Search results for: sensor network design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17430

Search results for: sensor network design

14250 Design and Development of Bar Graph Data Visualization in 2D and 3D Space Using Front-End Technologies

Authors: Sourabh Yaduvanshi, Varsha Namdeo, Namrata Yaduvanshi

Abstract:

This study delves into the design and development intricacies of crafting detailed 2D bar charts via d3.js, recognizing its limitations in generating 3D visuals within the Document Object Model (DOM). The study combines three.js with d3.js, facilitating a smooth evolution from 2D to immersive 3D representations. This fusion epitomizes the synergy between front-end technologies, expanding horizons in data visualization. Beyond technical expertise, it symbolizes a creative convergence, pushing boundaries in visual representation. The abstract illuminates methodologies, unraveling the intricate integration of this fusion and guiding enthusiasts. It narrates a compelling story of transcending 2D constraints, propelling data visualization into captivating three-dimensional realms, and igniting creativity in front-end visualization endeavors.

Keywords: design, development, front-end technologies, visualization

Procedia PDF Downloads 36
14249 Impact on the Results of Sub-Group Analysis on Performance of Recommender Systems

Authors: Ho Yeon Park, Kyoung-Jae Kim

Abstract:

The purpose of this study is to investigate whether friendship in social media can be an important factor in recommender system through social scientific analysis of friendship in popular social media such as Facebook and Twitter. For this purpose, this study analyzes data on friendship in real social media using component analysis and clique analysis among sub-group analysis in social network analysis. In this study, we propose an algorithm to reflect the results of sub-group analysis on the recommender system. The key to this algorithm is to ensure that recommendations from users in friendships are more likely to be reflected in recommendations from users. As a result of this study, outcomes of various subgroup analyzes were derived, and it was confirmed that the results were different from the results of the existing recommender system. Therefore, it is considered that the results of the subgroup analysis affect the recommendation performance of the system. Future research will attempt to generalize the results of the research through further analysis of various social data.

Keywords: sub-group analysis, social media, social network analysis, recommender systems

Procedia PDF Downloads 365
14248 Generativism in Language Design and Their Effects on String of Constructions

Authors: Christian Uchechukwu Gilbert

Abstract:

Generativism in language design investigates the framework on which varying sentence structures are built in the English language. Propounded by Noam Chomsky in 1965, the theory transforms sentences from an active structure to a passive one by the application of established rules of the theory. Resident in the body of syntax, the rules include movement, insertion, substitution, and deletion rules. Using the movement rule, the analysis is armed with the qualitative research method, on which the works of scholars were duly consulted for more insight and in line with the academic practice in research activities. The investigation showed that the rules of competent grammar explain the formulation of sentences in a language and how transformation takes place among sentences from a deep structure to a surface structure with accurate results. The structural differences that could be got through dative movement and the deletion of the preposition; passivisation got from an active sentence by the insertion of the preposition “by” a “be verb” and the aspect tense marker “–en”, held as the creative aspect of language vocabulary and the subject-auxiliary inversion that exchanges the auxiliary of a sentence with the subject of the same sentence thereby transforming a kennel sentence to a polar question, viewed as an external argument under θ-theory. Generativism in language design, therefore, changes available types of sentences and relates one form of linguistic category with others in language design.

Keywords: language, generate, transformation, structure, design

Procedia PDF Downloads 68
14247 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates

Authors: S. Dey, T. Mukhopadhyay, S. Adhikari

Abstract:

This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.

Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification

Procedia PDF Downloads 513
14246 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 89
14245 High Thrust Upper Stage Solar Hydrogen Rocket Design

Authors: Maged Assem Soliman Mossallam

Abstract:

The conversion of solar thruster model to an upper stage hydrogen rocket is considered. Solar thruster categorization limits its capabilities to low and moderate thrust system with high specific impulse. The current study proposes a different concept for such systems by increasing the thrust which enables using as an upper stage rocket and for future launching purposes. A computational model for the thruster is discussed for solar thruster subsystems. The first module depends on ray tracing technique to determine the intercepted solar power by the hydrogen combustion chamber. The cavity receiver is modeled using finite volume technique. The final module imports the heated hydrogen properties to the nozzle using quasi one dimensional simulation. The probability of shock waves formulation inside the nozzle is almost diminished as the outlet pressure in space environment tends to zero. The computational model relates the high thrust hydrogen rocket conversion to the design parameters and operating conditions of the thruster. Three different designs for solar thruster systems are discussed. The first design is a low thrust high specific impulse design that produces about 10 Newton of thrust .The second one output thrust is about 250 Newton and the third design produces about 1000 Newton.

Keywords: space propulsion, hydrogen rocket, thrust, specific impulse

Procedia PDF Downloads 166
14244 Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network

Authors: E. Behmanesh, J. Pannek

Abstract:

The distribution-allocation problem is known as one of the most comprehensive strategic decision. In real-world cases, it is impossible to solve a distribution-allocation problem in traditional ways with acceptable time. Hence researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near-optimal solutions particularly for large scales test problems. This paper, presents an integrated supply chain model which is flexible in the delivery path. As the solution methodology, we apply a memetic algorithm with a novelty in population presentation. To illustrate the performance of the proposed memetic algorithm, LINGO optimization software serves as a comparison basis for small size problems. In large size cases that we are dealing with in the real world, the Genetic algorithm as the second metaheuristic algorithm is considered to compare the results and show the efficiency of the memetic algorithm.

Keywords: integrated logistics network, flexible path, memetic algorithm, genetic algorithm

Procedia PDF Downloads 374
14243 First-Principles Modeling of Nanoparticle Magnetization, Chaining, and Motion

Authors: Pierce Radecki, Pulkit Malik, Bharath Ramaswamy, Ben Shapiro

Abstract:

The ability to effectively design and test magnetic nanoparticles for controlled movement has been an elusive goal in the design of these particles. Magnetic nanoparticles of various characteristics have been created for use towards therapeutic effects, however the challenge of designing for controlled movement remains unmet. A step towards design in this aspect is a first principles model that captures and predicts the behaviors of particles in a magnetic field. The model is governed by four forces acting on the particles, the magnetic gradient, the dipole-dipole forces, the steric forces, and the viscous drag force. The particles are multi-core or single core, and incorporate a preferred magnetization axis. Particles exhibit behaviors, such as chaining, in simulations that are similar to those witnessed through experimentation. Currently, experimental results are being compared to the modeling results for verification of the model, through the analysis of chaining behaviors. This modeling system will be used in designing magnetic nanoparticles for specific chaining and movement behaviors.

Keywords: controlled movement, modeling, magnetic nanoparticles, nanoparticle design

Procedia PDF Downloads 305
14242 Application of Artificial Neural Network for Prediction of Retention Times of Some Secoestrane Derivatives

Authors: Nataša Kalajdžija, Strahinja Kovačević, Davor Lončar, Sanja Podunavac Kuzmanović, Lidija Jevrić

Abstract:

In order to investigate the relationship between retention and structure, a quantitative Structure Retention Relationships (QSRRs) study was applied for the prediction of retention times of a set of 23 secoestrane derivatives in a reversed-phase thin-layer chromatography. After the calculation of molecular descriptors, a suitable set of molecular descriptors was selected by using step-wise multiple linear regressions. Artificial Neural Network (ANN) method was employed to model the nonlinear structure-activity relationships. The ANN technique resulted in 5-6-1 ANN model with the correlation coefficient of 0.98. We found that the following descriptors: Critical pressure, total energy, protease inhibition, distribution coefficient (LogD) and parameter of lipophilicity (miLogP) have a significant effect on the retention times. The prediction results are in very good agreement with the experimental ones. This approach provided a new and effective method for predicting the chromatographic retention index for the secoestrane derivatives investigated.

Keywords: lipophilicity, QSRR, RP TLC retention, secoestranes

Procedia PDF Downloads 457
14241 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction

Authors: Sudhir Kumar Tiwari

Abstract:

The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.

Keywords: multi-disciplinary optimization, aircraft load, finite element analysis, stick model

Procedia PDF Downloads 352
14240 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review

Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari

Abstract:

The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.

Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency

Procedia PDF Downloads 162
14239 Molecular Diagnosis of a Virus Associated with Red Tip Disease and Its Detection by Non Destructive Sensor in Pineapple (Ananas comosus)

Authors: A. K. Faizah, G. Vadamalai, S. K. Balasundram, W. L. Lim

Abstract:

Pineapple (Ananas comosus) is a common crop in tropical and subtropical areas of the world. Malaysia once ranked as one of the top 3 pineapple producers in the world in the 60's and early 70's, after Hawaii and Brazil. Moreover, government’s recognition of the pineapple crop as one of priority commodities to be developed for the domestics and international markets in the National Agriculture Policy. However, pineapple industry in Malaysia still faces numerous challenges, one of which is the management of disease and pest. Red tip disease on pineapple was first recognized about 20 years ago in a commercial pineapple stand located in Simpang Renggam, Johor, Peninsular Malaysia. Since its discovery, there has been no confirmation on its causal agent of this disease. The epidemiology of red tip disease is still not fully understood. Nevertheless, the disease symptoms and the spread within the field seem to point toward viral infection. Bioassay test on nucleic acid extracted from the red tip-affected pineapple was done on Nicotiana tabacum cv. Coker by rubbing the extracted sap. Localised lesions were observed 3 weeks after inoculation. Negative staining of the fresh inoculated Nicotiana tabacum cv. Coker showed the presence of membrane-bound spherical particles with an average diameter of 94.25nm under transmission electron microscope. The shape and size of the particles were similar to tospovirus. SDS-PAGE analysis of partial purified virions from inoculated N. tabacum produced a strong and a faint protein bands with molecular mass of approximately 29 kDa and 55 kDa. Partial purified virions of symptomatic pineapple leaves from field showed bands with molecular mass of approximately 29 kDa, 39 kDa and 55kDa. These bands may indicate the nucleocapsid protein identity of tospovirus. Furthermore, a handheld sensor, Greenseeker, was used to detect red tip symptoms on pineapple non-destructively based on spectral reflectance, measured as Normalized Difference Vegetation Index (NDVI). Red tip severity was estimated and correlated with NDVI. Linear regression models were calibrated and tested developed in order to estimate red tip disease severity based on NDVI. Results showed a strong positive relationship between red tip disease severity and NDVI (r= 0.84).

Keywords: pineapple, diagnosis, virus, NDVI

Procedia PDF Downloads 791
14238 A Design Approach in Architectural Education: Parasitic Architecture

Authors: Ozlem Senyigit, Nur Yilmaz

Abstract:

Throughout the architectural education, it is aimed to provide students with the ability to find original solutions to current problems. In this sense, workshops that provide creative thinking within the action, experiencing the environment, and finding instant solutions to problems have an important place in the education process. Parasitic architecture, which is a contemporary design approach in the architectural agenda, includes small scale designs integrated into the carrier system of existing structures in spaces of the existing urban fabric which resembles the host-parasite relationship in the biology field. The scope of this study consists of a 12-weeks long experimental workshop of the 'parasitic architecture', which was designed within the scope of Basic Design 2 course of the Department of Architecture of Çukurova University in the 2017-2018 academic year. In this study, parasitic architecture was discussed as a space design method. Students analyzed the campus of the Çukurova University and drew sketches to identify gaps in it. During the workshop, the function-form-context relationship was discussed. The output products were evaluated within the context of urban spaces/gaps, functional requirements, and students gained awareness not just about the urban occupancy but also gaps.

Keywords: design approach, parasitic architecture, experimental workshop, architectural education

Procedia PDF Downloads 157
14237 Case-Based Reasoning Application to Predict Geological Features at Site C Dam Construction Project

Authors: Shahnam Behnam Malekzadeh, Ian Kerr, Tyson Kaempffer, Teague Harper, Andrew Watson

Abstract:

The Site C Hydroelectric dam is currently being constructed in north-eastern British Columbia on sub-horizontal sedimentary strata that dip approximately 15 meters from one bank of the Peace River to the other. More than 615 pressure sensors (Vibrating Wire Piezometers) have been installed on bedding planes (BPs) since construction began, with over 80 more planned before project completion. These pressure measurements are essential to monitor the stability of the rock foundation during and after construction and for dam safety purposes. BPs are identified by their clay gouge infilling, which varies in thickness from less than 1 to 20 mm and can be challenging to identify as the core drilling process often disturbs or washes away the gouge material. Without the use of depth predictions from nearby boreholes, stratigraphic markers, and downhole geophysical data, it is difficult to confidently identify BP targets for the sensors. In this paper, a Case-Based Reasoning (CBR) method was used to develop an empirical model called the Bedding Plane Elevation Prediction (BPEP) to help geologists and geotechnical engineers to predict geological features and bedding planes at new locations in a fast and accurate manner. To develop CBR, a database was developed based on 64 pressure sensors already installed on key bedding planes BP25, BP28, and BP31 on the Right Bank, including bedding plane elevations and coordinates. Thirteen (20%) of the most recent cases were selected to validate and evaluate the accuracy of the developed model, while the similarity was defined as the distance between previous cases and recent cases to predict the depth of significant BPs. The average difference between actual BP elevations and predicted elevations for above BPs was ±55cm, while the actual results showed that 69% of predicted elevations were within ±79 cm of actual BP elevations while 100% of predicted elevations for new cases were within ±99cm range. Eventually, the actual results will be used to develop the database and improve BPEP to perform as a learning machine to predict more accurate BP elevations for future sensor installations.

Keywords: case-based reasoning, geological feature, geology, piezometer, pressure sensor, core logging, dam construction

Procedia PDF Downloads 80
14236 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.

Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition

Procedia PDF Downloads 25
14235 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.

Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks

Procedia PDF Downloads 401
14234 RBF Modelling and Optimization Control for Semi-Batch Reactors

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.

Keywords: Chylla-Haase reactor, RBF neural network modelling, model predictive control, semi-batch reactors

Procedia PDF Downloads 468
14233 Cognitive Dysfunctioning and the Fronto-Limbic Network in Bipolar Disorder Patients: A Fmri Meta-Analysis

Authors: Rahele Mesbah, Nic Van Der Wee, Manja Koenders, Erik Giltay, Albert Van Hemert, Max De Leeuw

Abstract:

Introduction: Patients with bipolar disorder (BD), characterized by depressive and manic episodes, often suffer from cognitive dysfunction. An up-to-date meta-analysis of functional Magnetic Resonance Imaging (fMRI) studies examining cognitive function in BD is lacking. Objective: The aim of the current fMRI meta-analysis is to investigate brain functioning of bipolar patients compared with healthy subjects within three domains of emotion processing, reward processing, and working memory. Method: Differences in brain regions activation were tested within whole-brain analysis using the activation likelihood estimation (ALE) method. Separate analyses were performed for each cognitive domain. Results: A total of 50 fMRI studies were included: 20 studies used an emotion processing (316 BD and 369 HC) task, 9 studies a reward processing task (215 BD and 213 HC), and 21 studies used a working memory task (503 BD and 445 HC). During emotion processing, BD patients hyperactivated parts of the left amygdala and hippocampus as compared to HC’s, but showed hypoactivation in the inferior frontal gyrus (IFG). Regarding reward processing, BD patients showed hyperactivation in part of the orbitofrontal cortex (OFC). During working memory, BD patients showed increased activity in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). Conclusions: This meta-analysis revealed evidence for activity disturbances in several brain areas involved in the cognitive functioning of BD patients. Furthermore, most of the found regions are part of the so-called fronto-limbic network which is hypothesized to be affected as a result of BD candidate genes' expression.

Keywords: cognitive functioning, fMRI analysis, bipolar disorder, fronto-limbic network

Procedia PDF Downloads 462
14232 An Effective Noise Resistant Frequency Modulation Continuous-Wave Radar Vital Sign Signal Detection Method

Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng

Abstract:

To address the problem that the FM continuous-wave radar (FMCW) extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a new detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a BP neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise and accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal-to-noise ratio of the sign signals.

Keywords: frequency modulated continuous wave radar, ICEEMDAN, BP neural network, vital signs signal

Procedia PDF Downloads 165
14231 Road Transition Design on Freeway Tunnel Entrance and Exit Based on Traffic Capacity

Authors: Han Bai, Tong Zhang, Lemei Yu, Doudou Xie, Liang Zhao

Abstract:

Road transition design on freeway tunnel entrance and exit is one vital factor in realizing smooth transition and improving traveling safety for vehicles. The goal of this research is to develop a horizontal road transition design tool that considers the transition technology of traffic capacity consistency to explore its accommodation mechanism. The influencing factors of capacity are synthesized and a modified capacity calculation model focusing on the influence of road width and lateral clearance is developed based on the VISSIM simulation to calculate the width of road transition sections. To keep the traffic capacity consistency, the right side of the transition section of the tunnel entrance and exit is divided into three parts: front arc, an intermediate transition section, and end arc; an optimization design on each transition part is conducted to improve the capacity stability and horizontal alignment transition. A case study on the Panlong Tunnel in Ji-Qing freeway illustrates the application of the tool.

Keywords: traffic safety, road transition, freeway tunnel, traffic capacity

Procedia PDF Downloads 326
14230 The Effect of Critical Activity on Critical Path and Project Duration in Precedence Diagram Method

Authors: J. Nisar, S. Halim

Abstract:

The additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activity in Precedence Diagram Method (PDM) provides a more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in the PDM network will have an anomalous effect on the critical path and the project completion date. In this study, we classified the critical activities in two groups i.e., 1. activity on single critical path and 2. activity on multi-critical paths, and six classes i.e., normal, reverse, neutral, perverse, decrease-reverse and increase-normal, based on their effects on project duration in PDM. Furthermore, we determined the maximum float of time by which the duration each type of critical activities can be changed without effecting the project duration. This study would help the project manager to clearly understand the behavior of each critical activity on critical path, and he/she would be able to change the project duration by shortening or lengthening activities based on project budget and project deadline.

Keywords: construction management, critical path method, project scheduling network, precedence diagram method

Procedia PDF Downloads 222
14229 Similar Script Character Recognition on Kannada and Telugu

Authors: Gurukiran Veerapur, Nytik Birudavolu, Seetharam U. N., Chandravva Hebbi, R. Praneeth Reddy

Abstract:

This work presents a robust approach for the recognition of characters in Telugu and Kannada, two South Indian scripts with structural similarities in characters. To recognize the characters exhaustive datasets are required, but there are only a few publicly available datasets. As a result, we decided to create a dataset for one language (source language),train the model with it, and then test it with the target language.Telugu is the target language in this work, whereas Kannada is the source language. The suggested method makes use of Canny edge features to increase character identification accuracy on pictures with noise and different lighting. A dataset of 45,150 images containing printed Kannada characters was created. The Nudi software was used to automatically generate printed Kannada characters with different writing styles and variations. Manual labelling was employed to ensure the accuracy of the character labels. The deep learning models like CNN (Convolutional Neural Network) and Visual Attention neural network (VAN) are used to experiment with the dataset. A Visual Attention neural network (VAN) architecture was adopted, incorporating additional channels for Canny edge features as the results obtained were good with this approach. The model's accuracy on the combined Telugu and Kannada test dataset was an outstanding 97.3%. Performance was better with Canny edge characteristics applied than with a model that solely used the original grayscale images. The accuracy of the model was found to be 80.11% for Telugu characters and 98.01% for Kannada words when it was tested with these languages. This model, which makes use of cutting-edge machine learning techniques, shows excellent accuracy when identifying and categorizing characters from these scripts.

Keywords: base characters, modifiers, guninthalu, aksharas, vattakshara, VAN

Procedia PDF Downloads 53
14228 Analysis of the Learning Effectiveness of the Steam-6e Course: A Case Study on the Development of Virtual Idol Product Design as an Example

Authors: Mei-Chun. Chang

Abstract:

STEAM (Science, Technology, Engineering, Art, and Mathematics) represents a cross-disciplinary and learner-centered teaching model that cultivates students to link theory with the presentation of real situations, thereby improving their various abilities. This study explores students' learning performance after using the 6E model in STEAM teaching for a professional course in the digital media design department of technical colleges, as well as the difficulties and countermeasures faced by STEAM curriculum design and its implementation. In this study, through industry experts’ work experience, activity exchanges, course teaching, and experience, learners can think about the design and development value of virtual idol products that meet the needs of users and to employ AR/VR technology to innovate their product applications. Applying action research, the investigation has 35 junior students from the department of digital media design of the school where the researcher teaches as the research subjects. The teaching research was conducted over two stages spanning ten weeks and 30 sessions. This research collected the data and conducted quantitative and qualitative data sorting analyses through ‘design draft sheet’, ‘student interview record’, ‘STEAM Product Semantic Scale’, and ‘Creative Product Semantic Scale (CPSS)’. Research conclusions are presented, and relevant suggestions are proposed as a reference for teachers or follow-up researchers. The contribution of this study is to teach college students to develop original virtual idols and product designs, improve learning effectiveness through STEAM teaching activities, and effectively cultivate innovative and practical cross-disciplinary design talents.

Keywords: STEAM, 6E model, virtual idol, learning effectiveness, practical courses

Procedia PDF Downloads 126
14227 Validation of a Reloading Vehicle Design by Finite Element Analysis

Authors: Tuğrul Aksoy, Hüseyin Karabıyık

Abstract:

Reloading vehicles are the vehicles which are generally equipped with a crane and used to carry a stowage from a point and locate onto the vehicle or vice versa. In this study, structural analysis of a reloading vehicle was performed under the loads which are predicted to be exposed under operating conditions via the finite element method. Among the finite element analysis results, the stress and displacement distributions of the vehicle and the contact pressure distributions of the guide rings within the stabilization legs were examined. Vehicle design was improved by strengthening certain parts according to the analysis results. The analyses performed for the final design were verified by the experiments involving strain gauge measurements.

Keywords: structural analysis, reloading vehicle, crane, strain gauge

Procedia PDF Downloads 70
14226 Artificial Bee Colony Based Modified Energy Efficient Predictive Routing in MANET

Authors: Akhil Dubey, Rajnesh Singh

Abstract:

In modern days there occur many rapid modifications in field of ad hoc network. These modifications create many revolutionary changes in the routing. Predictive energy efficient routing is inspired on the bee’s behavior of swarm intelligence. Predictive routing improves the efficiency of routing in the energetic point of view. The main aim of this routing is the minimum energy consumption during communication and maximized intermediate node’s remaining battery power. This routing is based on food searching behavior of bees. There are two types of bees for the exploration phase the scout bees and for the evolution phase forager bees use by this routing. This routing algorithm computes the energy consumption, fitness ratio and goodness of the path. In this paper we review the literature related with predictive routing, presenting modified routing and simulation result of this algorithm comparison with artificial bee colony based routing schemes in MANET and see the results of path fitness and probability of fitness.

Keywords: mobile ad hoc network, artificial bee colony, PEEBR, modified predictive routing

Procedia PDF Downloads 416
14225 Mathematical Modeling of Switching Processes in Magnetically Controlled MEMS Switches

Authors: Sergey M. Karabanov, Dmitry V. Suvorov, Dmitry Yu. Tarabrin

Abstract:

The operating principle of magnetically controlled microelectromechanical system (MEMS) switches is based on controlling the beam movement under the influence of a magnetic field. Currently, there is a MEMS switch design with a flexible ferromagnetic electrode in the form of a fixed-terminal beam, with an electrode fastened on a straight or cranked anchor. The basic performance characteristics of magnetically controlled MEMS switches (service life, sensitivity, contact resistance, fast response) are largely determined by the flexible electrode design. To ensure the stable and controlled motion of the flexible electrode, it is necessary to provide the optimal design of a flexible electrode.

Keywords: flexible electrode, magnetically controlled MEMS, mathematical modeling, mechanical stress

Procedia PDF Downloads 180
14224 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining

Procedia PDF Downloads 121
14223 Application of Sustainable Agriculture Based on LEISA in Landscape Design of Integrated Farming

Authors: Eduwin Eko Franjaya, Andi Gunawan, Wahju Qamara Mugnisjah

Abstract:

Sustainable agriculture in the form of integrated farming with its LEISA (Low External Input Sustainable Agriculture) concept has brought a positive impact on agriculture development and ambient amelioration. But, most of the small farmers in Indonesia did not know how to put the concept of it and how to combine agricultural commodities on the site effectively and efficiently. This research has an aim to promote integrated farming (agrofisheries, etc) to the farmers by designing the agricultural landscape to become integrated farming landscape as medium of education for the farmers. The method used in this research is closely related with the rule of design in the landscape architecture science. The first step is inventarization for the existing condition on the research site. The second step is analysis. Then, the third step is concept-making that consists of base concept, design concept, and developing concept. The base concept used in this research is sustainable agriculture with LEISA. The concept design is related with activity base on site. The developing concept consists of space concept, circulation, vegetation and commodity, production system, etc. The fourth step as the final step is planning and design. This step produces site plan of integrated farming based on LEISA. The result of this research is site plan of integrated farming with its explanation, including the energy flow of integrated farming system on site and the production calendar of integrated farming commodities for education and agri-tourism opportunity. This research become the right way to promote the integrated farming and also as a medium for the farmers to learn and to develop it.

Keywords: integrated farming, LEISA, planning and design, site plan

Procedia PDF Downloads 512
14222 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection

Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt

Abstract:

Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.

Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor

Procedia PDF Downloads 153
14221 Cantilever Secant Pile Constructed in Sand: Capping Beam Analysis and Deformation Limitations

Authors: Khaled R. Khater

Abstract:

This paper fits in soil-structure interaction division. Its theme is soil retaining structures. Hence, the cantilever secant-pile wall imposed itself, focusing on the capping beam. Four research questions are prompted and beg an answer. How to calculate the forces that control capping beam design? What is the statical system of ‘capping beam-secant pile’ as one unit? Is it possible to design it to satisfy pre-specific lateral deformation? Is it possible to suggest permissible lateral deformation limits? Briefly, pile head displacements induced by Plaxis-2D are converted to forces needed for STAAD-Pro 3D models. Those models are constructed based on the proposed structural system. This is the paper’s idea and methodology. Parametric study performed considered three sand densities, one pile rigidity, and two excavation depths, i.e., 3.0 m and 5.0 m. The research questions are satisfactorily answered. This paper could be a first step towards standardizing analysis, design, and lateral deformations checks.

Keywords: capping beam, secant pile, numerical, design aids, sandy soil

Procedia PDF Downloads 108