Search results for: segregation of domestic waste
967 About the Effect of Temperature and Heating Rate on the Pyrolysis of Lignocellulosic Biomass Waste
Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero
Abstract:
At the present time, conventional fossil fuels show environmental and sustainability disadvantages with regard to renewables energies. Producing energy and chemicals from biomass is an interesting alternative for substitution of conventional fossil sources with a renewable feedstock while enabling zero net greenhouse gases emissions. Pyrolysis is a well-known process to produce fuels and chemicals from biomass. In this work, conventional and fast pyrolysis of different agro-industrial residues (almond shells, hemp hurds, olive stones, and Kraft lignin) was studied. Both processes were carried out in a fixed bed reactor under nitrogen flow and using different operating conditions to analyze the influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/minfor conventional pyrolysis and 50 ºC/s for fast pyrolysis)on the yields, products distribution, and composition of the different fractions. The results showed that for both conventional and fast pyrolysis, the solid fraction yield decreased with temperature, while the liquid and gas fractions increased. In the case of the fast pyrolysis, a higher content of liquid fraction than that obtained in conventional pyrolysis could be observed due to cracking reactions occur at a lesser extent. With respect to the composition of de non-condensable fraction, the main gases obtained were CO, CO₂ (mainly at low temperatures), CH₄, and H₂ (mainly at high temperatures).Keywords: bio-oil, biomass, conventional pyrolysis, fast pyrolysis
Procedia PDF Downloads 188966 Parametric Study of a Washing Machine to Develop an Energy Efficient Program Regarding the Enhanced Washing Efficiency Index and Micro Organism Removal Performance
Authors: Peli̇n Yilmaz, Gi̇zemnur Yildiz Uysal, Emi̇ne Bi̇rci̇, Berk Özcan, Burak Koca, Ehsan Tuzcuoğlu, Fati̇h Kasap
Abstract:
Development of Energy Efficient Programs (EEP) is one of the most significant trends in the wet appliance industry of the recent years. Thanks to the EEP, the energy consumption of a washing machine as one of the most energy-consuming home appliances can shrink considerably, while its washing performance and the textile hygiene should remain almost unchanged. Here in, the goal of the present study is to achieve an optimum EEP algorithm providing excellent textile hygiene results as well as cleaning performance in a domestic washing machine. In this regard, steam-pretreated cold wash approach with a combination of innovative algorithm solution in a relatively short washing cycle duration was implemented. For the parametric study, steam exposure time, washing load, total water consumption, main-washing time, and spinning rpm as the significant parameters affecting the textile hygiene and cleaning performance were investigated within a Design of Experiment study using Minitab 2021 statistical program. For the textile hygiene studies, specific loads containing the contaminated cotton carriers with Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria were washed. Then, the microbial removal performance of the designed programs was expressed as log reduction calculated as a difference of microbial count per ml of the liquids in which the cotton carriers before and after washing. For the cleaning performance studies, tests were carried out with various types of detergents and EMPA Standard Stain Strip. According to the results, the optimum EEP program provided an excellent hygiene performance of more than 2 log reduction of microorganism and a perfect Washing Efficiency Index (Iw) of 1.035, which is greater than the value specified by EU ecodesign regulation 2019/2023.Keywords: washing machine, energy efficient programs, hygiene, washing efficiency index, microorganism, escherichia coli, staphylococcus aureus, pseudomonas aeruginosa, laundry
Procedia PDF Downloads 135965 Mathematical Modelling of Slag Formation in an Entrained-Flow Gasifier
Authors: Girts Zageris, Vadims Geza, Andris Jakovics
Abstract:
Gasification processes are of great interest due to their generation of renewable energy in the form of syngas from biodegradable waste. It is, therefore, important to study the factors that play a role in the efficiency of gasification and the longevity of the machines in which gasification takes place. This study focuses on the latter, aiming to optimize an entrained-flow gasifier by reducing slag formation on its walls to reduce maintenance costs. A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification into account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, the effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and possible solutions for decreasing a number of undesirable deposits are proposed. Additionally, an estimate of the impact of different factors such as temperature, gas properties and gas content, and different forces acting on the particles undergoing gasification is given.Keywords: biomass particles, gasification, slag formation, turbulence k-ε modelling
Procedia PDF Downloads 285964 Carbon Pool Assessment in Community Forests, Nepal
Authors: Medani Prasad Rijal
Abstract:
Forest itself is a factory as well as product. It supplies tangible and intangible goods and services. It supplies timber, fuel wood, fodder, grass leaf litter as well as non timber edible goods and medicinal and aromatic products additionally provides environmental services. These environmental services are of local, national or even global importance. In Nepal, more than 19 thousands community forests are providing environmental service in less economic benefit than actual efficiency. There is a risk of cost of management of those forest exceeds benefits and forests get converted to open access resources in future. Most of the environmental goods and services do not have markets which mean no prices at which they are available to the consumers, therefore the valuation of these services goods and services establishment of paying mechanism for such services and insure the benefit to community is more relevant in local as well as global scale. There are few examples of carbon trading in domestic level to meet the country wide emission goal. In this contest, the study aims to explore the public attitude towards carbon offsetting and their responsibility over service providers. This study helps in promotion of environment service awareness among general people, service provider and community forest. The research helps to unveil the carbon pool scenario in community forest and willingness to pay for carbon offsetting of people who are consuming more energy than general people and emitting relatively more carbon in atmosphere. The study has assessed the carbon pool status in two community forest and valuated carbon service from community forest through willingness to pay in Dharan municipality situated in eastern. In the study, in two community forests carbon pools were assessed following the guideline “Forest Carbon Inventory Guideline 2010” prescribed by Ministry of Forest and soil Conservation, Nepal. Final outcomes of analysis in intensively managed area of Hokse CF recorded as 103.58 tons C /ha with 6173.30 tons carbon stock. Similarly in Hariyali CF carbon density was recorded 251.72 mg C /ha. The total carbon stock of intensively managed blocks in Hariyali CF is 35839.62 tons carbon.Keywords: carbon, offsetting, sequestration, valuation, willingness to pay
Procedia PDF Downloads 355963 Biological Feedstocks for Sustainable Aviation Fuel
Authors: Odi Fawwaz Alrebei, Rim Ismail
Abstract:
Sustainable aviation fuel (SAF) has emerged as a critical solution for reducing the aviation sector's carbon footprint. Biological feedstocks, such as lignocellulosic biomass, microalgae, used cooking oil, and municipal solid waste, offer significant potential to replace fossil-based jet fuels with renewable alternatives. This review paper aims to critically examine the current landscape of biological feedstocks for SAF production, focusing on feedstock availability, conversion technologies, and environmental impacts. The paper evaluates the biochemical pathways employed in transforming these feedstocks into SAF, such as hydrothermal liquefaction, Fischer-Tropsch synthesis, and microbial fermentation, highlighting the advancements and challenges in each method. Additionally, the sustainability of biological feedstocks is analyzed with respect to lifecycle emissions, land use, and water consumption, emphasizing the need for region-specific strategies to maximize benefits. Special attention is given to the role of microbial consortia in optimizing feedstock degradation and conversion processes. The review concludes by discussing the scalability and economic viability of biological feedstock-based SAF, with a focus on policy frameworks and technological innovations that can facilitate widespread adoption. This comprehensive review underscores the pivotal role of biological feedstocks in achieving a decarbonized aviation sector and identifies future research directions for improving SAF production efficiency and sustainability.Keywords: fuel diversity, biological feedstocks, SAF, aviation
Procedia PDF Downloads 14962 An Overview of Suicidality in American Indians and Alaska Natives
Authors: Christopher S. Perez, Kendal C. Boyd
Abstract:
global suicide rates have decreased in recent decades, rates in the United States have increased by 35.2 percent since 1999.American Indians and Alaska Natives (AI/AN) have the highest rates of suicide in the U.S., with approximately 22 suicides per 100,000 people as of 2019. AI/AN have experienced significant historical trauma resulting in disproportionate rates of substance abuse and mental disorders. This literature review aimed to identify the demographic and clinical risk and protective factors for American Indians and Alaska Natives and provide an overview of suicidality in this population. The literature reflected varying definitions of suicidality depending on region, with some AI/AN tribesconceptualizing suicide through a spiritual framework, while others defined suicide in the biomedical sense. Furthermore, AI/AN adults and adolescents experienced higher rates of suicidal ideation when compared to other racial groups. Religious preference, sexual orientation, prior suicidal behavior, psychiatric admission, history of abuse, substance abuse, family history of mental illness, family history of substance abuse, family history of suicidal behaviors, domestic violence, and trauma were discussed as factors related to suicidality. Recommendations included increasing access to and utilization of mental health and medical services, culturally adapting suicide prevention programs to AI/AN communities, increasing support for LGBTQ+ AI/AN, providing opportunities that reinforce ethnic identity, and post-hospitalization follow-up care. The following databases were utilized to obtain peer-reviewed articles for this literature review: Complementary Index, Academic Search Premier, Science Direct, PsycInfo, Social Sciences Citation Index, PsycArticles, PubMed, EbscoHost, and PsycBooks. Articles that examined Native populations outside of the United States did not cite a primary source and/or were published before 1990 were excluded.Keywords: alaska native, american indian, protective factors, risk factors, suicidality, suicide
Procedia PDF Downloads 100961 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review
Authors: Shubhangi R. Deshmukh, Anupam B. Soni
Abstract:
Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment
Procedia PDF Downloads 181960 Expression of Metallothionein Gen and Protein on Hepatopancreas, Gill and Muscle of Perna viridis Caused by Biotoxicity Hg, Pb and Cd
Authors: Yulia Irnidayanti , J. J. Josua, A. Sugianto
Abstract:
Jakarta Bay with 13 rivers that flow into, the environment has deteriorated and is the most polluted bays in Asia. The entry of waste into the waters of the Bay of Jakarta has caused pollution. Heavy metal contamination has led to pollution levels and may cause toxicity to organisms that live in the sea, down to the cellular level and may affect the ecological balance. Various ways have been conducted to measure the impact of environmental degradation, such as by measuring the levels of contaminants in the environment, including measuring the accumulation of toxic compounds in the tissues of organisms. Biological responses or biomarkers known as a sensitive indicator but need relevant predictions. In heavy metal pollution monitoring, analysis of aquatic biota is very important from the analysis of the water itself. The content of metals in aquatic biota will usually always be increased from time to time due to the nature of metal bioaccumulation, so the aquatic biota is best used as an indicator of metal pollution in aquatic environments. The results of the content analysis results of sea water in coastal estuaries Angke, Kaliadem and Panimbang detected heavy metals cadmium, mercury, lead, but did not find zinc metal. Based on the results of protein electrophoresis methallotionein found heavy metals in the tissues hepatopancreas, gills and muscles, and also the mRNA expression of has detected.Keywords: gills, heavy metal, hepatopancreas, metallothionein, muscle
Procedia PDF Downloads 388959 Quantitative Analysis of Three Sustainability Pillars for Water Tradeoff Projects in Amazon
Authors: Taha Anjamrooz, Sareh Rajabi, Hasan Mahmmud, Ghassan Abulebdeh
Abstract:
Water availability, as well as water demand, are not uniformly distributed in time and space. Numerous extra-large water diversion projects are launched in Amazon to alleviate water scarcities. This research utilizes statistical analysis to examine the temporal and spatial features of 40 extra-large water diversion projects in Amazon. Using a network analysis method, the correlation between seven major basins is measured, while the impact analysis method is employed to explore the associated economic, environmental, and social impacts. The study unearths that the development of water diversion in Amazon has witnessed four stages, from a preliminary or initial period to a phase of rapid development. It is observed that the length of water diversion channels and the quantity of water transferred have amplified significantly in the past five decades. As of 2015, in Amazon, more than 75 billion m³ of water was transferred amidst 12,000 km long channels. These projects extend over half of the Amazon Area. The River Basin E is currently the most significant source of transferred water. Through inter-basin water diversions, Amazon gains the opportunity to enhance the Gross Domestic Product (GDP) by 5%. Nevertheless, the construction costs exceed 70 billion US dollars, which is higher than any other country. The average cost of transferred water per unit has amplified with time and scale but reduced from western to eastern Amazon. Additionally, annual total energy consumption for pumping exceeded 40 billion kilowatt-hours, while the associated greenhouse gas emissions are assessed to be 35 million tons. Noteworthy to comprehend that ecological problems initiated by water diversion influence the River Basin B and River Basin D. Due to water diversion, more than 350 thousand individuals have been relocated, away from their homes. In order to enhance water diversion sustainability, four categories of innovative measures are provided for decision-makers: development of water tradeoff projects strategies, improvement of integrated water resource management, the formation of water-saving inducements, and pricing approach, and application of ex-post assessment.Keywords: sustainability, water trade-off projects, environment, Amazon
Procedia PDF Downloads 129958 Sustainable Development of Medium Strength Concrete Using Polypropylene as Aggregate Replacement
Authors: Reza Keihani, Ali Bahadori-Jahromi, Timothy James Clacy
Abstract:
Plastic as an environmental burden is a well-rehearsed topic in the research area. This is due to its global demand and destructive impacts on the environment, which has been a significant concern to the governments. Typically, the use of plastic in the construction industry is seen across low-density, non-structural applications due to its diverse range of benefits including high strength-to-weight ratios, manipulability and durability. It can be said that with the level of plastic consumption experienced in the construction industry, an ongoing responsibility is shown for this sector to continually innovate alternatives for application of recycled plastic waste such as using plastic made replacement from polyethylene, polystyrene, polyvinyl and polypropylene in the concrete mix design. In this study, the impact of partially replaced fine aggregate with polypropylene in the concrete mix design was investigated to evaluate the concrete’s compressive strength by conducting an experimental work which comprises of six concrete mix batches with polypropylene replacements ranging from 0.5 to 3.0%. The results demonstrated a typical decline in the compressive strength with the addition of plastic aggregate, despite this reduction generally mitigated as the level of plastic in the concrete mix increased. Furthermore, two of the six plastic-containing concrete mixes tested in the current study exceeded the ST5 standardised prescribed concrete mix compressive strength requirement at 28-days containing 1.50% and 2.50% plastic aggregates, which demonstrated the potential for use of recycled polypropylene in structural applications, as a partial by mass, fine aggregate replacement in the concrete mix.Keywords: compressive strength, concrete, polypropylene, sustainability
Procedia PDF Downloads 140957 Assessing the Impacts of Vocational Training System in the Sudan: A Dynamic CGE Application
Authors: Zuhal Mohammed, Khalid Siddig, Harald Grethe
Abstract:
Vocational training (VT) has been identified as a potential engine for achieving economic and social development, particularly in developing countries, while during the last two decades it is deemed as an essential determinant of human capital accumulation. Furthermore, it has a crucial role in reducing inequality, wage gaps and unemployment and in promoting skill decomposition. Government plays an important role in the human capital formulation by providing finance for education. In some countries, a large portion of the public educational investment is devoted to academic education (primary, secondary and tertiary). This is reflected in disproportionately increasing investment in various education sectors other than vocational education and VT. Nevertheless, the finance of VT system is not likely to increase or even remain at its existing level. This paper conducts an in-depth analysis to quantify the impacts of various options for expanding the public expenditure on education as well as vocational training in the Sudan. The study uses a recursive dynamic CGE modelling framework that accommodates VT and allows depicting the impact of various policies targeting the vocational training system with special focus on the agricultural sector. This allows for depicting the potential effects of various resource allocation policies not only among education versus non-education sectors, but also between the various types of education and training. Moreover, the study assesses the role of VT system in the economy through its influence on workers’ skill improvement and their movement across sectors. The results show that an increase in the public educational investment will lead to decrease the supply of low and high educated workers as results of increasing the school participation of the students in the short run. While in the medium to long run, this measure guides to increase the productivity of the labour and thus the growth rate of the gross domestic product (GDP). Therefore, the findings of the study provide Sudanese policymakers with needed information to help to adopt measures to reduce unemployment, enhance workers’ skill and ultimately improve livelihoods.Keywords: vocational training, recursive dynamic CGE, skill level, labour market, economic growth, Sudan
Procedia PDF Downloads 197956 Improvement of Recycled Aggregate Concrete Properties by Controlling the Water Flow in the Interfacial Transition Zone
Authors: M. Eckert, M. Oliveira, A. Bettencourt Ribeiro
Abstract:
The intensive use of natural aggregate, near the towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and take up space for noblest purposes. The main problem of recycled aggregate lies in its high water absorption, what is due to the porosity of the materials which constitute this type of aggregate. When the aggregates are dry, water flows from the inside to the engaging cement paste matrix, and when they are saturated an inverse process occurs. This water flow breaks the aggregate-cement paste bonds and the greater water concentration, in the inter-facial transition zone, degrades the concrete properties in its fresh and hardened state. Based on the water absorption over time, it was optimized an staged mixing method, to regulate the said flow and manufacture recycled aggregate concrete with levels of work-ability, strength and shrinkage equivalent to those of conventional concrete.The physical, mechanical and geometrical properties of the aggregates where related to the properties of concrete in its fresh and hardened state. Three types of commercial recycled aggregates and two types of natural aggregates where evaluated. Six compositions with different percentages of recycled coarse aggregate where tested.Keywords: recycled aggregate, water absorption, interfacial transition zone, compressive-strength, shrinkage
Procedia PDF Downloads 450955 Development of Sustainable Composite Fabric from Orange Peel for Ladies’ Undergarments: A Different Approach Towards Eco-Friendly Textile Design
Authors: Abdul Hafeez, Samiya Shehzadi
Abstract:
This research paper presents a different approach towards eco-friendly textile design by developing a sustainable composite fabric from orange peel for ladies' undergarments. The research focuses on utilizing orange peel to develop a unique orange leather/composite (fabric) through a process involving heating, extracting, and subsequent sun-drying to obtain the composite. The sustainable composite fabric shows properties that are favorable to the development of environmentally friendly undergarments, which not only offer UV protection but also possess healing properties for the skin. Through comprehensive testing and analysis, it has been determined that the orange peel composite fabric has zero harmful effects on the skin, making it a safe and desirable material for intimate wear. Furthermore, the research suggests that the orange peel composite fabric has the potential to reduce the rate of cancer cell growth. While the exact mechanisms and factors contributing to this effect require further investigation, the initial findings indicate promising aspects of the fabric in terms of potential cancer-preventive properties. Research contribution to the field of sustainable textile design by introducing a usual and eco-friendly approach utilizing orange peel waste. This work opens up avenues for further exploration and development of innovative materials that are both sustainable and beneficial for human health.Keywords: sustainability, composite textiles, extracting, undergarments, eco-friendly, orange peels
Procedia PDF Downloads 66954 Iterative Replanning of Diesel Generator and Energy Storage System for Stable Operation of an Isolated Microgrid
Authors: Jiin Jeong, Taekwang Kim, Kwang Ryel Ryu
Abstract:
The target microgrid in this paper is isolated from the large central power system and is assumed to consist of wind generators, photovoltaic power generators, an energy storage system (ESS), a diesel power generator, the community load, and a dump load. The operation of such a microgrid can be hazardous because of the uncertain prediction of power supply and demand and especially due to the high fluctuation of the output from the wind generators. In this paper, we propose an iterative replanning method for determining the appropriate level of diesel generation and the charging/discharging cycles of the ESS for the upcoming one-hour horizon. To cope with the uncertainty of the estimation of supply and demand, the one-hour plan is built repeatedly in the regular interval of one minute by rolling the one-hour horizon. Since the plan should be built with a sufficiently large safe margin to avoid any possible black-out, some energy waste through the dump load is inevitable. In our approach, the level of safe margin is optimized through learning from the past experience. The simulation experiments show that our method combined with the margin optimization can reduce the dump load compared to the method without such optimization.Keywords: microgrid, operation planning, power efficiency optimization, supply and demand prediction
Procedia PDF Downloads 432953 Perception of Indoor Environmental Qualities in Residential Buildings: A Quantitative Case Survey for Turkey and Iran
Authors: Majid Bahramian, Kaan Yetilmezsoy
Abstract:
Environmental performance of residential buildings been a hotspot for the research community, however, the indoor environmental quality significantly overlooked in the literature. The paper is motivated by the understanding of the occupants from the indoor environmental qualities and seeks to find the satisfaction level in two high-rise green-certified residential buildings. Views of more than 250 respondents in each building were solicited on 15 Indoor Environmental Qualities (IEQ) parameters. Findings suggest that occupants are generally satisfied with five critical aspects of IEQ, but some unsatisfaction exists during operation phase. The results also indicate that the green build certification systems for new buildings have some deficiencies which affect the actual environmental performance of green buildings during operation. Some reasons were suggested by the occupants of which the design-focus construction and lack of monitoring after certification were the most critical factors. Among the crucial criteria for environmental performance assessment of green buildings, energy saving, reduction of Greenhouse Gases (GHG) emissions, environmental impacts on neighborhood area, waste reduction and IEQs, were the most critical factors dominating the performance, in a descending order. This study provides valuable information on the performance of IEQ parameters of green building and gives a deeper understanding for stakeholders and companies involved in construction sector with the relevant feedback for their decision-making on current and future projects.Keywords: indoor environmental qualities, green buildings, occupant satisfaction, environmental performance
Procedia PDF Downloads 86952 How COVID-19 Pandemic Contingency Measures Impacted on Environmental Practices in Food Service in Portugal
Authors: Ada Rocha, Beatriz Almeida, Cláudia Viegas
Abstract:
Considering the growing trend of food consumption outside the home, Food Service units (FSU) achieved importance and responsibility in feeding the population. FSU have a strong environmental impact since the large-scale production of meals implies a high use of resources and produce high amounts of waste with economic and environmental consequences. At the end of 2019, with the emergence of the Covid-19 pandemic, this effort towards sustainability was affected by the contingency measures imposed to stop the spread of the virus. Preventive measures in FSU, include the provision of cutlery and paper napkins in individual bags, the use of disposable paper towels, the supply of individual portions of bread and spices, as well as bottled water. These measures are, in many cases, a setback and an obstacle to the implementation of more sustainable practices and imply greater consumption of natural resources and materials. The present study aimed to assess the impact of the implementation of the contingency measures for the Covid-19 pandemic on the environmental practices of FSU in Portugal. A questionnaire was developed to characterize the FSU and the impact of the implementation of contingency measures for the Covid-19 pandemic. A great impact of the implementation of the contingency measures in the sustainability of FSU was observed, highlighting concerns about the need to keep these measures, some of them adopted due to fear of the unknown and its consequences on an ongoing successful process. Policymakers should keep only the ones that may prove to be efficient and positive and abandon or relieve the unnecessary ones.Keywords: COVID-19, environment, food service, sustainability, SGD
Procedia PDF Downloads 68951 Reduction Conditions of Briquetted Solid Wastes Generated by the Integrated Iron and Steel Plant
Authors: Gökhan Polat, Dicle Kocaoğlu Yılmazer, Muhlis Nezihi Sarıdede
Abstract:
Iron oxides are the main input to produce iron in integrated iron and steel plants. During production of iron from iron oxides, some wastes with high iron content occur. These main wastes can be classified as basic oxygen furnace (BOF) sludge, flue dust and rolling scale. Recycling of these wastes has a great importance for both environmental effects and reduction of production costs. In this study, recycling experiments were performed on basic oxygen furnace sludge, flue dust and rolling scale which contain 53.8%, 54.3% and 70.2% iron respectively. These wastes were mixed together with coke as reducer and these mixtures are pressed to obtain cylindrical briquettes. These briquettes were pressed under various compacting forces from 1 ton to 6 tons. Also, both stoichiometric and twice the stoichiometric cokes were added to investigate effect of coke amount on reduction properties of the waste mixtures. Then, these briquettes were reduced at 1000°C and 1100°C during 30, 60, 90, 120 and 150 min in a muffle furnace. According to the results of reduction experiments, the effect of compacting force, temperature and time on reduction ratio of the wastes were determined. It is found that 1 ton compacting force, 150 min reduction time and 1100°C are the optimum conditions to obtain reduction ratio higher than 75%.Keywords: Coke, iron oxide wastes, recycling, reduction
Procedia PDF Downloads 340950 Assessing the Channel Design of the Eco-Friendly ‘Falaj’ Water System in Meeting the Optimal Water Demand: A Case Study of Falaj Al-Khatmain, Sultanate of Oman
Authors: Omer Al-Kaabi, Ahmed Nasr, Abdullah Al-Ghafri, Mohammed Abdelfattah
Abstract:
The Falaj system, derived from natural water sources, is a man-made canal system designed to supply communities of farmers with water for domestic and agricultural purposes. For thousands of years, Falaj has served communities by harnessing the force of gravity; it persists as a vital water management system in numerous regions across the Sultanate of Oman. Remarkably, predates the establishment of many fundamental hydraulic principles used today. Al-Khatmain Falaj, with its accessibility and historical significance spanning over 2000 years, was chosen as the focal point of this study. The research aimed to investigate the efficiency of Al-Khatmain Falaj in meeting specific water demands. The HEC-RAS model was utilized to visualize water flow dynamics within the Falaj channels, accompanied by graphical representations of pertinent variables. The application of HEC-RAS helped to measure different water flow scenarios within the channel, enabling a clear comparison with the demand area catchment. The cultivated land of Al-Khatmain is 723,124 m² and consists of 16,873 palm trees representing 91% of the total area and the remaining 9% is mixed types of trees counted 3,920 trees. The study revealed a total demand of 8,244 m³ is required to irrigate the cultivated land. Through rigorous analysis, the study has proven that the Falaj system in Al-Khatmain operates with high efficiency, as the average annual water supply is 9676.8 m3/day. Additionally, the channel designed at 0.6m width x 0.3m height efficiently holds the optimal water supply, with an average flow depth of 0.21m. Also, the system includes an overflow drainage channel to mitigate floods and prevent crop damage based on seasonal requirements. This research holds promise for examining diverse hydrological conditions and devising effective strategies to manage scenarios of both high and low flow rates.Keywords: Al-Khatmain, sustainability, Falaj, HEC-RAS, water management system
Procedia PDF Downloads 44949 Investigations into Transition from Traditional Construction to Industrial Construction in Afghanistan
Authors: A. Latif Karimi
Abstract:
Since 2001, construction works, especially the construction of new homes and residential buildings, witnessed a dramatic boom across Afghanistan. More so, the construction industry and house builders are relied upon as important players in the country’s job market, economy and infrastructural development schemes. However, a lack of innovation, quality assurance mechanism, substandard construction and market dominance by traditional methods push all the parties in house building sector to shift for more advanced construction techniques and mass production technologies to meet the rising demands for proper accommodation. Meanwhile, rapid population growth and urbanization are widening the gap between the demand and supply of new and modern houses in urban areas like Kabul, Herat, etc. This paper investigates about current condition of construction practices in house building projects, the associated challenges, and the outcomes of transition to more reasonable and sustainable building methods. It is obvious, the introduction and use of Modern Methods of Construction (MMC) can help construction industry and house builders in Afghanistan to tackle the challenges and meet the desired standards for modern houses. This paper focuses on prefabrication, a popular MMC that is becoming more common, improving in quality and available in a variety of budgets. It is revealed that this method is the way forward to improving house building practices as it has been proven to reduce construction time, minimize waste and improve environmental performance of construction developments.Keywords: modern houses, traditional construction, modern methods of construction, prefabrication, sustainable building
Procedia PDF Downloads 287948 Efficiency of Membrane Distillation to Produce Fresh Water
Authors: Sabri Mrayed, David Maccioni, Greg Leslie
Abstract:
Seawater desalination has been accepted as one of the most effective solutions to the growing problem of a diminishing clean drinking water supply. Currently, two desalination technologies dominate the market – the thermally driven multi-stage flash distillation (MSF) and the membrane based reverse osmosis (RO). However, in recent years membrane distillation (MD) has emerged as a potential alternative to the established means of desalination. This research project intended to determine the viability of MD as an alternative process to MSF and RO for seawater desalination. Specifically the project involves conducting a thermodynamic analysis of the process based on the second law of thermodynamics to determine the efficiency of the MD. Data was obtained from experiments carried out on a laboratory rig. In order to determine exergy values required for the exergy analysis, two separate models were built in Engineering Equation Solver – the ’Minimum Separation Work Model’ and the ‘Stream Exergy Model’. The efficiency of MD process was found to be 17.3 %, and the energy consumption was determined to be 4.5 kWh to produce one cubic meter of fresh water. The results indicate MD has potential as a technique for seawater desalination compared to RO and MSF. However, it was shown that this was only the case if an alternate energy source such as green or waste energy was available to provide the thermal energy input to the process. If the process was required to power itself, it was shown to be highly inefficient and in no way thermodynamically viable as a commercial desalination process.Keywords: desalination, exergy, membrane distillation, second law efficiency
Procedia PDF Downloads 363947 Observations on Cultural Alternative and Environmental Conservation: Populations "Delayed" and Excluded from Health and Public Hygiene Policies in Mexico (1890-1930)
Authors: Marcela Davalos Lopez
Abstract:
The history of the circulation of hygienic knowledge and the consolidation of public health in Latin American cities towards the end of the 19th century is well known. Among them, Mexico City was inserted in international politics, strengthened institutions, medical knowledge, applied parameters of modernity and built sanitary engineering works. Despite the power that this hygienist system achieved, its scope was relative: it cannot be generalized to all cities. From a comparative and contextual analysis, it will be shown that conclusions derived from modern urban historiography present, from our contemporary observations, fractures. Between 1890 and 1930, the small cities and areas surrounding the Mexican capital adapted in their own way the international and federal public health regulations. This will be shown for neighborhoods located around Mexico City and in a medium city, close to the Mexican capital (about 80 km), called Cuernavaca. While the inhabitants of the neighborhoods kept awaiting the evolutionary process and the forms that public hygiene policies were taking (because they were witnesses and affected in their territories), in Cuernavaca, the dictates came as an echo. While the capital was drained, large roads were opened, roundabouts were erected, residents were expelled, and drains, sewers, drinking water pipes, etc., were built; Cuernavaca was sheltered in other times and practices. What was this due to? Undoubtedly, the time and energy that it took politicians and the group of "scientists" to carry out these enormous works in the Mexican capital took them away from addressing the issue in remote villages. It was not until the 20th century that the federal hygiene policy began to be strengthened. Despite this, there are other factors that emphasize the particularities of each site. I would like to draw attention here to the different receptions that each town prepared on public hygiene. We will see that Cuernavaca responded to its own semi-rural culture, history, orography and functions, prolonging for much longer, for example, the use of its deep ravines as sewers. For their part, the neighborhoods surrounding the capital, although affected and excluded from hygienist policies, chose to move away from them and solve the deficiencies with their own resources (they resorted to the waste that was left from the dried lake of Mexico to continue their lake practices). All of this points to a paradox that shapes our contemporary concerns: on the one hand, the benefits derived from medical knowledge and its technological applications (in this work referring particularly to the urban health system) and, on the other, the alteration it caused in environmental settings. Places like Cuernavaca (classified by the nineteenth-century and hygienists of the first decades of the twentieth century as backward), as well as landscapes such as neighborhoods, affected by advances in sanitary engineering, keep in their memory buried practices that we observe today as possible ways to reestablish environmental balances: alternative uses of water; recycling of organic materials; local uses of fauna; various systems for breaking down excreta, and so on. In sum, what the nineteenth and first half of the twentieth centuries graduated as levels of backwardness or progress, turn out to be key information to rethink the routes of environmental conservation. When we return to the observations of the scientists, politicians and lawyers of that period, we find historically rejected cultural alterity. Populations such as Cuernavaca that, due to their history, orography and/or insufficiency of federal policies, kept different relationships with the environment, today give us clues to reorient basic elements of cities: alternative uses of water, waste of raw materials, organic or consumption of local products, among others. It is, therefore, a matter of unearthing the rejected that cries out to emerge to the surface.Keywords: sanitary hygiene, Mexico city, cultural alterity, environmental conservation, environmental history
Procedia PDF Downloads 164946 Microwave-Assisted Chemical Pre-Treatment of Waste Sorghum Leaves: Process Optimization and Development of an Intelligent Model for Determination of Volatile Compound Fractions
Authors: Daneal Rorke, Gueguim Kana
Abstract:
The shift towards renewable energy sources for biofuel production has received increasing attention. However, the use and pre-treatment of lignocellulosic material are inundated with the generation of fermentation inhibitors which severely impact the feasibility of bioprocesses. This study reports the profiling of all volatile compounds generated during microwave assisted chemical pre-treatment of sorghum leaves. Furthermore, the optimization of reducing sugar (RS) from microwave assisted acid pre-treatment of sorghum leaves was assessed and gave a coefficient of determination (R2) of 0.76, producing an optimal RS yield of 2.74 g FS/g substrate. The development of an intelligent model to predict volatile compound fractions gave R2 values of up to 0.93 for 21 volatile compounds. Sensitivity analysis revealed that furfural and phenol exhibited high sensitivity to acid concentration, alkali concentration and S:L ratio, while phenol showed high sensitivity to microwave duration and intensity as well. These findings illustrate the potential of using an intelligent model to predict the volatile compound fraction profile of compounds generated during pre-treatment of sorghum leaves in order to establish a more robust and efficient pre-treatment regime for biofuel production.Keywords: artificial neural networks, fermentation inhibitors, lignocellulosic pre-treatment, sorghum leaves
Procedia PDF Downloads 247945 Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool
Authors: M. S. Said, J. A. Ghani, C. H. Che Hassan, N. N. Wan, M. A. Selamat, R. Othman
Abstract:
Metal Matrix Composite (MMCs) have attracted considerable attention as a result of their ability to provide high strength, high modulus, high toughness, high impact properties, improved wear resistance and good corrosion resistance than unreinforced alloy. Aluminium Silicon (Al/Si) alloys Metal Matrix composite (MMC) has been widely used in various industrial sectors such as transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is MMC reinforced with aluminium nitride (AlN) particle and becomes a new generation material for automotive and aerospace applications. The AlN material is one of the advanced materials with light weight, high strength, high hardness and stiffness qualities which have good future prospects. However, the high degree of ceramic particles reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density, is the main problem that leads to the machining difficulties. This paper examines tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 coated carbide cutting tool. The volume of the AlN reinforced particle was 10%. The milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were the cutting speed of (230 m/min, feed rate 0.4mm tooth, DOC 0.5mm, 300 m/min, feed rate 0.8mm/tooth, DOC 0.5mm and 370 m/min, feed rate 0.8, DOC 0.4m). The Sometech SV-35 video microscope system was used for tool wear measurements respectively. The results have revealed that the tool life increases with the cutting speed (370 m/min, feed rate 0.8 mm/tooth and depth of cut 0.4mm) constituted the optimum condition for longer tool life which is 123.2 min. While at medium cutting speed, it is found that the cutting speed of 300m/min, feed rate 0.8 mm/tooth and depth of cut 0.5mm only 119.86 min for tool wear mean while the low cutting speed give 119.66 min. The high cutting speed gives the best parameter for cutting AlSi/AlN MMCs materials. The result will help manufacture to machining the AlSi/AlN MMCs materials.Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, TiB2 coated carbide tool, manufacturing engineering
Procedia PDF Downloads 425944 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling
Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar
Abstract:
The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.Keywords: heavy metal, activated clay, kinetic study, competitive adsorption, modeling
Procedia PDF Downloads 222943 The Threat of International Terrorism and Its Impact on UK Migration Policy and Practice
Authors: Baljit Soroya
Abstract:
Transnational communities are as a consequence of greater mobility of people, globalization and digitization have had a major impact on international relations and diasporas in the context of external conflicts. To a significant extent conflicts are becoming deterritorialised and informed by both internal (state politics) and external (foreign policy) players such as in Iraq and Syria leading to forced migration of unprecedented levels within the last two decades. The situation of forced migrants has, it is suggested, worsened as a consequence of the neo-liberal policies and requirements of organizations such as the European Bank. A case example of this being that of Greece, and the exacerbation of insecurity for Greek nationals and the demonization of refugees seeking sanctuary. This has been as a consequence, in part, of the neoliberal dogma of the European Bank. The article analyses the complex intersection of the real and perceived threats of international terrorism and the manner in which UK migration policy and Practice is unfolding. The policy and practice developments are explored in the context of the shift in politics in both the UK and wider Europe to the far right and the drift of main stream political parties to the right. In many cases, the mainstream political groupings, have co-opted the fears as presented by far right organization for political their own political gains, such as in the UK and France In its analysis it will be argued that, whilst international terrorism is an issue of concern, however in the context of the UK it is not of the same scale as the effects of climate change or indeed domestic violence. Given that, the question has to be asked why the threat of international terrorism is having such an impact on UK migration policy and practice and, specifically refugees. Furthermore, it is argued that this policy and practice are being formulated within a narrative that portrays migrants as the problem both in relation to terrorism and the disenfranchisement of ‘ordinary white communities’. The intersectionality of social, economic inequalities, fear of international terrorism, increase in conflicts and the political climate have contributed to a lack of trust of political establishments that have in turn sought to impress the public with their anti-immigrant rhetoric and policy agendas. The article ends by suggesting that whilst politics and political affiliations have become fractured there are nevertheless spaces for collective action, particularly in relation to issues of refugees.Keywords: international terrorism, migration policy, conflict, media, community, politics
Procedia PDF Downloads 334942 Caecotrophy Behaviour of the Rabbits (Oryctolagus cuniculus)
Authors: Awadhesh Kishore
Abstract:
One of the most unique characteristics of rabbit feeding behaviour is caecotrophy, which involves the excretion and immediate consumption of specific faeces known as soft faeces. Caecotrophy in rabbits is the instinctual behaviour of eating soft faeces; reduced caecotrophy decreases rabbit growth and lipid synthesis in the liver. Caecotroph ingestion is highest when rabbits are fed a diet high in indigestible fibre. The colon produces two types of waste: hard and soft pellets. The hard pellets are expelled, but the soft pellets are re-ingested by the rabbit directly upon being expelled from the anus by twisting itself around and sucking in those pellets as they emerge from the anus. The type of alfalfa hay in the feed of the rabbits does not affect volatile fatty acid concentration, the pattern of fermentation, or pH in the faeces. The cecal content and the soft faeces contain significant amounts of retinoids and carotenoids, while in the tissues (blood, liver, and kidney), these pigments do not occur in substantial amounts. Preventing caecotrophy reduced growth and altered lipid metabolism, depressing the development of new approaches for rabbit feeding and production. Relative abundance is depressed for genes related to metabolic pathways such as vitamin C and sugar metabolism, vitamin B2 metabolism, and bile secretion. The key microorganisms that regulate the rapid growth performance of rabbits may provide useful references for future research and the development of microecological preparations.Keywords: caecocolonic microorganisms, caecotrophy, fasting caecotrophy, rabbits, soft pellets
Procedia PDF Downloads 50941 Biosynthesized Selenium Nanoparticles to Rescue Coccidiosis-mediated Oxidative Stress, Apoptosis and Inflammation in the Jejunum Of Mice
Authors: Esam Mohammed Al-shaebi
Abstract:
One of the most crucial approaches for treating human diseases, particularly parasite infections, is nanomedicine. One of the most significant protozoan diseases that impact farm and domestic animals is coccidiosis. While, amprolium is one of the traditional anticoccidial medication, the advent of drug-resistant strains of Eimeria necessitates the development of novel treatments. The goal of the current investigation was to determine whether biosynthesized selenium nanoparticles (Bio-SeNPs) using Azadirachta indica leaves extract might treat mice with Eimeria papillata infection in the jejunal tissue. Five groups of seven mice each were used, as follows: Group 1: Non-infected-non-treated (negative control). Group 2: Non-infected treated group with Bio-SeNPs (0.5 mg/kg of body weight). Groups 3-5 were orally inoculated with 1×103 sporulated oocysts of E. papillata. Group 3: Infected-non-treated (positive control). Group 4: Infected and treated group with Bio-SeNPs (0.5 mg/kg). Group 5: Infected and treated group with the Amprolium. Groups 4 and 5 daily received oral administration (for 5 days) of Bio-SeNPs and anticoccidial medication, respectively, after infection. Bio-SeNPs caused a considerable reduction in oocyst output in mice feces (97.21%). This was also accompanied by a significant reduction in the number of developmental parasitic stages in the jejunal tissues. Glutathione reduced (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels were dramatically reduced by the Eimeria parasite, whereas, nitric oxide (NO) and malonaldehyde (MDA) levels were markedly elevated. The amount of goblet cells and MUC2 gene expression were used as apoptotic indicators, and both were considerably downregulated by infection. However, infection markedly increased the expression of inflammatory cytokines (IL-6 and TNF-α) and the apoptotic genes (Caspase-3 and BCL2). Bio-SeNPs were administrated to mice to drastically lower body weight, oxidative stress, and inflammatory and apoptotic indicators in the jejunal tissue. Our research thus showed the involvement of Bio-SeNPs in protecting mice with E. papillata infections against jejunal damage.Keywords: coccidiosis, nanoparticles, azadirachta indica, oxidative stress
Procedia PDF Downloads 92940 Real-Time Water Quality Monitoring and Control System for Fish Farms Based on IoT
Authors: Nadia Yaghoobi, Seyed Majid Esmaeilzadeh
Abstract:
Due to advancements in wireless communication, new sensor capabilities have been created. In addition to the automation industry, the Internet of Things (IoT) has been used in environmental issues and has provided the possibility of communication between different devices for data collection and exchange. Water quality depends on many factors which are essential for maintaining the minimum sustainability of water. Regarding the great dependence of fishes on the quality of the aquatic environment, water quality can directly affect their activity. Therefore, monitoring water quality is an important issue to consider, especially in the fish farming industry. The conventional method of water quality testing is to collect water samples manually and send them to a laboratory for testing and analysis. This time-consuming method is a waste of manpower and is not cost-effective. The water quality measurement system implemented in this project monitors water quality in real-time through various sensors (parameters: water temperature, water level, dissolved oxygen, humidity and ambient temperature, water turbidity, PH). The Wi-Fi module, ESP8266, transmits data collected by sensors wirelessly to ThingSpeak and the smartphone app. Also, with the help of these instantaneous data, water temperature and water level can be controlled by using a heater and a water pump, respectively. This system can have a detailed study of the pollution and condition of water resources and can provide an environment for safe fish farming.Keywords: dissolved oxygen, IoT, monitoring, ThingSpeak, water level, water quality, WiFi module
Procedia PDF Downloads 194939 Role of Geohydrology in Groundwater Management-Case Study of Pachod Village, Maharashtra, India
Authors: Ashok Tejankar, Rohan K. Pathrikar
Abstract:
Maharashtra is covered by heterogeneous flows of Deccan basaltic terrains of upper cretaceous to lower Eocene age. It consist mainly different types of basalt flow, having heterogeneous Geohydrological characters. The study area Aurangabad dist. lies in the central part of Maharashtra. The study area is typically covered by Deccan traps formation mainly basalt type of igneous volcanic rock. The area is located in the survey of India toposheet No. 47M and laying between 19° to 20° north latitudes and 74° to 76° east longitudes. Groundwater is the primary source for fresh water in the study area. There has been a growing demand for fresh water in domestic & agriculture sectors. Due to over exploitation and rainfall failure has been created an irrecoverable stress on groundwater in study area. In an effort to maintain the water table condition in balance, artificial recharge is being implemented. The selection of site for artificial recharge is a very important task in recharge basalt. The present study aims at sitting artificial recharge structure at village Pachod in basaltic terrain of the Godavari-Purna river basin in Aurangabad district of Maharashtra, India. where the average annual rainfall is 650mm. In this investigation, integrated remote sensing and GIS techniques were used and various parameters like lithology, structure, etc. aspect of drainage basins, landforms and other parameters were extracted from visual interpretation of IRS P6 Satellite data and Survey of India (SIO) topographical sheets, aided by field checks by carrying well inventory survey. The depth of weathered material, water table conditions, and rainfall data were been considered. All the thematic information layers were digitized and analyzed in Arc-GIS environment and the composite maps produced show suitable site, depth of bed rock flows for successful artificial recharge in village Pachod to increase groundwater potential of low laying area.Keywords: hard rock, artificial recharge, remote sensing, GIS
Procedia PDF Downloads 292938 Thermochemical and Biological Pretreatment Study for Efficient Sugar Release from Lignocellulosic Biomass (Deodar and Sal Wood Residues)
Authors: Neelu Raina, Parvez Singh Slathia, Deepali Bhagat, Preeti Sharma
Abstract:
Pretreatment of lignocellulosic biomass for generating suitable substrates (starch/ sugars) for conversion to bioethanol is the most crucial step. In present study waste from furniture industry i.e sawdust from softwood Cedrus deodara (deodar) and hardwood Shorea robusta (sal) was used as lignocellulosic biomass. Thermochemical pretreatment was given by autoclaving at 121°C temperature and 15 psi pressure. Acids (H2SO4,HCl,HNO3,H3PO4), alkali (NaOH,NH4OH,KOH,Ca(OH)2) and organic acids (C6H8O7,C2H2O4,C4H4O4) were used at 0.1%, 0.5% and 1% concentration without giving any residence time. 1% HCl gave maximum sugar yield of 3.6587g/L in deodar and 6.1539 g/L in sal. For biological pretreatment a fungi isolated from decaying wood was used , sawdust from deodar tree species was used as a lignocellulosic substrate and before thermochemical pretreatment sawdust was treated with fungal culture at 37°C under submerged conditions with a residence time of one week followed by a thermochemical pretreatment methodology. Higher sugar yields were obtained with sal tree species followed by deodar tree species, i.e., 6.0334g/L in deodar and 8.3605g/L in sal was obtained by a combined biological and thermochemical pretreatment. Use of acids along with biological pretreatment is a favourable factor for breaking the lignin seal and thus increasing the sugar yield. Sugar estimation was done using Dinitrosalicyclic assay method. Result validation is being done by statistical analysis.Keywords: lignocellulosic biomass, bioethanol, pretreatment, sawdust
Procedia PDF Downloads 413