology Optimization Using Ordered Solid Isotropic Material with Penalization Interpolation
Authors: Darwin Castillo Huamaní, Francisco A. M. Gomes
Abstract:
The aim of the multi-material topology optimization (MTO) is to obtain the optimal topology of structures composed by many materials, according to a given set of constraints and cost criteria. In this work, we seek the optimal distribution of materials in a domain, such that the flexibility of the structure is minimized, under certain boundary conditions and the intervention of external forces. In the case we have only one material, each point of the discretized domain is represented by two values from a function, where the value of the function is 1 if the element belongs to the structure or 0 if the element is empty. A common way to avoid the high computational cost of solving integer variable optimization problems is to adopt the Solid Isotropic Material with Penalization (SIMP) method. This method relies on the continuous interpolation function, power function, where the base variable represents a pseudo density at each point of domain. For proper exponent values, the SIMP method reduces intermediate densities, since values other than 0 or 1 usually does not have a physical meaning for the problem. Several extension of the SIMP method were proposed for the multi-material case. The one that we explore here is the ordered SIMP method, that has the advantage of not being based on the addition of variables to represent material selection, so the computational cost is independent of the number of materials considered. Although the number of variables is not increased by this algorithm, the optimization subproblems that are generated at each iteration cannot be solved by methods that rely on second derivatives, due to the cost of calculating the second derivatives. To overcome this, we apply a globally convergent version of the sequential linear programming method, which solves a linear approximation sequence of optimization problems.Keywords: globally convergence, multi-material design ordered simp, sequential linear programming, topology optimization
Procedia PDF Downloads 315378 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid
Authors: Abdulla Rahil, Rupert Gammon, Neil Brown
Abstract:
The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.Keywords: hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen
Procedia PDF Downloads 231377 Influence of Hydrophobic Surface on Flow Past Square Cylinder
Authors: S. Ajith Kumar, Vaisakh S. Rajan
Abstract:
In external flows, vortex shedding behind the bluff bodies causes to experience unsteady loads on a large number of engineering structures, resulting in structural failure. Vortex shedding can even turn out to be disastrous like the Tacoma Bridge failure incident. We need to have control over vortex shedding to get rid of this untoward condition by reducing the unsteady forces acting on the bluff body. In circular cylinders, hydrophobic surface in an otherwise no-slip surface is found to be delaying separation and minimizes the effects of vortex shedding drastically. Flow over square cylinder stands different from this behavior as separation can takes place from either of the two corner separation points (front or rear). An attempt is made in this study to numerically elucidate the effect of hydrophobic surface in flow over a square cylinder. A 2D numerical simulation has been done to understand the effects of the slip surface on the flow past square cylinder. The details of the numerical algorithm will be presented at the time of the conference. A non-dimensional parameter, Knudsen number is defined to quantify the slip on the cylinder surface based on Maxwell’s equation. The slip surface condition of the wall affects the vorticity distribution around the cylinder and the flow separation. In the numerical analysis, we observed that the hydrophobic surface enhances the shedding frequency and damps down the amplitude of oscillations of the square cylinder. We also found that the slip has a negative effect on aerodynamic force coefficients such as the coefficient of lift (CL), coefficient of drag (CD) etc. and hence replacing the no slip surface by a hydrophobic surface can be treated as an effective drag reduction strategy and the introduction of hydrophobic surface could be utilized for reducing the vortex induced vibrations (VIV) and is found as an effective method in controlling VIV thereby controlling the structural failures.Keywords: drag reduction, flow past square cylinder, flow control, hydrophobic surfaces, vortex shedding
Procedia PDF Downloads 374376 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter
Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball
Abstract:
The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS
Procedia PDF Downloads 43