Search results for: drying models
4100 Impact of Reclamation on the Water Exchange in Bohai Bay
Authors: Luyao Liu, Dekui Yuan, Xu Li
Abstract:
As one of the most important bays of China, the water exchange capacity of Bohai Bay can influence the economic development and urbanization of surrounding cities. However, the rapid reclamation has influenced the weak water exchange capacity of this semi-enclosed bay in recent years. This paper sets two hydrodynamic models of Bohai Bay with two shorelines before and after reclamation. The mean value and distribution of Turn-over Time, the distribution of residual current, and the feature of the tracer path are compared. After comparison, it is found that Bohai Bay keeps these characteristics; the spending time of water exchange in the northern is longer than southern, and inshore is longer than offshore. However, the mean water exchange time becomes longer after reclamation. In addition, the material spreading is blocked because of the inwardly extending shorelines, and the direction changed from along the shoreline to towards the center after reclamation.Keywords: Bohai Bay, water exchange, reclamation, turn-over time
Procedia PDF Downloads 1474099 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines
Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang
Abstract:
The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.Keywords: biomass, geographic information system (GIS), remote sensing, renewable energy
Procedia PDF Downloads 4814098 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques
Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas
Abstract:
This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.Keywords: hit song science, product life cycle, machine learning, radio
Procedia PDF Downloads 1564097 Islamic Extremist Groups' Usage of Populism in Social Media to Radicalize Muslim Migrants in Europe
Authors: Muhammad Irfan
Abstract:
The rise of radicalization within Islam has spawned a new era of global terror. The battlefield Successes of ISIS and the Taliban are fuelled by an ideological war waged, largely and successfully, in the media arena. This research will examine how Islamic extremist groups are using media modalities and populist narratives to influence migrant Muslim populations in Europe towards extremism. In 2014, ISIS shocked the world in exporting horrifically graphic forms of violence on social media. Their Muslim support base was largely disgusted and reviled. In response, they reconfigured their narrative by introducing populist 'hooks', astutely portraying the Muslim populous as oppressed and exploited by unjust, corrupt autocratic regimes and Western power structures. Within this crucible of real and perceived oppression, hundreds of thousands of the most desperate, vulnerable and abused migrants left their homelands, risking their lives in the hope of finding peace, justice, and prosperity in Europe. Instead, many encountered social stigmatization, detention and/or discrimination for being illegal migrants, for lacking resources and for simply being Muslim. This research will examine how Islamic extremist groups are exploiting the disenfranchisement of these migrant populations and using populist messaging on social media to influence them towards violent extremism. ISIS, in particular, formulates specific encoded messages for newly-arriving Muslims in Europe, preying upon their vulnerability. Violence is posited, as a populist response, to the tyranny of European oppression. This research will analyze the factors and indicators which propel Muslim migrants along the spectrum from resilience to violence extremism. Expected outcomes are identification of factors which influence vulnerability towards violent extremism; an early-warning detection framework; predictive analysis models; and de-radicalization frameworks. This research will provide valuable tools (practical and policy level) for European governments, security stakeholders, communities, policy-makers, and educators; it is anticipated to contribute to a de-escalation of Islamic extremism globally.Keywords: populism, radicalization, de-radicalization, social media, ISIS, Taliban, shariah, jihad, Islam, Europe, political communication, terrorism, migrants, refugees, extremism, global terror, predictive analysis, early warning detection, models, strategic communication, populist narratives, Islamic extremism
Procedia PDF Downloads 1194096 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1214095 A Framework for Incorporating Non-Linear Degradation of Conductive Adhesive in Environmental Testing
Authors: Kedar Hardikar, Joe Varghese
Abstract:
Conductive adhesives have found wide-ranging applications in electronics industry ranging from fixing a defective conductor on printed circuit board (PCB) attaching an electronic component in an assembly to protecting electronics components by the formation of “Faraday Cage.” The reliability requirements for the conductive adhesive vary widely depending on the application and expected product lifetime. While the conductive adhesive is required to maintain the structural integrity, the electrical performance of the associated sub-assembly can be affected by the degradation of conductive adhesive. The degradation of the adhesive is dependent upon the highly varied use case. The conventional approach to assess the reliability of the sub-assembly involves subjecting it to the standard environmental test conditions such as high-temperature high humidity, thermal cycling, high-temperature exposure to name a few. In order to enable projection of test data and observed failures to predict field performance, systematic development of an acceleration factor between the test conditions and field conditions is crucial. Common acceleration factor models such as Arrhenius model are based on rate kinetics and typically rely on an assumption of linear degradation in time for a given condition and test duration. The application of interest in this work involves conductive adhesive used in an electronic circuit of a capacitive sensor. The degradation of conductive adhesive in high temperature and humidity environment is quantified by the capacitance values. Under such conditions, the use of established models such as Hallberg-Peck model or Eyring Model to predict time to failure in the field typically relies on linear degradation rate. In this particular case, it is seen that the degradation is nonlinear in time and exhibits a square root t dependence. It is also shown that for the mechanism of interest, the presence of moisture is essential, and the dominant mechanism driving the degradation is the diffusion of moisture. In this work, a framework is developed to incorporate nonlinear degradation of the conductive adhesive for the development of an acceleration factor. This method can be extended to applications where nonlinearity in degradation rate can be adequately characterized in tests. It is shown that depending on the expected product lifetime, the use of conventional linear degradation approach can overestimate or underestimate the field performance. This work provides guidelines for suitability of linear degradation approximation for such varied applicationsKeywords: conductive adhesives, nonlinear degradation, physics of failure, acceleration factor model.
Procedia PDF Downloads 1354094 Application of the Discrete Rationalized Haar Transform to Distributed Parameter System
Authors: Joon-Hoon Park
Abstract:
In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results.Keywords: distributed parameter system, rationalized Haar transform, operational matrix, system identification
Procedia PDF Downloads 5094093 Simulating Drilling Using a CAD System
Authors: Panagiotis Kyratsis, Konstantinos Kakoulis
Abstract:
Nowadays, the rapid development of CAD systems’ programming environments results in the creation of multiple downstream applications, which are developed and becoming increasingly available. CAD based manufacturing simulations is gradually following the same trend. Drilling is the most popular hole-making process used in a variety of industries. A specially built piece of software that deals with the drilling kinematics is presented. The cutting forces are calculated based on the tool geometry, the cutting conditions and the tool/work piece materials. The results are verified by experimental work. Finally, the response surface methodology (RSM) is applied and mathematical models of the total thrust force and the thrust force developed because of the main cutting edges are proposed.Keywords: CAD, application programming interface, response surface methodology, drilling, RSM
Procedia PDF Downloads 4704092 Characterization of Bio-Inspired Thermoelastoplastic Composites Filled with Modified Cellulose Fibers
Authors: S. Cichosz, A. Masek
Abstract:
A new cellulose hybrid modification approach, which is undoubtedly a scientific novelty, is introduced. The study reports the properties of cellulose (Arbocel UFC100 – Ultra Fine Cellulose) and characterizes cellulose filled polymer composites based on an ethylene-norbornene copolymer (TOPAS Elastomer E-140). Moreover, the approach of physicochemical two-stage cellulose treatment is introduced: solvent exchange (to ethanol or hexane) and further chemical modification with maleic anhydride (MA). Furthermore, the impact of the drying process on cellulose properties was investigated. Suitable measurements were carried out to characterize cellulose fibers: spectroscopic investigation (Fourier Transform Infrared Spektrofotometer-FTIR, Near InfraRed spectroscopy-NIR), thermal analysis (Differential scanning calorimetry, Thermal gravimetric analysis ) and Karl Fischer titration. It should be emphasized that for all UFC100 treatments carried out, a decrease in moisture content was evidenced. FT-IR reveals a drop in absorption band intensity at 3334 cm-1, the peak is associated with both –OH moieties and water. Similar results were obtained with Karl Fischer titration. Based on the results obtained, it may be claimed that the employment of ethanol contributes greatly to the lowering of cellulose water absorption ability (decrease of moisture content to approximately 1.65%). Additionally, regarding polymer composite properties, crucial data has been obtained from the mechanical and thermal analysis. The highest material performance was noted in the case of the composite sample that contained cellulose modified with MA after a solvent exchange with ethanol. This specimen exhibited sufficient tensile strength, which is almost the same as that of the neat polymer matrix – in the region of 40 MPa. Moreover, both the Payne effect and filler efficiency factor, calculated based on dynamic mechanical analysis (DMA), reveal the possibility of the filler having a reinforcing nature. What is also interesting is that, according to the Payne effect results, fibers dried before the further chemical modification are assumed to allow more regular filler structure development in the polymer matrix (Payne effect maximum at 1.60 MPa), compared with those not dried (Payne effect in the range 0.84-1.26 MPa). Furthermore, taking into consideration the data gathered from DSC and TGA, higher thermal stability is obtained in case of the materials filled with fibers that were dried before the carried out treatments (degradation activation energy in the region of 195 kJ/mol) in comparison with the polymer composite samples filled with unmodified cellulose (degradation activation energy of approximately 180 kJ/mol). To author’s best knowledge this work results in the introduction of a novel, new filler hybrid treatment approach. Moreover, valuable data regarding the properties of composites filled with cellulose fibers of various moisture contents have been provided. It should be emphasized that plant fiber-based polymer bio-materials described in this research might contribute significantly to polymer waste minimization because they are more readily degraded.Keywords: cellulose fibers, solvent exchange, moisture content, ethylene-norbornene copolymer
Procedia PDF Downloads 1154091 The Use of Social Networking Sites in eLearning
Authors: Clifford De Raffaele, Luana Bugeja, Serengul Smith
Abstract:
The adaptation of social networking sites within higher education has garnered significant interest in the recent years with numerous researches considering it as a possible shift from the traditional classroom based learning paradigm. Notwithstanding this increase in research and conducted studies however, the adaption of SNS based modules have failed to proliferate within Universities. This paper, commences its contribution by analyzing the various models and theories proposed in literature and amalgamates together various effective aspects for the inclusion of social technology within e-Learning. A three phased framework is further proposed which details the necessary considerations for the successful adaptation of SNS in enhancing the students learning experience. This proposal outlines the theoretical foundations which will be analyzed in practical implementation across international university campuses.Keywords: eLearning, higher education, social network sites, student learning
Procedia PDF Downloads 3404090 Experimental Squeeze Flow of Bitumen: Rheological Properties
Abstract:
The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease.Keywords: bitumen, biviscous fluid, squeeze flow, viscosity, yield stress
Procedia PDF Downloads 1404089 Predictive Modelling of Curcuminoid Bioaccessibility as a Function of Food Formulation and Associated Properties
Authors: Kevin De Castro Cogle, Mirian Kubo, Maria Anastasiadi, Fady Mohareb, Claire Rossi
Abstract:
Background: The bioaccessibility of bioactive compounds is a critical determinant of the nutritional quality of various food products. Despite its importance, there is a limited number of comprehensive studies aimed at assessing how the composition of a food matrix influences the bioaccessibility of a compound of interest. This knowledge gap has prompted a growing need to investigate the intricate relationship between food matrix formulations and the bioaccessibility of bioactive compounds. One such class of bioactive compounds that has attracted considerable attention is curcuminoids. These naturally occurring phytochemicals, extracted from the roots of Curcuma longa, have gained popularity owing to their purported health benefits and also well known for their poor bioaccessibility Project aim: The primary objective of this research project is to systematically assess the influence of matrix composition on the bioaccessibility of curcuminoids. Additionally, this study aimed to develop a series of predictive models for bioaccessibility, providing valuable insights for optimising the formula for functional foods and provide more descriptive nutritional information to potential consumers. Methods: Food formulations enriched with curcuminoids were subjected to in vitro digestion simulation, and their bioaccessibility was characterized with chromatographic and spectrophotometric techniques. The resulting data served as the foundation for the development of predictive models capable of estimating bioaccessibility based on specific physicochemical properties of the food matrices. Results: One striking finding of this study was the strong correlation observed between the concentration of macronutrients within the food formulations and the bioaccessibility of curcuminoids. In fact, macronutrient content emerged as a very informative explanatory variable of bioaccessibility and was used, alongside other variables, as predictors in a Bayesian hierarchical model that predicted curcuminoid bioaccessibility accurately (optimisation performance of 0.97 R2) for the majority of cross-validated test formulations (LOOCV of 0.92 R2). These preliminary results open the door to further exploration, enabling researchers to investigate a broader spectrum of food matrix types and additional properties that may influence bioaccessibility. Conclusions: This research sheds light on the intricate interplay between food matrix composition and the bioaccessibility of curcuminoids. This study lays a foundation for future investigations, offering a promising avenue for advancing our understanding of bioactive compound bioaccessibility and its implications for the food industry and informed consumer choices.Keywords: bioactive bioaccessibility, food formulation, food matrix, machine learning, probabilistic modelling
Procedia PDF Downloads 684088 Fragility Assessment for Torsionally Asymmetric Buildings in Plan
Authors: S. Feli, S. Tavousi Tafreshi, A. Ghasemi
Abstract:
The present paper aims at evaluating the response of three-dimensional buildings with in-plan stiffness irregularities that have been subjected to two-way excitation ground motion records simultaneously. This study is broadly-based fragility assessment with greater emphasis on structural response at in-plan flexible and stiff sides. To this end, three type of three-dimensional 5-story steel building structures with stiffness eccentricities, were subjected to extensive nonlinear incremental dynamic analyses (IDA) utilizing Ibarra-Krawinkler deterioration models. Fragility assessment was implemented for different configurations of braces to investigate the losses in buildings with center of resisting (CR) eccentricities.Keywords: Ibarra-Krawinkler, fragility assessment, flexible and stiff side, center of resisting
Procedia PDF Downloads 2054087 Real Activities Manipulation vs. Accrual Earnings Management: The Effect of Political Risk
Authors: Heba Abdelmotaal, Magdy Abdel-Kader
Abstract:
Purpose: This study explores whether a firm’s effective political risk management is preventing real and accrual earnings management . Design/methodology/approach: Based on a sample of 130 firms operating in Egypt during the period 2008-2013, two hypotheses are tested using the panel data regression models. Findings: The empirical findings indicate a significant relation between real and accrual earnings management and political risk. Originality/value: This paper provides a statistically evidence on the effects of the political risk management failure on the mangers’ engagement in the real and accrual earnings management practices, and its impact on the firm’s performance.Keywords: political risk, risk management failure, real activities manipulation, accrual earnings management
Procedia PDF Downloads 4394086 A Spin and Valley Modulating Device in Grapheme heterostructure: Controlling Valley and Spin Current
Authors: Adel Belayadi
Abstract:
The investigation of two-dimensional (2D) heterostructures, whether in the presence or the absence of magnetic substrates that sustain several induced spin-orbit couplings, has shown a promising/essential application for advancing the emerging fields of spintronics and valleytronics. In this contribution, we study spin/valley transport in graphene-like substrates in the presence of one or several locally induced spin-orbit coupling (SOC) terms resulting from graphene-based heterostructures. The models we proposed are based on the tight-binding approach, and our findings imply an alternative approach for conducting valley-polarized currents and suggest a corresponding mechanism for valley-dependent electron optics and optoelectronic devices.Keywords: graphene-heterostructures, tight binding pproch, Spintronics, Valleytronics
Procedia PDF Downloads 254085 Studies on the Applicability of Artificial Neural Network (ANN) in Prediction of Thermodynamic Behavior of Sodium Chloride Aqueous System Containing a Non-Electrolytes
Authors: Dariush Jafari, S. Mostafa Nowee
Abstract:
In this study a ternary system containing sodium chloride as solute, water as primary solvent and ethanol as the antisolvent was considered to investigate the application of artificial neural network (ANN) in prediction of sodium solubility in the mixture of water as the solvent and ethanol as the antisolvent. The system was previously studied using by Extended UNIQUAC model by the authors of this study. The comparison between the results of the two models shows an excellent agreement between them (R2=0.99), and also approves the capability of ANN to predict the thermodynamic behavior of ternary electrolyte systems which are difficult to model.Keywords: thermodynamic modeling, ANN, solubility, ternary electrolyte system
Procedia PDF Downloads 3854084 Lee-Carter Mortality Forecasting Method with Dynamic Normal Inverse Gaussian Mortality Index
Authors: Funda Kul, İsmail Gür
Abstract:
Pension scheme providers have to price mortality risk by accurate mortality forecasting method. There are many mortality-forecasting methods constructed and used in literature. The Lee-Carter model is the first model to consider stochastic improvement trends in life expectancy. It is still precisely used. Mortality forecasting is done by mortality index in the Lee-Carter model. It is assumed that mortality index fits ARIMA time series model. In this paper, we propose and use dynamic normal inverse gaussian distribution to modeling mortality indes in the Lee-Carter model. Using population mortality data for Italy, France, and Turkey, the model is forecasting capability is investigated, and a comparative analysis with other models is ensured by some well-known benchmarking criterions.Keywords: mortality, forecasting, lee-carter model, normal inverse gaussian distribution
Procedia PDF Downloads 3614083 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network
Authors: Vinai K. Singh
Abstract:
In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans
Procedia PDF Downloads 1364082 Artificial Intelligence Based Comparative Analysis for Supplier Selection in Multi-Echelon Automotive Supply Chains via GEP and ANN Models
Authors: Seyed Esmail Seyedi Bariran, Laysheng Ewe, Amy Ling
Abstract:
Since supplier selection appears as a vital decision, selecting supplier based on the best and most accurate ways has a lot of importance for enterprises. In this study, a new Artificial Intelligence approach is exerted to remove weaknesses of supplier selection. The paper has three parts. First part is choosing the appropriate criteria for assessing the suppliers’ performance. Next one is collecting the data set based on experts. Afterwards, the data set is divided into two parts, the training data set and the testing data set. By the training data set the best structure of GEP and ANN are selected and to evaluate the power of the mentioned methods the testing data set is used. The result obtained shows that the accuracy of GEP is more than ANN. Moreover, unlike ANN, a mathematical equation is presented by GEP for the supplier selection.Keywords: supplier selection, automotive supply chains, ANN, GEP
Procedia PDF Downloads 6314081 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors
Authors: Anwar Jarndal
Abstract:
In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization
Procedia PDF Downloads 3824080 A Blind Three-Dimensional Meshes Watermarking Using the Interquartile Range
Authors: Emad E. Abdallah, Alaa E. Abdallah, Bajes Y. Alskarnah
Abstract:
We introduce a robust three-dimensional watermarking algorithm for copyright protection and indexing. The basic idea behind our technique is to measure the interquartile range or the spread of the 3D model vertices. The algorithm starts by converting all the vertices to spherical coordinate followed by partitioning them into small groups. The proposed algorithm is slightly altering the interquartile range distribution of the small groups based on predefined watermark. The experimental results on several 3D meshes prove perceptual invisibility and the robustness of the proposed technique against the most common attacks including compression, noise, smoothing, scaling, rotation as well as combinations of these attacks.Keywords: watermarking, three-dimensional models, perceptual invisibility, interquartile range, 3D attacks
Procedia PDF Downloads 4744079 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 2314078 Enhancing Large Language Models' Data Analysis Capability with Planning-and-Execution and Code Generation Agents: A Use Case for Southeast Asia Real Estate Market Analytics
Authors: Kien Vu, Jien Min Soh, Mohamed Jahangir Abubacker, Piyawut Pattamanon, Soojin Lee, Suvro Banerjee
Abstract:
Recent advances in Generative Artificial Intelligence (GenAI), in particular Large Language Models (LLMs) have shown promise to disrupt multiple industries at scale. However, LLMs also present unique challenges, notably, these so-called "hallucination" which is the generation of outputs that are not grounded in the input data that hinders its adoption into production. Common practice to mitigate hallucination problem is utilizing Retrieval Agmented Generation (RAG) system to ground LLMs'response to ground truth. RAG converts the grounding documents into embeddings, retrieve the relevant parts with vector similarity between user's query and documents, then generates a response that is not only based on its pre-trained knowledge but also on the specific information from the retrieved documents. However, the RAG system is not suitable for tabular data and subsequent data analysis tasks due to multiple reasons such as information loss, data format, and retrieval mechanism. In this study, we have explored a novel methodology that combines planning-and-execution and code generation agents to enhance LLMs' data analysis capabilities. The approach enables LLMs to autonomously dissect a complex analytical task into simpler sub-tasks and requirements, then convert them into executable segments of code. In the final step, it generates the complete response from output of the executed code. When deployed beta version on DataSense, the property insight tool of PropertyGuru, the approach yielded promising results, as it was able to provide market insights and data visualization needs with high accuracy and extensive coverage by abstracting the complexities for real-estate agents and developers from non-programming background. In essence, the methodology not only refines the analytical process but also serves as a strategic tool for real estate professionals, aiding in market understanding and enhancement without the need for programming skills. The implication extends beyond immediate analytics, paving the way for a new era in the real estate industry characterized by efficiency and advanced data utilization.Keywords: large language model, reasoning, planning and execution, code generation, natural language processing, prompt engineering, data analysis, real estate, data sense, PropertyGuru
Procedia PDF Downloads 874077 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example
Authors: Yue Huang, Yiheng Feng
Abstract:
Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing
Procedia PDF Downloads 924076 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana
Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor
Abstract:
Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.Keywords: coregionalization, heavy metals, multivariate geostatistical analysis, soil contamination, spatial distribution
Procedia PDF Downloads 3004075 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine
Procedia PDF Downloads 94074 Modelling of Pervaporation Separation of Butanol from Aqueous Solutions Using Polydimethylsiloxane Mixed Matrix Membranes
Authors: Arian Ebneyamini, Hoda Azimi, Jules Thibaults, F. Handan Tezel
Abstract:
In this study, a modification of Hennepe model for pervaporation separation of butanol from aqueous solutions using Polydimethylsiloxane (PDMS) mixed matrix membranes has been introduced and validated by experimental data. The model was compared to the original Hennepe model and few other models which are applicable for membrane gas separation processes such as Maxwell, Lewis Nielson and Pal. Theoretical modifications for non-ideal interface morphology have been offered to predict the permeability in case of interface void, interface rigidification and pore-blockage. The model was in a good agreement with experimental data.Keywords: butanol, PDMS, modeling, pervaporation, mixed matrix membranes
Procedia PDF Downloads 2214073 On Disaggregation and Consolidation of Imperfect Quality Shipments in an Extended EPQ Model
Authors: Hung-Chi Chang
Abstract:
For an extended EPQ model with random yield, the existent study revealed that both the disaggregating and consolidating shipment policies for the imperfect quality items are independent of holding cost, and recommended a model with economic benefit by comparing the least total cost for each of the three models investigated. To better capture the real situation, we generalize the existent study to include different holding costs for perfect and imperfect quality items. Through analysis, we show that the above shipment policies are dependent on holding costs. Furthermore, we derive a simple decision rule solely based on the thresholds of problem parameters to select a superior model. The results are illustrated analytically and numerically.Keywords: consolidating shipments, disaggregating shipments, EPQ, imperfect quality, inventory
Procedia PDF Downloads 3764072 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application
Authors: R. P. Naik, A. K. Rakshit
Abstract:
In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing
Procedia PDF Downloads 1114071 3D Model Completion Based on Similarity Search with Slim-Tree
Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo
Abstract:
With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search
Procedia PDF Downloads 122