Search results for: Wireless Sensor Network
2990 Using Heat-Mask in the Thermoforming Machine for Component Positioning in Thermoformed Electronics
Authors: Behnam Madadnia
Abstract:
For several years, 3D-shaped electronics have been rising, with many uses in home appliances, automotive, and manufacturing. One of the biggest challenges in the fabrication of 3D shape electronics, which are made by thermoforming, is repeatable and accurate component positioning, and typically there is no control over the final position of the component. This paper aims to address this issue and present a reliable approach for guiding the electronic components in the desired place during thermoforming. We have proposed a heat-control mask in the thermoforming machine to control the heating of the polymer, not allowing specific parts to be formable, which can assure the conductive traces' mechanical stability during thermoforming of the substrate. We have verified our approach's accuracy by applying our method on a real industrial semi-sphere mold for positioning 7 LEDs and one touch sensor. We measured the LEDs' position after thermoforming to prove the process's repeatability. The experiment results demonstrate that the proposed method is capable of positioning electronic components in thermoformed 3D electronics with high precision.Keywords: 3D-shaped electronics, electronic components, thermoforming, component positioning
Procedia PDF Downloads 972989 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm
Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy
Abstract:
IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.Keywords: IoT, fog networks, data stewardship, dynamic access policy
Procedia PDF Downloads 592988 Implementation of Social Network Analysis to Analyze the Dependency between Construction Bid Packages
Authors: Kawalpreet Kaur, Panagiotis Mitropoulos
Abstract:
The division of the project scope into work packages is the most important step in the preconstruction phase of construction projects. The work division determines the scope and complexity of each bid package, resulting in dependencies between project participants performing these work packages. The coordination between project participants is necessary because of these dependencies. Excessive dependencies between the bid packages create coordination difficulties, leading to delays, added costs, and contractual friction among project participants. However, the literature on construction provides limited knowledge regarding work structuring approaches, issues, and challenges. Manufacturing industry literature provides a systematic approach to defining the project scope into work packages, and the implementation of social network analysis (SNA) in manufacturing is an effective approach to defining and analyzing the divided scope of work at the dependencies level. This paper presents a case study of implementing a similar approach using SNA in construction bid packages. The study uses SNA to analyze the scope of bid packages and determine the dependency between scope elements. The method successfully identifies the bid package with the maximum interaction with other trade contractors and the scope elements that are crucial for project performance. The analysis provided graphical and quantitative information on bid package dependencies. The study can be helpful in performing an analysis to determine the dependencies between bid packages and their scope elements and how these scope elements are critical for project performance. The study illustrates the potential use of SNA as a systematic approach to analyzing bid package dependencies in construction projects, which can guide the division of crucial scope elements to minimize negative impacts on project performance.Keywords: work structuring, bid packages, work breakdown, project participants
Procedia PDF Downloads 782987 Computational Insights Into Allosteric Regulation of Lyn Protein Kinase: Structural Dynamics and Impacts of Cancer-Related Mutations
Authors: Mina Rabipour, Elena Pallaske, Floyd Hassenrück, Rocio Rebollido-Rios
Abstract:
Protein tyrosine kinases, including Lyn kinase of the Src family kinases (SFK), regulate cell proliferation, survival, and differentiation. Lyn kinase has been implicated in various cancers, positioning it as a promising therapeutic target. However, the conserved ATP-binding pocket across SFKs makes developing selective inhibitors challenging. This study aims to address this limitation by exploring the potential for allosteric modulation of Lyn kinase, focusing on how its structural dynamics and specific oncogenic mutations impact its conformation and function. To achieve this, we combined homology modeling, molecular dynamics simulations, and data science techniques to conduct microsecond-length simulations. Our approach allowed a detailed investigation into the interplay between Lyn’s catalytic and regulatory domains, identifying key conformational states involved in allosteric regulation. Additionally, we evaluated the structural effects of Dasatinib, a competitive inhibitor, and ATP binding on Lyn active conformation. Notably, our simulations show that cancer-related mutations, specifically I364L/N and E290D/K, shift Lyn toward an inactive conformation, contrasting with the active state of the wild-type protein. This may suggest how these mutations contribute to aberrant signaling in cancer cells. We conducted a dynamical network analysis to assess residue-residue interactions and the impact of mutations on the Lyn intramolecular network. This revealed significant disruptions due to mutations, especially in regions distant from the ATP-binding site. These disruptions suggest potential allosteric sites as therapeutic targets, offering an alternative strategy for Lyn inhibition with higher specificity and fewer off-target effects compared to ATP-competitive inhibitors. Our findings provide insights into Lyn kinase regulation and highlight allosteric sites as avenues for selective drug development. Targeting these sites may modulate Lyn activity in cancer cells, reducing toxicity and improving outcomes. Furthermore, our computational strategy offers a scalable approach for analyzing other SFK members or kinases with similar properties, facilitating the discovery of selective allosteric modulators and contributing to precise cancer therapies.Keywords: lyn tyrosine kinase, mutation analysis, conformational changes, dynamic network analysis, allosteric modulation, targeted inhibition
Procedia PDF Downloads 142986 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease
Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette
Abstract:
Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment
Procedia PDF Downloads 3382985 Potentiality of the Wind Energy in Algeria
Authors: C. Benoudjafer, M. N. Tandjaoui, C. Benachaiba
Abstract:
The use of kinetic energy of the wind is in full rise in the world and it starts to be known in our country but timidly. One or more aero generators can be installed to produce for example electricity on isolated places or not connected to the electrical supply network. To use the wind as energy source, it is necessary to know first the energy needs for the population and study the wind intensity, speed, frequency and direction.Keywords: Algeria, renewable energies, wind, wind power, aero-generators, wind energetic potential
Procedia PDF Downloads 4312984 Assessment of Green Fluorescent Protein Signal for Effective Monitoring of Recombinant Fermentation Processes
Authors: I. Sani, A. Abdulhamid, F. Bello, Isah M. Fakai
Abstract:
This research has focused on the application of green fluorescent protein (GFP) as a new technique for direct monitoring of fermentation processes involving cultured bacteria. To use GFP as a sensor for pH and oxygen, percentage ratio of red fluorescence to green (% R/G) was evaluated. Assessing the magnitude of the % R/G ratio in relation to low or high pH and oxygen concentration, the bacterial strains were cultivated under aerobic and anaerobic conditions. SCC1 strains of E. coli were grown in a 5 L laboratory fermenter, and during the fermentation, the pH and temperature were controlled at 7.0 and 370C respectively. Dissolved oxygen tension (DOT) was controlled between 15-100% by changing the agitation speed between 20-500 rpm respectively. Effect of reducing the DOT level from 100% to 15% was observed after 4.5 h fermentation. There was a growth arrest as indicated by the decrease in the OD650 at this time (4.5-5 h). The relative fluorescence (green) intensity was decreased from about 460 to 420 RFU. However, %R/G ratio was significantly increased from about 0.1% to about 0.25% when the DOT level was decreased to 15%. But when the DOT was changed to 100%, a little increase in the RF and decrease in the %R/G ratio were observed. Therefore, GFP can effectively detect and indicate any change in pH and oxygen level during fermentation processes.Keywords: Escherichia coli SCC1, fermentation process, green fluorescent protein, red fluorescence
Procedia PDF Downloads 5052983 Structure Clustering for Milestoning Applications of Complex Conformational Transitions
Authors: Amani Tahat, Serdal Kirmizialtin
Abstract:
Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.Keywords: milestoning, self organizing map, single linkage, structure clustering
Procedia PDF Downloads 2242982 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction
Authors: Kudzanayi Chiteka, Wellington Makondo
Abstract:
The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models
Procedia PDF Downloads 2732981 Accessibility Assessment of School Facilities Using Geospatial Technologies: A Case Study of District Sheikhupura
Authors: Hira Jabbar
Abstract:
Education is vital for inclusive growth of an economy and a critical contributor for investment in human capital. Like other developing countries, Pakistan is facing enormous challenges regarding the provision of public facilities, improper infrastructure planning, accelerating rate of population and poor accessibility. The influence of the rapid advancement and innovations in GIS and RS techniques have proved to be a useful tool for better planning and decision making to encounter these challenges. Therefore present study incorporates GIS and RS techniques to investigate the spatial distribution of school facilities, identifies settlements with served and unserved population, finds potential areas for new schools based on population and develops an accessibility index to evaluate the higher accessibility for schools. For this purpose high-resolution worldview imagery was used to develop road network, settlements and school facilities and to generate school accessibility for each level. Landsat 8 imagery was utilized to extract built-up area by applying pre and post-processing models and Landscan 2015 was used to analyze population statistics. Service area analysis was performed using network analyst extension in ArcGIS 10.3v and results were evaluated for served and underserved areas and population. An accessibility tool was used to evaluate a set of potential destinations to determine which is the most accessible with the given population distribution. Findings of the study may contribute to facilitating the town planners and education authorities for understanding the existing patterns of school facilities. It is concluded that GIS and remote sensing can be effectively used in urban transport and facility planning.Keywords: accessibility, geographic information system, landscan, worldview
Procedia PDF Downloads 3252980 Dimensioning of a Solar Dryer with Application of an Experiment Design Method for Drying Food Products
Authors: B. Touati, A. Saad, B. Lips, A. Abdenbi, M. Mokhtari.
Abstract:
The purpose of this study is an application of experiment design method for dimensioning of a solar drying system. NIMROD software was used to build up the matrix of experiments and to analyze the results. The software has the advantages of being easy to use and consists of a forced way, with some choices about the number and range of variation of the parameters, and the desired polynomial shape. The first design of experiments performed concern the drying with constant input characteristics of the hot air in the dryer and a second design of experiments in which the drying chamber is coupled with a solar collector. The first design of experiments allows us to study the influence of various parameters and get the studied answers in a polynomial form. The correspondence between the polynomial thus determined, and the model results were good. The results of the polynomials of the second design of experiments and those of the model are worse than the results in the case of drying with constant input conditions. This is due to the strong link between all the input parameters, especially, the surface of the sensor and the drying chamber, and the mass of the product.Keywords: solar drying, experiment design method, NIMROD, mint leaves
Procedia PDF Downloads 5032979 Uncovering Underwater Communication for Multi-Robot Applications via CORSICA
Authors: Niels Grataloup, Micael S. Couceiro, Manousos Valyrakis, Javier Escudero, Patricia A. Vargas
Abstract:
This paper benchmarks the possible underwater communication technologies that can be integrated into a swarm of underwater robots by proposing an underwater robot simulator named CORSICA (Cross platfORm wireleSs communICation simulator). Underwater exploration relies increasingly on the use of mobile robots, called Autonomous Underwater Vehicles (AUVs). These robots are able to reach goals in harsh underwater environments without resorting to human divers. The introduction of swarm robotics in these scenarios would facilitate the accomplishment of complex tasks with lower costs. However, swarm robotics requires implementation of communication systems to be operational and have a non-deterministic behaviour. Inter-robot communication is one of the key challenges in swarm robotics, especially in underwater scenarios, as communication must cope with severe restrictions and perturbations. This paper starts by presenting a list of the underwater propagation models of acoustic and electromagnetic waves, it also reviews existing transmitters embedded in current robots and simulators. It then proposes CORSICA, which allows validating the choices in terms of protocol and communication strategies, whether they are robot-robot or human-robot interactions. This paper finishes with a presentation of possible integration according to the literature review, and the potential to get CORSICA at an industrial level.Keywords: underwater simulator, robot-robot underwater communication, swarm robotics, transceiver and communication models
Procedia PDF Downloads 3002978 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network
Authors: Biruhi Tesfaye, Avinash M. Potdar
Abstract:
The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC
Procedia PDF Downloads 1902977 Maximum Induced Subgraph of an Augmented Cube
Authors: Meng-Jou Chien, Jheng-Cheng Chen, Chang-Hsiung Tsai
Abstract:
Let maxζG(m) denote the maximum number of edges in a subgraph of graph G induced by m nodes. The n-dimensional augmented cube, denoted as AQn, a variation of the hypercube, possesses some properties superior to those of the hypercube. We study the cases when G is the augmented cube AQn.Keywords: interconnection network, augmented cube, induced subgraph, bisection width
Procedia PDF Downloads 4062976 Visible Light Communication and Challenges
Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil
Abstract:
Visible light communication is an emerging technology for almost a decade now; there is a growing need for VLC systems to overcome the challenges faced by radio frequency RF communication systems. With the advancement in the development of solid-state sources, in the future would replace incandescent and fluorescent light sources. These solid-state devices are not only to be used for illumination but can also be employed for communication and navigational purposes. The replacement of conventional illumination sources with highly efficient light-emitting diodes (LED's) (generally white light) will reduce energy consumption as well as environmental pollution. White LEDs dissipate very less power as compared to conventional light sources. The use of LED's is not only beneficial in terms of power consumption, but it also has an intrinsic capability for indoor wireless communication as compared to indoor RF communication. It is considerably low in cost to operate than the RF systems such as Wi-Fi routers, allows convenient means of reusing the bandwidth, and there is a huge potential for high data rate transmissions with enhanced data security. This paper provides an overview of some of the current challenges with VLC and proposes a possible solution to deal with these challenges; it also examines some joint protocols to optimize the joint illumination and communication functionality.Keywords: visible light communication, line of sight, root mean square delay spread, light emitting diodes
Procedia PDF Downloads 712975 Optimum Design for Cathode Microstructure of Solid Oxide Fuel Cell
Authors: M. Riazat, H. Abdolvand, M. Baniassadi
Abstract:
In this present work, 3D reconstruction of cathode of SOFC is developed with various volume fractions and porosity. Three Phase Boundary (TPB) of construction of such derived micro structures is calculated. The neural network is used to optimize the porosity and volume fraction of each phase to reach a structure with maximum TPB.Keywords: fuel cell, solid oxide, TPB, 3D reconstruction
Procedia PDF Downloads 3242974 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures
Authors: Anny Zambrano, German Gonzalez, Yair Quintero
Abstract:
The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness
Procedia PDF Downloads 3432973 Green Supply Chain Network Optimization with Internet of Things
Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen
Abstract:
Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling
Procedia PDF Downloads 3282972 Effect of Wind and Humidity on Microwave Links in West North Libya
Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri
Abstract:
The propagation of microwave is affected by rain and dust particles by way of signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents the effect of wind and humidity on wireless communication such as microwave links in the west north region of Libya (Al-Khoms), experimental procedure to study the effects mentioned above. The experimental procedure is done on three selected antennae towers (Nagaza stations, Al-Khoms center stations, Al-Khoms gateway stations) to determining of the attenuation loss per unit length and cross-polarization discrimination (XPD) change which coverage in the studied region, it is required to collect the dust particles carried out by the wind, measure the particles size distribution (PSD), calculate the concentration, and carry chemical analysis of the contents, then the dielectric constant can be calculated. The result showed that effect of the humidity and dust, the antenna height, the visibility, on the complex permittivity effects both attenuation and phase shift, there is some consideration that has to be taken into account in the communication power budget.Keywords: attenuation, de-polarization, scattering, transmission loss
Procedia PDF Downloads 1542971 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID
Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis
Abstract:
Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.Keywords: artificial intelligence, COVID, neural network, machine learning
Procedia PDF Downloads 932970 Bhumastra “Unmanned Ground Vehicle”
Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J
Abstract:
Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI
Procedia PDF Downloads 1232969 Mitigating the Negative Health Effects from Stress - A Social Network Analysis
Authors: Jennifer A. Kowalkowski
Abstract:
Production agriculture (farming) is a physically, emotionally, and cognitively stressful occupation, where workers have little control over the stressors that impact both their work and their lives. In an occupation already rife with hazards, these occupational-related stressors have been shown to increase farm workers’ risks for illness, injury, disability, and death associated with their work. Despite efforts to mitigate the negative health effects from occupational-related stress (ORS) and to promote health and well-being (HWB) among farmers in the US, marked improvements have not been attained. Social support accessed through social networks has been shown to buffer against the negative health effects from stress, yet no studies have directly examined these relationships among farmers. The purpose of this study was to use social network analysis to explore the social networks of farm owner-operators and the social supports available to them for mitigating the negative health effects of ORS. A convenience sample of 71 farm owner-operators from a Midwestern County in the US completed and returned a mailed survey (55.5% response rate) that solicited information about their social networks related to ORS. Farmers reported an average of 2.4 individuals in their personal networks and higher levels of comfort discussing ORS with female network members. Farmers also identified few connections (3.4% density) and indicated low comfort with members of affiliation networks specific to ORS. Findings from this study highlighted that farmers accessed different social networks and resources for their personal HWB than for issues related to occupational(farm-related) health and safety. In addition, farmers’ social networks for personal HWB were smaller, with different relational characteristics than reported in studies of farmers’ social networks related to occupational health and safety. Collectively, these findings suggest that farmers conceptualize personal HWB differently than farm health and safety. Therefore, the same research approaches and targets that guide occupational health and safety research may not be appropriate for personal HWB for farmers. Interventions and programming targeting ORS and HWB have largely been offered through the same platforms or mechanisms as occupational health and safety programs. This may be attributed to the significant overlap between the farm as a family business and place of residence, or that ORS stems from farm-related issues. However, these assumptions translated to health research of farmers and farm families from the occupational health and safety literature have not been directly studied or challenged. Thismay explain why past interventions have not been effective at improving health outcomes for farmers and farm families. A close examination of findings from this study raises important questions for researchers who study agricultural health. Findings from this study have significant implications for future research agendas focused on addressing ORS, HWB, and health disparities for farmersand farm families.Keywords: agricultural health, occupational-related stress, social networks, well-being
Procedia PDF Downloads 1082968 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach
Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana
Abstract:
This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation
Procedia PDF Downloads 1872967 Design and Implementation of Pseudorandom Number Generator Using Android Sensors
Authors: Mochamad Beta Auditama, Yusuf Kurniawan
Abstract:
A smartphone or tablet require a strong randomness to establish secure encrypted communication, encrypt files, etc. Therefore, random number generation is one of the main keys to provide secrecy. Android devices are equipped with hardware-based sensors, such as accelerometer, gyroscope, etc. Each of these sensors provides a stochastic process which has a potential to be used as an extra randomness source, in addition to /dev/random and /dev/urandom pseudorandom number generators. Android sensors can provide randomness automatically. To obtain randomness from Android sensors, each one of Android sensors shall be used to construct an entropy source. After all entropy sources are constructed, output from these entropy sources are combined to provide more entropy. Then, a deterministic process is used to produces a sequence of random bits from the combined output. All of these processes are done in accordance with NIST SP 800-22 and the series of NIST SP 800-90. The operation conditions are done 1) on Android user-space, and 2) the Android device is placed motionless on a desk.Keywords: Android hardware-based sensor, deterministic process, entropy source, random number generation/generators
Procedia PDF Downloads 3742966 Decode and Forward Cooperative Protocol Enhancement Using Interference Cancellation
Authors: Siddeeq Y. Ameen, Mohammed K. Yousif
Abstract:
Cooperative communication systems are considered to be a promising technology to improve the system capacity, reliability and performances over fading wireless channels. Cooperative relaying system with a single antenna will be able to reach the advantages of multiple antenna communication systems. It is ideally suitable for the distributed communication systems; the relays can cooperate and form virtual MIMO systems. Thus the paper will aim to investigate the possible enhancement of cooperated system using decode and forward protocol. On decode and forward an attempt to cancel or at least reduce the interference instead of increasing the SNR values is achieved. The latter can be achieved via the use group of relays depending on the channel status from source to relay and relay to destination respectively. In the proposed system, the transmission time has been divided into two phases to be used by decode and forward protocol. The first phase has been allocated for the source to transmit its data whereas the relays and destination nodes are in receiving mode. On the other hand, the second phase is allocated for the first and second groups of relay nodes to relay the data to the destination node. Simulations results have shown an improvement in performance is achieved compared to the conventional decode and forward in terms of BER and transmission rate.Keywords: cooperative systems, decode and forward, interference cancellation, virtual MIMO
Procedia PDF Downloads 3232965 Design and Analysis of a Piezoelectric-Based AC Current Measuring Sensor
Authors: Easa Ali Abbasi, Akbar Allahverdizadeh, Reza Jahangiri, Behnam Dadashzadeh
Abstract:
Electrical current measurement is a suitable method for the performance determination of electrical devices. There are two contact and noncontact methods in this measuring process. Contact method has some disadvantages like having direct connection with wire which may endamage the system. Thus, in this paper, a bimorph piezoelectric cantilever beam which has a permanent magnet on its free end is used to measure electrical current in a noncontact way. In mathematical modeling, based on Galerkin method, the governing equation of the cantilever beam is solved, and the equation presenting the relation between applied force and beam’s output voltage is presented. Magnetic force resulting from current carrying wire is considered as the external excitation force of the system. The results are compared with other references in order to demonstrate the accuracy of the mathematical model. Finally, the effects of geometric parameters on the output voltage and natural frequency are presented.Keywords: cantilever beam, electrical current measurement, forced excitation, piezoelectric
Procedia PDF Downloads 2322964 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application
Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob
Abstract:
Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.Keywords: robotic vision, image processing, applications of robotics, artificial intelligent
Procedia PDF Downloads 962963 Manual Wheelchair Propulsion Efficiency on Different Slopes
Authors: A. Boonpratatong, J. Pantong, S. Kiattisaksophon, W. Senavongse
Abstract:
In this study, an integrated sensing and modeling system for manual wheelchair propulsion measurement and propulsion efficiency calculation was used to indicate the level of overuse. Seven subjects participated in the measurement. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. By contrast, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5. The results are supported by previously reported wheeling resistance and propulsion torque relationships implying margin of the overuse. Upper limb musculoskeletal injuries and syndromes in manual wheelchair riders are common, chronic, and may be caused at different levels by the overuse i.e. repetitive riding on steep incline. The qualitative analysis such as the mechanical effectiveness on manual wheeling to establish the relationship between the riding difficulties, mechanical efforts and propulsion outputs is scarce, possibly due to the challenge of simultaneous measurement of those factors in conventional manual wheelchairs and everyday environments. In this study, the integrated sensing and modeling system were used to measure manual wheelchair propulsion efficiency in conventional manual wheelchairs and everyday environments. The sensing unit is comprised of the contact pressure and inertia sensors which are portable and universal. Four healthy male and three healthy female subjects participated in the measurement on level and 15-degree incline surface. Subjects were asked to perform manual wheelchair ridings with three different self-selected speeds on level surface and only preferred speed on the 15-degree incline. Five trials were performed in each condition. The kinematic data of the subject’s dominant hand and a spoke and the trunk of the wheelchair were collected through the inertia sensors. The compression force applied from the thumb of the dominant hand to the push rim was collected through the contact pressure sensors. The signals from all sensors were recorded synchronously. The subject-selected speeds for slow, preferred and fast riding on level surface and subject-preferred speed on 15-degree incline were recorded. The propulsion efficiency as a ratio between the pushing force in tangential direction to the push rim and the net force as a result of the three-dimensional riding motion were derived by inverse dynamic problem solving in the modeling unit. The intra-subject variability of the riding speed was not different significantly as the self-selected speed increased on the level surface. Since the riding speed on the 15-degree incline was difficult to regulate, the intra-subject variability was not applied. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. However, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5 for all subjects on their preferred speed. The results are supported by the previously reported relationship between the wheeling resistance and propulsion torque in which the wheelchair axle torque increased but the muscle activities were not increased when the resistance is high. This implies the margin of dynamic efforts on the relatively high resistance being similar to the margin of the overuse indicated by the restricted propulsion efficiency on the 15-degree incline.Keywords: contact pressure sensor, inertia sensor, integrating sensing and modeling system, manual wheelchair propulsion efficiency, manual wheelchair propulsion measurement, tangential force, resultant force, three-dimensional riding motion
Procedia PDF Downloads 2902962 Assessment of Socio-Economic and Water Related Topics at Community Level in Yatta Town, Palestine
Authors: Nibal Al-Batsh, Issam A. Al-Khatib, Subha Ghannam
Abstract:
Yatta is a town in the Governorate of Hebron, located 9 km south of Hebron City in the West Bank. The town houses over 100,000 people, 49% of which are females; a population that doubles every 15 years. Yatta has been connected to a water network since 1974 serving nearly 85% of the households. The water network is old and inadequate to meet the needs of the population. The water supply made available to the area is also very limited, estimated to be around 20 l/c/d. Residents are thus forced to rely on water vendors which supply water with a lower quality compared to municipal water while being 400% more expensive. As a cheaper and more reliable alternative, rainwater harvesting is a common practice in the area, with the majority of the households owning at least one cistern. Rainwater harvesting is of great socioeconomic importance in areas where water sources are scarce or polluted. In this research, the quality of harvested rainwater used for drinking and domestic purposes in the Yatta area was assessed throughout a year. A total of 100 samples, were collected from (cisterns) with an average capacity of 69 m3, which are adjacent to cement-roof catchment areas with an average area of 145 m2. Samples were analyzed for a number of parameters including: pH, alkalinity, hardness, turbidity, Total Dissolved Solids (TDS), NO3, NH4, chloride and salinity. Biological and microbiological contents such as Total Coliforms (TCC) and Fecal Coliforms (FC) bacteria were also tested. Results showed that most of the rainwater samples were within WHO and EPA guidelines set for chemical parameters. The research also addressed the impact of different socioeconomic attributes on rainwater harvesting through questionnaire that was pre-tested before the actual statically sample is collected.Keywords: rainwater, harvesting, water quality, socio-economic aspects
Procedia PDF Downloads 2512961 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain
Procedia PDF Downloads 468