Search results for: removal heat storage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6267

Search results for: removal heat storage

3087 Optimal Implementation of Photovoltaic Water Pumping System

Authors: Sarah Abdourraziq

Abstract:

To improve the efficiency of photovoltaic pumping system, more attention has been paid to their setting up. This paper presents an optimal technique to establish an efficient system under different conditions of irradiance and temperature. The state of place should be carefully studied before stage of installation of the over system: local climate, boreholes, soil, crops and water resources. The studied system consists of a PV panel, a DC-DC boost converter, a DC motor-pump, and storage tank. The concepts shown in this paper presents a support for an optimal installation of each solar pump.

Keywords: photovoltaic pumping system, optimal implementation, boost converter, motor-pump

Procedia PDF Downloads 344
3086 Gene Expression Signature-Based Chemical Genomic to Identify Potential Therapeutic Compounds for Colorectal Cancer

Authors: Yen-Hao Su, Wan-Chun Tang, Ya-Wen Cheng, Peik Sia, Chi-Chen Huang, Yi-Chao Lee, Hsin-Yi Jiang, Ming-Heng Wu, I-Lu Lai, Jun-Wei Lee, Kuen-Haur Lee

Abstract:

There is a wide range of drugs and combinations under investigation and/or approved over the last decade to treat colorectal cancer (CRC), but the 5-year survival rate remains poor at stages II–IV. Therefore, new, more efficient drugs still need to be developed that will hopefully be included in first-line therapy or overcome resistance when it appears, as part of second- or third-line treatments in the near future. In this study, we revealed that heat shock protein 90 (Hsp90) inhibitors have high therapeutic potential in CRC according to combinative analysis of NCBI's Gene Expression Omnibus (GEO) repository and chemical genomic database of Connectivity Map (CMap). We found that second generation Hsp90 inhibitor, NVP-AUY922, significantly down regulated the activities of a broad spectrum of kinases involved in regulating cell growth arrest and death of NVPAUY922-sensitive CRC cells. To overcome NVP-AUY922-induced upregulation of survivin expression which causes drug insensitivity, we found that combining berberine (BBR), a herbal medicine with potency in inhibiting survivin expression, with NVP-AUY922 resulted in synergistic antiproliferative effects for NVP-AUY922-sensitive and -insensitive CRC cells. Furthermore, we demonstrated that treatment of NVP-AUY922-insensitive CRC cells with the combination of NVP-AUY922 and BBR caused cell growth arrest through inhibiting CDK4 expression and induction of microRNA-296-5p (miR-296-5p)-mediated suppression of Pin1–β-catenin–cyclin D1 signaling pathway. Finally, we found that the expression level of Hsp90 in tumor tissues of CRC was positively correlated with CDK4 and Pin1 expression levels. Taken together, these results indicate that combination of NVP-AUY922 and BBR therapy can inhibit multiple oncogenic signaling pathways of CRC.

Keywords: berberine, colorectal cancer, connectivity map, heat shock protein 90 inhibitor

Procedia PDF Downloads 303
3085 Structural Changes Induced in Graphene Oxide Film by Low Energy Ion Beam Irradiation

Authors: Chetna Tyagi, Ambuj Tripathi, Devesh Avasthi

Abstract:

Graphene oxide consists of sp³ hybridization along with sp² hybridization due to the presence of different oxygen-containing functional groups on its edges and basal planes. However, its sp³ / sp² hybridization can be tuned by various methods to utilize it in different applications, like transistors, solar cells and biosensors. Ion beam irradiation can also be one of the methods to optimize sp² and sp³ hybridization ratio for its desirable properties. In this work, graphene oxide films were irradiated with 100 keV Argon ions at different fluences varying from 10¹³ to 10¹⁶ ions/cm². Synchrotron X-ray diffraction measurements showed an increase in crystallinity at the low fluence of 10¹³ ions/cm². Raman spectroscopy performed on irradiated samples determined the defects induced by the ion beam qualitatively. Also, identification of different groups and their removal with different fluences was done using Fourier infrared spectroscopy technique.

Keywords: graphene oxide, ion beam irradiation, spectroscopy, X-ray diffraction

Procedia PDF Downloads 130
3084 The Antioxidant Gel Mask Supplies Of Bitter Melon's Extract ( Momordica charantia Linn.)

Authors: N. S. Risqina, G. Edijanti, P. S. Nurita, L. Endang, R. A. Siti, R. Tri

Abstract:

Skin is an important and vital organs and also as a mirror of health and life. Facial skin care is one of the main emphasis to get the beautiful, healthy, and fresh skin. Potentially antioxidant phenolic compounds shows, antimutagen, antitumor, anti-inflammatory, and anti-cancer. Flavonoids are a group of polyphenolic compounds that have the nature of free radicals, inhibiting the oxidative and hydrolytic enzymes as well as anti-inflammatory. Bitter melon (Momordica charantia Linn) is a plant that contains flavonoids, and phenolic antioxidant activity. Bitter melon has strong antioxidant activity that can counteract the free radicals.These compounds can prevent free radicals that cause premature aging. Gel masks including depth cleansing is the cosmetics which work in depth and could raise the dead skin cells. Measurement of antioxidant activity of the extract and gel mask is done by using the immersion method of DPPH. IC50 value of ethanol extract of bitter melon fruit of 287.932 ppm. The preparation of gel mask bitter melon fruit extract, necessary to test the effectiveness of antioxidants using DPPH method is done by measuring the inhibition of DPPH and using UV spectrophotometer at the wavelength of maximum DPPH solution. Tests conducted at the beginning and end of the evaluation (day 0 and day 28). The purpose of this study is to determine the antioxidant activity of the bitter melon's extract and to determine the antioxidant activity of ethanol extract gel mask pare in varying concentrations, ie 1xIC100 (0.295%), 2xIC100 (0.590%) and 4xIC100 (1.180%). Evaluation of physical properties of the preparation on (Day-0,7,14,21, and 28) and evaluation of antioxidant activity (day 0 and 28). Data were analyzed using One Way ANOVA to determine differences in the physical properties of each formula. The statistical results showed that differences in the formula and storage time affects the adhesion, dispersive power, dry time and pH it is shown on a significant value of p <0.05, but longer storage does not affect the pH because the significance value p> 0,05. The antioxidant test showed that there are differences in antioxidant activity in all formulas. Measurement of antioxidant activity of bitter melon fruit extract gel mask on day 0 with a concentration of 0.295%, 0.590%, and 1.180%, respectively, are 124,209.277 ppm, ppm 83819.223 and 47323.592 ppm, whereas day 28 consecutive 130 411, 495 ppm, and 53239.806 95561.645 ppm ppm. The Conclusions drawn that there are antioxidant activity in preparation gel mask of bitter melon fruit extract. The antioxidant activity of bitter melon fruit extract gel mask on the day 0 with a concentration of 0.295%, 0.590%, and 1.180%, respectively, are 124,209.277 ppm, ppm 83819.223 and 47323.592 ppm, whereas on day 28 of antioxidant activity gel mask bitter melon fruit extract with a concentration of 0.295%, 0.590%, and 1.180% in succession, namely: 130,411.495 ppm, ppm 95561.645 and 53239.806 ppm.

Keywords: antioxdant, bitter melon, gel mask, IC50

Procedia PDF Downloads 466
3083 Active Deformable Micro-Cutters with Nano-Abrasives

Authors: M. Pappa, C. Efstathiou, G. Livanos, P. Xidas, D. Vakondios, E. Maravelakis, M. Zervakis, A. Antoniadis

Abstract:

The choice of cutting tools in manufacturing processes is an essential parameter on which the required manufacturing time, the consumed energy and the cost effort all depend. If the number of tool changing times could be minimized or even eliminated by using a single convex tool providing multiple profiles, then a significant benefit of time and energy saving, as well as tool cost, would be achieved. A typical machine contains a variety of tools in order to deal with different curvatures and material removal rates. In order to minimize the required cutting tool changes, Actively Deformable micro-Cutters (ADmC) will be developed. The design of the Actively Deformable micro-Cutters will be based on the same cutting technique and mounting method as that in typical cutters.

Keywords: deformable cutters, cutting tool, milling, turning, manufacturing

Procedia PDF Downloads 448
3082 Structural and Microstructural Analysis of White Etching Layer Formation by Electrical Arcing Induced on the Surface of Rail Track

Authors: Ali Ahmed Ali Al-Juboori, H. Zhu, D. Wexler, H. Li, C. Lu, J. McLeod, S. Pannila, J. Barnes

Abstract:

A number of studies have focused on the formation mechanics of white etching layer and its origin in the railway operation. Until recently, the following hypotheses consider the precise mechanics of WELs formation: (i) WELs are the result of thermal process caused by wheel slip; (ii) WELs are mechanically induced by severe plastic deformation; (iii) WELs are caused by a combination of thermo-mechanical process. The mechanisms discussed above lead to occurrence of white etching layers on the area of wheel and rail contact. This is because the contact patch which is the active point of the wheel on the rail is exposed to highest shear stresses which result in localised severe plastic deformation; and highest rate of heat caused by wheel slipe during excessive traction or braking effort. However, if the WELs are not on the running band area, it would suggest that there is another cause of WELs formation. In railway system, particularly electrified railway, arcing phenomenon has been occurring more often and regularly on the rails. In electrified railway, the current is delivered to the train traction motor via contact wires and then returned to the station via the contact between the wheel and the rail. If the contact between the wheel and the rail is temporarily losing, due to dynamic vibration, entrapped dirt or water, lubricant effect or oxidation occurrences, high current can jump through the gap and results in arcing. The other resources of arcing also include the wheel passage the insulated joint and lightning on a train during bad weather. During the arcing, an extensive heat is generated and speared over a large area of top surface of rail. Thus, arcing is considered another heat source in the rail head (rather than wheel slipe) that results in microstructural changes and white etching layer formation. A head hardened (HH) rail steel, cut from a curved rail truck was used for the investigation. Samples were sectioned from a depth of 10 mm below the rail surface, where the material is considered to be still within the hardened layer but away from any microstructural changes on the top surface layer caused by train passage. These samples were subjected to electrical discharges by using Gas Tungsten Arc Welding (GTAW) machine. The arc current was controlled and moved along the samples surface in the direction of travel, as indicated by an arrow. Five different conditions were applied on the surface of the samples. Samples containing pre-existed WELs, taken from ex-service rail surface, were also considered in this study for comparison. Both simulated and ex-serviced WELs were characterised by advanced methods including SEM, TEM, TKD, EDS, XRD. Samples for TEM and TKFD were prepared by Focused Ion Beam (FIB) milling. The results showed that both simulated WELs by electrical arcing and ex-service WEL comprise similar microstructure. Brown etching layer was found with WELs and likely induced by a concurrent tempering process. This study provided a clear understanding of new formation mechanics of WELs which contributes to track maintenance procedure.

Keywords: white etching layer, arcing, brown etching layer, material characterisation

Procedia PDF Downloads 117
3081 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach

Authors: Sina Kazemi, Farshid Torabi, Todd Peterson

Abstract:

Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.

Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity

Procedia PDF Downloads 83
3080 Functionalized PU Foam for Water Filtration

Authors: Nidal H. Abu-Zahra, Subhashini Gunashekar

Abstract:

Polyurethane foam is functionalized with Sulfonic acid groups to remove lead ions (Pb2+) from drinking water through a action exchange process. The synthesis is based on addition polymerization of the -NCO groups of an isocyanine with the –OH groups of a polio to form the urethane. Toluene-diisocyanateis reacted with Polypropylene glycol to form a linear pre-polymer, which is further polymerized using a chain extender, N, N-bis(2-hydorxyethyl)-2-aminoethane-sulfonic acid (BES). BES acts as a functional group site to exchange Pb2+ ions. A set of experiments was designed to study the effect of various processing parameters on the performance of the synthesized foam. The maximum Pb2+ ion exchange capacity of the foam was found to be 47ppb/g from a 100ppb Pb2+ solution over a period of 60 minutes. A multistage batch filtration process increased the lead removal to 50-54ppb/3g of foam over a period of 90 minutes.

Keywords: adsorption, functionalized, ion exchange, polyurethane, sulfonic

Procedia PDF Downloads 242
3079 Moisturising Prepared Lip Balm Behavior in Dynamic States

Authors: Fatiha Boudjema, Samia Boudergua, Abdallah Elhirtsi Nour El Houda, Ahmed Mbarek Kaouther

Abstract:

The main objective of our work is to prepare and characterize a moisturizing lip balm based on natural ingredients such as waxes, vegetable oils, and shea butter. First, the vegetable and essential oils were extracted, and then lip balm was prepared. The extracted oils and the lip balm were submitted to many tests in order to guarantee their quality and effectiveness. These tests show that our balm has a shear thinning behavior with a melting point of 58 °C and that it spreads easily on the skin without showing an allergic reaction. The balm showed a moisturising effect and stability over the two-month period at storage room temperature condition.

Keywords: lip balm, natural products, rheological study, antioxydant activity

Procedia PDF Downloads 98
3078 In situ Grazing Incidence Small Angle X-Ray Scattering Study of Permalloy Thin Film Growth on Nanorippled Si

Authors: Sarathlal Koyiloth Vayalil, Stephan V. Roth, Gonzalo Santoro, Peng Zhang, Matthias Schwartzkopf, Bjoern Beyersdorff

Abstract:

Nanostructured magnetic thin films have gained significant relevance due to its applications in magnetic storage and recording media. Self-organized arrays of nanoparticles and nanowires can be produced by depositing metal thin films on nano-rippled substrates. The substrate topography strongly affects the film growth giving rise to anisotropic properties (optical, magnetic, electronic transport). Ion-beam erosion (IBE) method can provide large-area patterned substrates with the valuable possibility to widely modify pattern length scale by simply acting on ion beam parameters (i.e. energy, ions, geometry, etc.). In this work, investigation of the growth mechanism of Permalloy thin films on such nano-rippled Si (100) substrates using in situ grazing incidence small angle x-ray scattering measurements (GISAXS) have been done. In situ GISAXS measurements during the deposition of thin films have been carried out at the P03/MiNaXS beam line of PETRA III storage ring of DESY, Hamburg. Nanorippled Si substrates prepared by low energy ion beam sputtering with an average wavelength of 33 nm and 1 nm have been used as templates. It has been found that the film replicates the morphology up to larger thickness regimes and also the growth is highly anisotropic along and normal to the ripple wave vectors. Various growth regimes have been observed. Further, magnetic measurements have been done using magneto-optical Kerr effect by rotating the sample in the azimuthal direction. Strong uniaxial magnetic anisotropy with its easy axis in a direction normal to the ripple wave vector has been observed. The strength of the magnetic anisotropy is found to be decreasing with increasing thin film thickness values. The mechanism of the observed strong uniaxial magnetic anisotropy and its depends on the thickness of the film has been explained by correlating it with the GISAXS results. In conclusion, we have done a detailed growth analysis of Permalloy thin films deposited on nanorippled Si templates and tried to explain the correlation between structure, morphology to the observed magnetic properties.

Keywords: grazing incidence small angle x-ray scattering, magnetic thin films, magnetic anisotropy, nanoripples

Procedia PDF Downloads 307
3077 Landfill Leachate Wastewater Treatment by Fenton Process

Authors: Rewadee Anuwattana, Pattamaphorn Phuangngamphan, Narumon Soparatana, Supinya Sutthima, Worapong Pattayawan, Saroj Klangkongsub, Songkiat Roddang, Pluek Wongpanich

Abstract:

The leachate wastewater is high contaminant water; hence it needs to be treated. The objective of this research was to determine the Chemical Oxygen Demand (COD) concentration, Phosphate (PO₄³⁻), Ammonia (NH₃) and color in leachate wastewater in the landfill area. The experiments were carried out in the optimum condition by pH, the Fenton reagent dosage (concentration of dosing Fe²⁺ and H₂O₂). The optimum pH is 3, the optimum [Fe²⁺]/[COD] and [H₂O₂]/[COD₀] = 0.03 and 0.03, respectively. The Biochemical Oxygen Demand (BOD₅)/Chemical Oxygen Demand (COD) ratio can be adjusted to 1 for landfill leachate wastewater (BOD₅/COD = 0.11). From the results, the Fenton process shall be investigated further to achieve the removal of phosphates in addition to COD and color.

Keywords: landfill leachate treatment, open dumpsite, Fenton process, wastewater treatment

Procedia PDF Downloads 255
3076 Heat-Induced Uncertainty of Industrial Computed Tomography Measuring a Stainless Steel Cylinder

Authors: Verena M. Moock, Darien E. Arce Chávez, Mariana M. Espejel González, Leopoldo Ruíz-Huerta, Crescencio García-Segundo

Abstract:

Uncertainty analysis in industrial computed tomography is commonly related to metrological trace tools, which offer precision measurements of external part features. Unfortunately, there is no such reference tool for internal measurements to profit from the unique imaging potential of X-rays. Uncertainty approximations for computed tomography are still based on general aspects of the industrial machine and do not adapt to acquisition parameters or part characteristics. The present study investigates the impact of the acquisition time on the dimensional uncertainty measuring a stainless steel cylinder with a circular tomography scan. The authors develop the figure difference method for X-ray radiography to evaluate the volumetric differences introduced within the projected absorption maps of the metal workpiece. The dimensional uncertainty is dominantly influenced by photon energy dissipated as heat causing the thermal expansion of the metal, as monitored by an infrared camera within the industrial tomograph. With the proposed methodology, we are able to show evolving temperature differences throughout the tomography acquisition. This is an early study showing that the number of projections in computer tomography induces dimensional error due to energy absorption. The error magnitude would depend on the thermal properties of the sample and the acquisition parameters by placing apparent non-uniform unwanted volumetric expansion. We introduce infrared imaging for the experimental display of metrological uncertainty in a particular metal part of symmetric geometry. We assess that the current results are of fundamental value to reach the balance between the number of projections and uncertainty tolerance when performing analysis with X-ray dimensional exploration in precision measurements with industrial tomography.

Keywords: computed tomography, digital metrology, infrared imaging, thermal expansion

Procedia PDF Downloads 117
3075 Frenectomy With Lateral Pedicle Graft - A Case Series

Authors: Nikita Sankhe

Abstract:

A Frenum is a band or fold of mucous membrane, which is usually with enclosed muscle fibers, that attaches the lip and cheek to the alveolar mucosa or the gingiva and the underlying periosteum. It curbs or limits the movements of an organ. A frenum becomes a problem if its attachment is too close to the marginal or papillary gingiva, namely localized gingival recession and a midline diastema or it may pull the gingival margin away from the tooth allowing plaque accumulation and inhibit toothbrushing. Frenectomy is the complete removal of the frenum including its attachment to the underlying bone. Miller suggested a technique where by a closure was done across the midline by laterally positioned gingiva. Healing by primary intention resulted in aesthetically acceptable attached gingiva across the midline. This paper aims at showing how a lateral pedicle graft technique combined with frenectomy proves to be more advantageous than any other technique.

Keywords: frenum , frenectomy , lateral pedicle graft , classical frenectomy

Procedia PDF Downloads 243
3074 Laparoscopic Resection Shows Comparable Outcomes to Open Thoracotomy for Thoracoabdominal Neuroblastomas: A Meta-Analysis and Systematic Review

Authors: Peter J. Fusco, Dave M. Mathew, Chris Mathew, Kenneth H. Levy, Kathryn S. Varghese, Stephanie Salazar-Restrepo, Serena M. Mathew, Sofia Khaja, Eamon Vega, Mia Polizzi, Alyssa Mullane, Adham Ahmed

Abstract:

Background: Laparoscopic (LS) removal of neuroblastomas in children has been reported to offer favorable outcomes compared to the conventional open thoracotomy (OT) procedure. Critical perioperative measures such as blood loss, operative time, length of stay, and time to postoperative chemotherapy have all supported laparoscopic use rather than its more invasive counterpart. Herein, a pairwise meta-analysis was performed comparing perioperative outcomes between LS and OT in thoracoabdominal neuroblastoma cases. Methods: A comprehensive literature search was performed on PubMed, Ovid EMBASE, and Scopus databases to identify studies comparing the outcomes of pediatric patients with thoracoabdominal neuroblastomas undergoing resection via OT or LS. After deduplication, 4,227 studies were identified and subjected to initial title screening with exclusion and inclusion criteria to ensure relevance. When studies contained overlapping cohorts, only the larger series were included. Primary outcomes include estimated blood loss (EBL), hospital length of stay (LOS), and mortality, while secondary outcomes were tumor recurrence, post-operative complications, and operation length. The “meta” and “metafor” packages were used in R, version 4.0.2, to pool risk ratios (RR) or standardized mean differences (SMD) in addition to their 95% confidence intervals in the random effects model via the Mantel-Haenszel method. Heterogeneity between studies was assessed using the I² test, while publication bias was assessed via funnel plot. Results: The pooled analysis included 209 patients from 5 studies (141 OT, 68 LS). Of the included studies, 2 originated from the United States, 1 from Toronto, 1 from China, and 1was from a Japanese center. Mean age between study cohorts ranged from 2.4 to 5.3 years old, with female patients occupying between 30.8% to 50% of the study populations. No statistically significant difference was found between the two groups for LOS (SMD -1.02; p=0.083), mortality (RR 0.30; p=0.251), recurrence(RR 0.31; p=0.162), post-operative complications (RR 0.73; p=0.732), or operation length (SMD -0.07; p=0.648). Of note, LS appeared to be protective in the analysis for EBL, although it did not reach statistical significance (SMD -0.4174; p= 0.051). Conclusion: Despite promising literature assessing LS removal of pediatric neuroblastomas, results showed it was non-superior to OT for any explored perioperative outcomes. Given the limited comparative data on the subject, it is evident that randomized trials are necessary to further the efficacy of the conclusions reached.

Keywords: laparoscopy, neuroblastoma, thoracoabdominal, thoracotomy

Procedia PDF Downloads 128
3073 Density-based Denoising of Point Cloud

Authors: Faisal Zaman, Ya Ping Wong, Boon Yian Ng

Abstract:

Point cloud source data for surface reconstruction is usually contaminated with noise and outliers. To overcome this, we present a novel approach using modified kernel density estimation (KDE) technique with bilateral filtering to remove noisy points and outliers. First we present a method for estimating optimal bandwidth of multivariate KDE using particle swarm optimization technique which ensures the robust performance of density estimation. Then we use mean-shift algorithm to find the local maxima of the density estimation which gives the centroid of the clusters. Then we compute the distance of a certain point from the centroid. Points belong to outliers then removed by automatic thresholding scheme which yields an accurate and economical point surface. The experimental results show that our approach comparably robust and efficient.

Keywords: point preprocessing, outlier removal, surface reconstruction, kernel density estimation

Procedia PDF Downloads 339
3072 A Transfer Function Representation of Thermo-Acoustic Dynamics for Combustors

Authors: Myunggon Yoon, Jung-Ho Moon

Abstract:

In this paper, we present a transfer function representation of a general one-dimensional combustor. The input of the transfer function is a heat rate perturbation of a burner and the output is a flow velocity perturbation at the burner. This paper considers a general combustor model composed of multiple cans with different cross sectional areas, along with a non-zero flow rate.

Keywords: combustor, dynamics, thermoacoustics, transfer function

Procedia PDF Downloads 373
3071 Acerola and Orange By-Products as Sources of Bioactive Compounds for Probiotic Fermented Milks

Authors: Tatyane Lopes de Freitas, Antonio Diogo S. Vieira, Susana Marta Isay Saad, Maria Ines Genovese

Abstract:

The fruit processing industries generate a large volume of residues to produce juices, pulps, and jams. These residues, or by-products, consisting of peels, seeds, and pulps, are routinely discarded. Fruits are rich in bioactive compounds, including polyphenols, which have positive effects on health. Dry residues from two fruits, acerola (M. emarginata D. C.) and orange (C. sinensis), were characterized in relation to contents of ascorbic acid, minerals, total dietary fibers, moisture, ash, lipids, proteins, and carbohydrates, and also high performance liquid chromatographic profile of flavonoids, total polyphenols and proanthocyanidins contents, and antioxidant capacity by three different methods (Ferric reducing antioxidant power assay-FRAP, Oxygen Radical Absorbance Capacity-ORAC, 1,1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging activity). Acerola by-products presented the highest acid ascorbic content (605 mg/100 g), and better antioxidant capacity than orange by-products. The dry residues from acerola demonstrated high contents of proanthocyanidins (617 µg CE/g) and total polyphenols (2525 mg gallic acid equivalents - GAE/100 g). Both presented high total dietary fiber (above 60%) and protein contents (acerola: 10.4%; orange: 9.9%), and reduced fat content (acerola: 1.6%; orange: 2.6%). Both residues showed high levels of potassium, calcium, and magnesium, and were considered sources of these minerals. With acerola by-product, four formulations of probiotics fermented milks were produced: F0 (without the addition of acerola residue (AR)), F2 (2% AR), F5 (5% AR) and F10 (10% AR). The physicochemical characteristics of the fermented milks throughout of storage were investigated, as well as the impact of in vitro simulated gastrointestinal conditions on flavonoids and probiotics. The microorganisms analyzed maintained their populations around 8 log CFU/g during storage. After the gastric phase of the simulated digestion, the populations decreased, and after the enteric phase, no colonies were detected. On the other hand, the flavonoids increased after the gastric phase, maintaining or suffering small decrease after enteric phase. Acerola by-products powder is a valuable ingredient to be used in functional foods because is rich in vitamin C, fibers and flavonoids. These flavonoids appear to be highly resistant to the acids and salts of digestion.

Keywords: acerola, orange, by-products, fermented milk

Procedia PDF Downloads 129
3070 Effect of Gravity on the Controlled Cooling of a Steel Block by Impinging Water Jets

Authors: E.K.K. Agyeman, P. Mousseau, A. Sarda, D. Edelin

Abstract:

The uniform and controlled cooling of hot metals by the circulation of water in canals remains a challenge due to the phase change of the water and the high heat fluxes associated with the phase change. This is because, during the cooling process, the phases are not uniformly distributed along the canals with the liquid phase dominating at the entrances of the canals and the gaseous phase dominating towards the exits. The difference in thermal properties between both phases leads to a heterogeneous temperature distribution in the part being cooled. Slowing down the cooling process is also a challenge due to the high heat fluxes associated with the phase change of water. This study investigates the use of multiple water jets for the controlled and homogenous cooling of hot metal parts and the effect of gravity on the effectiveness of the cooling process with a potential application in the cooling of composite forming moulds. A hole is bored at the centre of a steel block along its length. The jets are generated from the holes of a perforated steel pipe which is placed along the centre of the hole bored in the steel block. The evolution of the temperature with respect to time on the external surface of the steel block is measured simultaneously by thermocouples and an infrared camera. Different jet positions are tested in order to identify the jet placement configuration that ensures the most homogenous cooling of the block while the cooling speed is controlled by an intermittent impingement of the jets. In order to study the effect of gravity on the cooling process, a scenario where the jets are oriented in the opposite direction to that of gravity is compared to one where the jets are aligned in the same direction as gravity. It’s observed that orienting the jets in the direction of gravity reduces the effectiveness of the cooling process on the face of the block facing the impinging jets. This is due to the formation of a deeper pool of water due to the effect gravity and of the curved surface of the canal. This deeper pool of water influences the boiling regime characterized by a slower bubble evacuation when compared to the scenario where the jets are opposed to gravity.

Keywords: cooling speed, gravity, homogenous cooling, jet impingement

Procedia PDF Downloads 120
3069 Zinc Adsorption Determination of H2SO4 Activated Pomegranate Peel

Authors: S. N. Turkmen Koc, A. S. Kipcak, M. B. Piskin, E. Moroydor Derun, N. Tugrul

Abstract:

Active carbon can be obtained from agricultural sources. Due to the high surface area, the production of activated carbon from cheap resources is very important. Since the surface area of 1 g activated carbon is approximately between 300 and 2000 m2, it can be used to remove both organic and inorganic impurities. In this study, the adsorption of Zn metal was studied with the product of activated carbon, which is obtained from pomegranate peel by microwave and chemical activation methods. The microwave process of pomegranate peel was carried out under constant microwave power of 800 W and 1 to 4 minutes. After the microwave process, samples were treated with H2SO4 for 3 h. Then prepared product was used in synthetic waste water including 40 ppm Zn metal. As a result, removal of waste Zn in waste water ranged from 91% to 93%.

Keywords: activated carbon, chemical activation, H₂SO₄, microwave, pomegranate peel

Procedia PDF Downloads 163
3068 HTML5 Online Learning Application with Offline Web, Location Based, Animated Web, Multithread, and Real-Time Features

Authors: Sheetal R. Jadhwani, Daisy Sang, Chang-Shyh Peng

Abstract:

Web applications are an integral part of modem life. They are mostly based upon the HyperText Markup Language (HTML). While HTML meets the basic needs, there are some shortcomings. For example, applications can cease to work once user goes offline, real-time updates may be lagging, and user interface can freeze on computationally intensive tasks. The latest language specification HTML5 attempts to rectify the situation with new tools and protocols. This paper studies the new Web Storage, Geolocation, Web Worker, Canvas, and Web Socket APIs, and presents applications to test their features and efficiencies.

Keywords: HTML5, web worker, canvas, web socket

Procedia PDF Downloads 296
3067 Iron Yoke Dipole with High Quality Field for Collector Ring FAIR

Authors: Tatyana Rybitskaya, Alexandr Starostenko, Kseniya Ryabchenko

Abstract:

Collector ring (CR) of FAIR project is a large acceptance storage ring and field quality plays a major role in the magnet design. The CR will use normal conducting dipole magnets. There will be 24 H-type sector magnets with a maximum field value of 1.6 T. The integrated over the length of the magnet field quality as a function of radius is ∆B.l/B.l = ±1x10⁻⁴. Below 1.6 T the value ∆B.l/B.l can be higher with a linear approximation up to ±2.5x10⁻⁴ at the field level of 0.8 T. An iron-dominated magnet with required field quality is produced with standard technology as the quality is dominated by the yoke geometry.

Keywords: conventional magnet, iron yoke dipole, harmonic terms, particle accelerators

Procedia PDF Downloads 143
3066 Development of Vapor Absorption Refrigeration System for Mini-Bus Car’s Air Conditioning: A Two-Fluid Model

Authors: Yoftahe Nigussie

Abstract:

This research explores the implementation of a vapor absorption refrigeration system (VARS) in mini-bus cars to enhance air conditioning efficiency. The conventional vapor compression refrigeration system (VCRS) in vehicles relies on mechanical work from the engine, leading to increased fuel consumption. The proposed VARS aims to utilize waste heat and exhaust gas from the internal combustion engine to cool the mini-bus cabin, thereby reducing fuel consumption and atmospheric pollution. The project involves two models: Model 1, a two-fluid vapor absorption system (VAS), and Model 2, a three-fluid VAS. Model 1 uses ammonia (NH₃) and water (H₂O) as refrigerants, where water absorbs ammonia rapidly, producing a cooling effect. The absorption cycle operates on the principle that absorbing ammonia in water decreases vapor pressure. The ammonia-water solution undergoes cycles of desorption, condensation, expansion, and absorption, facilitated by a generator, condenser, expansion valve, and absorber. The objectives of this research include reducing atmospheric pollution, minimizing air conditioning maintenance costs, lowering capital costs, enhancing fuel economy, and eliminating the need for a compressor. The comparison between vapor absorption and compression systems reveals advantages such as smoother operation, fewer moving parts, and the ability to work at lower evaporator pressures without affecting the Coefficient of Performance (COP). The proposed VARS demonstrates potential benefits for mini-bus air conditioning systems, providing a sustainable and energy-efficient alternative. By utilizing waste heat and exhaust gas, this system contributes to environmental preservation while addressing economic considerations for vehicle owners. Further research and development in this area could lead to the widespread adoption of vapor absorption technology in automotive air conditioning systems.

Keywords: room, zone, space, thermal resistance

Procedia PDF Downloads 66
3065 Study the Performance of Metal-Organic Framework in Adsorptive Desulfurization for Gas Oil

Authors: Hoda A. Mohammed, Esraa M. El-Fawal, Howaida M. Abd El-Salam

Abstract:

Organic sulfurs in fuel oil cause serious environmental pollution and health problems. The important future direction for liquid fuel desulfurization is adsorptive desulfurization technology due to its simplicity, mild operating condition, and low cost. In this work, the well-prepared Nickel NPs were incorporated in a highly porous metal-organic framework MIL-101(Cr)) to produce Ni/Cr-MOF composite. Besides, the synthesis of Ni/Cr-MOF in the presence of Bi₂MoO₆/AC to prepare Bi₂MoO₆/AC@Ni/Cr-MOF. All the prepared composites were synthesized via a facile technique under ambient conditions to remove organosulfur compounds. The XRD, FT-IR, SEM, and BET techniques were used to characterize the prepared composites. The desulfurization performance of real gas oil by Bi₂MoO₆/AC, Ni/Cr-MOF, and Bi₂MoO₆/AC@Ni/Cr-MOF was investigated at different adsorbent doses and contact times. Bi₂MoO₆/AC@Ni/Cr-MOF shows the highest desulfurization performance, with removal efficiency reached to 80% at optimum conditions for a contact time of 4 hours.

Keywords: desulfurization, gas oil, metal-organic framework, sorption characteristics

Procedia PDF Downloads 70
3064 Biodsorption as an Efficient Technology for the Removal of Phosphate, Nitrate and Sulphate Anions in Industrial Wastewater

Authors: Angel Villabona-Ortíz, Candelaria Tejada-Tovar, Andrea Viera-Devoz

Abstract:

Wastewater treatment is an issue of vital importance in these times where the impacts of human activities are most evident, which have become essential tasks for the normal functioning of society. However, they put entire ecosystems at risk by time destroying the possibility of sustainable development. Various conventional technologies are used to remove pollutants from water. Agroindustrial waste is the product with the potential to be used as a renewable raw material for the production of energy and chemical products, and their use is beneficial since products with added value are generated from materials that were not used before. Considering the benefits that the use of residual biomass brings, this project proposes the use of agro-industrial residues from corn crops for the production of natural adsorbents whose purpose is aimed at the remediation of contaminated water bodies with large loads of nutrients. The adsorption capacity of two biomaterials obtained from the processing of corn stalks was evaluated by batch system tests. Biochar impregnated with sulfuric acid and thermally activated was synthesized. On the other hand, the cellulose was extracted from the corn stalks and chemically modified with cetyltrimethylammonium chloride in order to quaternize the surface of the adsorbent. The adsorbents obtained were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), infrared spectrometry with Fourier Transform (FTIR), analysis by Brunauer, Emmett and Teller method (BET) and X-ray Diffraction analysis ( XRD), which showed favorable characteristics for the cellulose extraction process. Higher adsorption capacities of the nutrients were obtained with the use of biochar, with phosphate being the anion with the best removal percentages. The effect of the initial adsorbate concentration was evaluated, with which it was shown that the Freundlich isotherm better describes the adsorption process in most systems. The adsorbent-phosphate / nitrate systems fit better to the Pseudo Primer Order kinetic model, while the adsorbent-sulfate systems showed a better fit to the Pseudo second-order model, which indicates that there are both physical and chemical interactions in the process. Multicomponent adsorption tests revealed that phosphate anions have a higher affinity for both adsorbents. On the other hand, the thermodynamic parameters standard enthalpy (ΔH °) and standard entropy (ΔS °) with negative results indicate the exothermic nature of the process, whereas the ascending values of standard Gibbs free energy (ΔG °). The adsorption process of anions with biocarbon and modified cellulose is spontaneous and exothermic. The use of the evaluated biomateriles is recommended for the treatment of industrial effluents contaminated with sulfate, nitrate and phosphate anions.

Keywords: adsorption, biochar, modified cellulose, corn stalks

Procedia PDF Downloads 177
3063 Effects of Free-Hanging Horizontal Sound Absorbers on the Cooling Performance of Thermally Activated Building Systems

Authors: L. Marcos Domínguez, Nils Rage, Ongun B. Kazanci, Bjarne W. Olesen

Abstract:

Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to provide buildings with an optimal indoor thermal environment. This solution uses the structure of the building to store heat, reduce the peak loads, and decrease the primary energy demand. TABS require the heated or cooled surfaces to be as exposed as possible to the indoor space, but exposing the bare concrete surfaces has a diminishing effect on the acoustic qualities of the spaces in a building. Acoustic solutions capable of providing optimal acoustic comfort and allowing the heat exchange between the TABS and the room are desirable. In this study, the effects of free-hanging units on the cooling performance of TABS and the occupants’ thermal comfort was measured in a full-scale TABS laboratory. Investigations demonstrate that the use of free-hanging sound absorbers are compatible with the performance of TABS and the occupant’s thermal comfort, but an appropriate acoustic design is needed to find the most suitable solution for each case. The results show a reduction of 11% of the cooling performance of the TABS when 43% of the ceiling area is covered with free-hanging horizontal sound absorbers, of 23% for 60% ceiling coverage ratio and of 36% for 80% coverage. Measurements in actual buildings showed an increase of the room operative temperature of 0.3 K when 50% of the ceiling surface is covered with horizontal panels and of 0.8 to 1 K for a 70% coverage ratio. According to numerical simulations using a new TRNSYS Type, the use of comfort ventilation has a considerable influence on the thermal conditions in the room; if the ventilation is removed, then the operative temperature increases by 1.8 K for a 60%-covered ceiling.

Keywords: acoustic comfort, concrete core activation, full-scale measurements, thermally activated building systems, TRNSys

Procedia PDF Downloads 322
3062 LES Simulation of a Thermal Plasma Jet with Modeled Anode Arc Attachment Effects

Authors: N. Agon, T. Kavka, J. Vierendeels, M. Hrabovský, G. Van Oost

Abstract:

A plasma jet model was developed with a rigorous method for calculating the thermophysical properties of the gas mixture without mixing rules. A simplified model approach to account for the anode effects was incorporated in this model to allow the valorization of the simulations with experimental results. The radial heat transfer was under-predicted by the model because of the limitations of the radiation model, but the calculated evolution of centerline temperature, velocity and gas composition downstream of the torch exit corresponded well with the measured values. The CFD modeling of thermal plasmas is either focused on development of the plasma arc or the flow of the plasma jet outside of the plasma torch. In the former case, the Maxwell equations are coupled with the Navier-Stokes equations to account for electromagnetic effects which control the movements of the anode arc attachment. In plasma jet simulations, however, the computational domain starts from the exit nozzle of the plasma torch and the influence of the arc attachment fluctuations on the plasma jet flow field is not included in the calculations. In that case, the thermal plasma flow is described by temperature, velocity and concentration profiles at the torch exit nozzle and no electromagnetic effects are taken into account. This simplified approach is widely used in literature and generally acceptable for plasma torches with a circular anode inside the torch chamber. The unique DC hybrid water/gas-stabilized plasma torch developed at the Institute of Plasma Physics of the Czech Academy of Sciences on the other hand, consists of a rotating anode disk, located outside of the torch chamber. Neglecting the effects of the anode arc attachment downstream of the torch exit nozzle leads to erroneous predictions of the flow field. With the simplified approach introduced in this model, the Joule heating between the exit nozzle and the anode attachment position of the plasma arc is modeled by a volume heat source and the jet deflection caused by the anode processes by a momentum source at the anode surface. Furthermore, radiation effects are included by the net emission coefficient (NEC) method and diffusion is modeled with the combined diffusion coefficient method. The time-averaged simulation results are compared with numerous experimental measurements. The radial temperature profiles were obtained by spectroscopic measurements at different axial positions downstream of the exit nozzle. The velocity profiles were evaluated from the time-dependent evolution of flow structures, recorded by photodiode arrays. The shape of the plasma jet was compared with charge-coupled device (CCD) camera pictures. In the cooler regions, the temperature was measured by enthalpy probe downstream of the exit nozzle and by thermocouples in radial direction around the torch nozzle. The model results correspond well with the experimental measurements. The decrease in centerline temperature and velocity is predicted within an acceptable range and the shape of the jet closely resembles the jet structure in the recorded images. The temperatures at the edge of the jet are underestimated due to the absence of radial radiative heat transfer in the model.

Keywords: anode arc attachment, CFD modeling, experimental comparison, thermal plasma jet

Procedia PDF Downloads 364
3061 Characterization of the Viscoelastic Behavior of Polymeric Composites

Authors: Abir Abdessalem, Sahbi Tamboura, J. Fitoussi, Hachmi Ben Daly, Abbas Tcharkhtchi

Abstract:

Dynamic mechanical analysis (DMA) is one of the most used experimental techniques to investigate the temperature and frequency dependence of the mechanical behavior of viscoelastic materials. The measured data are generally shifted by the application of the principle of the time– temperature superposition (TTS) to obtain the viscoelastic system’s master curve. The aim of this work is to show the methodology to define the horizontal shift factor to be applied to the storage modulus measured in order to indicate the validity of (TTS) principle for this material system. This principle was successfully used to determine the long-term properties of the Sheet Moulding Compound (SMC) composites.

Keywords: composite material, dynamic mechanical analysis, SMC composites, viscoelastic behavior, modeling

Procedia PDF Downloads 227
3060 COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration

Authors: Tayeb Aissaoui, Inas M. AlNashef

Abstract:

In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry.

Keywords: COSMO-RS, deep eutectic solvents, dehydration, natural gas, structure, organic salt

Procedia PDF Downloads 286
3059 Information Retrieval for Kafficho Language

Authors: Mareye Zeleke Mekonen

Abstract:

The Kafficho language has distinct issues in information retrieval because of its restricted resources and dearth of standardized methods. In this endeavor, with the cooperation and support of linguists and native speakers, we investigate the creation of information retrieval systems specifically designed for the Kafficho language. The Kafficho information retrieval system allows Kafficho speakers to access information easily in an efficient and effective way. Our objective is to conduct an information retrieval experiment using 220 Kafficho text files, including fifteen sample questions. Tokenization, normalization, stop word removal, stemming, and other data pre-processing chores, together with additional tasks like term weighting, were prerequisites for the vector space model to represent each page and a particular query. The three well-known measurement metrics we used for our word were Precision, Recall, and and F-measure, with values of 87%, 28%, and 35%, respectively. This demonstrates how well the Kaffiho information retrieval system performed well while utilizing the vector space paradigm.

Keywords: Kafficho, information retrieval, stemming, vector space

Procedia PDF Downloads 51
3058 Design, Control and Implementation of 3.5 kW Bi-Directional Energy Harvester for Intelligent Green Energy Management System

Authors: P. Ramesh, Aby Joseph, Arya G. Lal, U. S. Aji

Abstract:

Integration of distributed green renewable energy sources in addition with battery energy storage is an inevitable requirement in a smart grid environment. To achieve this, an Intelligent Green Energy Management System (i-GEMS) needs to be incorporated to ensure coordinated operation between supply and load demand based on the hierarchy of Renewable Energy Sources (RES), battery energy storage and distribution grid. A bi-directional energy harvester is an integral component facilitating Intelligent Green Energy Management System (i-GEMS) and it is required to meet the technical challenges mentioned as follows: (1) capability for bi-directional mode of operation (buck/boost) (2) reduction of circuit parasitic to suppress voltage spikes (3) converter startup problem (4) high frequency magnetics (5) higher power density (6) mode transition issues during battery charging and discharging. This paper is focused to address the above mentioned issues and targeted to design, develop and implement a bi-directional energy harvester with galvanic isolation. In this work, the hardware architecture for bi-directional energy harvester rated 3.5 kW is developed with Isolated Full Bridge Boost Converter (IFBBC) as well as Dual Active Bridge (DAB) Converter configuration using modular power electronics hardware which is identical for both solar PV array and battery energy storage. In IFBBC converter, the current fed full bridge circuit is enabled and voltage fed full bridge circuit is disabled through Pulse Width Modulation (PWM) pulses for boost mode of operation and vice-versa for buck mode of operation. In DAB converter, all the switches are in active state so as to adjust the phase shift angle between primary full bridge and secondary full bridge which in turn decides the power flow directions depending on modes (boost/buck) of operation. Here, the control algorithm is developed to ensure the regulation of the common DC link voltage and maximum power extraction from the renewable energy sources depending on the selected mode (buck/boost) of operation. The circuit analysis and simulation study are conducted using PSIM 9.0 in three scenarios which are - 1.IFBBC with passive clamp, 2. IFBBC with active clamp, 3. DAB converter. In this work, a common hardware prototype for bi-directional energy harvester with 3.5 kW rating is built for IFBBC and DAB converter configurations. The power circuit is equipped with right choice of MOSFETs, gate drivers with galvanic isolation, high frequency transformer, filter capacitors, and filter boost inductor. The experiment was conducted for IFBBC converter with passive clamp under boost mode and the prototype confirmed the simulation results showing the measured efficiency as 88% at 2.5 kW output power. The digital controller hardware platform is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the bi-directional energy harvester is written in C language and developed using code composer studio. The comprehensive analyses of the power circuit design, control strategy for battery charging/discharging under buck/boost modes and comparative performance evaluation using simulation and experimental results will be presented.

Keywords: bi-directional energy harvester, dual active bridge, isolated full bridge boost converter, intelligent green energy management system, maximum power point tracking, renewable energy sources

Procedia PDF Downloads 134