Search results for: lighting energy consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10498

Search results for: lighting energy consumption

7378 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors

Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria

Abstract:

The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.

Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels

Procedia PDF Downloads 167
7377 Assessment of Agricultural Intervention on Ecosystem Services in the Central-South Zone of Chile

Authors: Steven Hidalgo, Patricio Neumann

Abstract:

The growth of societies has increased the consumption of raw materials and food obtained from nature. This has influenced the services offered by ecosystems to humans, mainly supply and regulation services. One of the indicators used to evaluate these services is Net Primary Productivity (NPP), which is understood as the energy stored in the form of biomass by primary organisms through the process of photosynthesis and respiration. The variation of NPP by defined area produces changes in the properties of terrestrial and aquatic ecosystems, which alter factors such as biodiversity, nutrient cycling, carbon storage and water quality. The analysis of NPP to evaluate variations in ecosystem services includes harvested NPP (understood as provisioning services), which is the raw material from agricultural systems used by humans as a source of energy and food, and the remaining NPP (expressed as a regulating service) or the amount of biomass that remains in ecosystems after the harvesting process, which is mainly related to factors such as biodiversity. Given that agriculture is a fundamental pillar of Chile's integral development, the purpose of this study is to evaluate provisioning and regulating ecosystem services in the agricultural sector, specifically in cereal production, in the communes of the central-southern regions of Chile through a conceptual framework based on the quantification of the fraction of Human Appropriation of Net Primary Productivity (HANPP) and the fraction remaining in the ecosystems (NPP remaining). A total of 161 communes were analyzed in the regions of O'Higgins, Maule, Ñuble, Bio-Bío, La Araucanía and Los Lagos, which are characterized by having the largest areas planted with cereals. It was observed that the region of La Araucanía produces the greatest amount of dry matter, understood as provisioning service, where Victoria is the commune with the highest cereal production in the country. In addition, the maximum value of HANPP was in the O'Higgins region, highlighting the communes of Coltauco, Quinta de Tilcoco, Placilla and Rengo. On the other hand, the communes of Futrono, Pinto, Lago Ranco and Pemuco, whose cereal production was important during the study, had the highest values of remaining NPP as a regulating service. Finally, an inverse correlation was observed between the provisioning and regulating ecosystem services, i.e., the higher the cereal or dry matter production in a defined area, the lower the net primary production remaining in the ecosystems. Based on this study, future research will focus on the evaluation of ecosystem services associated with other crops, such as forestry plantations, whose activity is an important part of the country's productive sector.

Keywords: provisioning services, regulating services, net primary productivity, agriculture

Procedia PDF Downloads 97
7376 Wind Generator Control in Isolated Site

Authors: Glaoui Hachemi

Abstract:

Wind has been proven as a cost effective and reliable energy source. Technological advancements over the last years have placed wind energy in a firm position to compete with conventional power generation technologies. Algeria has a vast uninhabited land area where the south (desert) represents the greatest part with considerable wind regime. In this paper, an analysis of wind energy utilization as a viable energy substitute in six selected sites widely distributed all over the south of Algeria is presented. In this presentation, wind speed frequency distributions data obtained from the Algerian Meteorological Office are used to calculate the average wind speed and the available wind power. The annual energy produced by the Fuhrlander FL 30 wind machine is obtained using two methods. The analysis shows that in the southern Algeria, at 10 m height, the available wind power was found to vary between 160 and 280 W/m2, except for Tamanrasset. The highest potential wind power was found at Adrar, with 88 % of the time the wind speed is above 3 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 33 and 61 MWh, except for Tamanrasset, with only 17 MWh. Since the wind turbines are usually installed at a height greater than 10 m, an increased output of wind energy can be expected. However, the wind resource appears to be suitable for power production on the south and it could provide a viable substitute to diesel oil for irrigation pumps and electricity generation. In this paper, a model of the wind turbine (WT) with permanent magnet generator (PMSG) and its associated controllers is presented. The increase of wind power penetration in power systems has meant that conventional power plants are gradually being replaced by wind farms. In fact, today wind farms are required to actively participate in power system operation in the same way as conventional power plants. In fact, power system operators have revised the grid connection requirements for wind turbines and wind farms, and now demand that these installations be able to carry out more or less the same control tasks as conventional power plants. For dynamic power system simulations, the PMSG wind turbine model includes an aerodynamic rotor model, a lumped mass representation of the drive train system and generator model. In this paper, we propose a model with an implementation in MATLAB / Simulink, each of the system components off-grid small wind turbines.

Keywords: windgenerator systems, permanent magnet synchronous generator (PMSG), wind turbine (WT) modeling, MATLAB simulink environment

Procedia PDF Downloads 338
7375 A Systematic Review of Business Strategies Which Can Make District Heating a Platform for Sustainable Development of Other Sectors

Authors: Louise Ödlund, Danica Djuric Ilic

Abstract:

Sustainable development includes many challenges related to energy use, such as (1) developing flexibility on the demand side of the electricity systems due to an increased share of intermittent electricity sources (e.g., wind and solar power), (2) overcoming economic challenges related to an increased share of renewable energy in the transport sector, (3) increasing efficiency of the biomass use, (4) increasing utilization of industrial excess heat (e.g., approximately two thirds of the energy currently used in EU is lost in the form of excess and waste heat). The European Commission has been recognized DH technology as of essential importance to reach sustainability. Flexibility in the fuel mix, and possibilities of industrial waste heat utilization, combined heat, and power (CHP) production and energy recovery through waste incineration, are only some of the benefits which characterize DH technology. The aim of this study is to provide an overview of the possible business strategies which would enable DH to have an important role in future sustainable energy systems. The methodology used in this study is a systematic literature review. The study includes a systematic approach where DH is seen as a part of an integrated system that consists of transport , industrial-, and electricity sectors as well. The DH technology can play a decisive role in overcoming the sustainability challenges related to our energy use. The introduction of biofuels in the transport sector can be facilitated by integrating biofuel and DH production in local DH systems. This would enable the development of local biofuel supply chains and reduce biofuel production costs. In this way, DH can also promote the development of biofuel production technologies that are not yet developed. Converting energy for running the industrial processes from fossil fuels and electricity to DH (above all biomass and waste-based DH) and delivering excess heat from industrial processes to the local DH systems would make the industry less dependent on fossil fuels and fossil fuel-based electricity, as well as the increasing energy efficiency of the industrial sector and reduce production costs. The electricity sector would also benefit from these measures. Reducing the electricity use in the industry sector while at the same time increasing the CHP production in the local DH systems would (1) replace fossil-based electricity production with electricity in biomass- or waste-fueled CHP plants and reduce the capacity requirements from the national electricity grid (i.e., it would reduce the pressure on the bottlenecks in the grid). Furthermore, by operating their central controlled heat pumps and CHP plants depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid.

Keywords: energy system, district heating, sustainable business strategies, sustainable development

Procedia PDF Downloads 169
7374 Interaction between NiCl2 and Selenium on Energy Profiles in Wistar albino Preimplanted Rats

Authors: O. Adjroud

Abstract:

The present study was conducted to investigate the interaction between selenium (Se) and chloride nickel (NiCl2) on energy profiles in Wistar albino preimplanted rats. NiCl2 was given on day 3 of pregnancy either in distilled drinking water at a dose of 20 mg/L/day for 16 consecutive days or as a single subcutaneous (s.c.) dose of 25, 50, or 100 mg/kg. Se was given as a s.c. injection (0.3 mg/kg) together with the higher dose (100 mg/kg) of NiCl2. Changes in energy profiles were evaluated in treated and control groups on days 5 and 20 of gestation. NiCl2 s.c. induced a significant increase in plasma glucose on day 20 of pregnancy. NiCl2 s.c. induced on day 5 and 20 of gestation a significant decrease in plasma triglycerides, with the higher dose. This decrease was maintained at day 20 of gestation with doses of 50 mg /kg. In addition, NiCl2 s.c. caused on day 5 of gestation a significant decrease in plasma total cholesterol with the low and medium doses. The pretreatment with Se reversed the effects of NiCl2 on plasma glucose, total cholesterol and triglycerides levels. NiCl2 administered in the drinking water augmented significantly the plasma triglycerides and total cholesterol levels and slighty the plasma glucose on day 20 of gestation, while on day 5 of gestation NiCl2 s.c. Induced a significant decrease in cholesterol. Three doses of NiCl2 (sc) induced severe alterations in liver and architecture which are markedly improved by Selenium. These results suggested that selenium has protective effects on energy profiles against the toxicity induced by NiCl2 administered subcutaneously in preimplanted rats.

Keywords: hepatotoxicity, nickel chloride, preimplanted rat, biochemical parameters

Procedia PDF Downloads 408
7373 Changes in Consumption Pattern of Western Consumers and Its Effect to the Ottoman Oriental Carpet-Making Industry

Authors: Emine Zeytinli

Abstract:

Ottoman carpets were depicted in Renaissance painting while they were exported commercially. The carpets were highly demanded and used by the middle and upper classes of Western European countries. The motifs, designs, patterns, and ornamentation of these carpets were decorative objects of luxury for Western European residences as well as paintings. Oriental carpets found their way into European market already from the medieval times to the present century. They were considered as luxury items first, however, demanded by middle classes in Europe and North America within the nineteenth century. This century brought unprecedented changes in production and consumption in the world. Expanding industries created quick urbanization, changed the city life and new types of goods dominated the entire century. Increases in income allowed Europeans to spend on luxury items, consumers taste changed in number of ways including furniture and decoration. Use of a carpet in the orient lifestyle often considered as an art object with Western aesthetic sensibility. A carpet with an oriental character, an essential part of home decoration, was highly appreciated for floor, table covering and wall hanging. Turkish carpets with distinctive classical style, patterns, and colours were changed for the tastes of European consumers. This paper attempts to analyse how the taste and preferences of European and American consumers increased their buying of oriental objects namely carpets. The production of local hand woven carpet industry developed, carpet factories were set up and special weaving schools were opened in some major waving centres, and carpet weaving became one of the main manufacturing and export commodity of the empire. All of these attempts increased the reputation and market share in international market. The industry flourished, commercially operated carpet looms, sales revenues and export increased unprecedentedly. British and Ottoman archival documents, parliamentary papers and travel notes were used to analysed above mention effect on how the foreign demand changed designs of carpets and the business itself, how the production in households moved to the commercial premises and a flourished the industry.

Keywords: consumption patterns, carpet weaving, ottoman oriental carpets, commercialisation

Procedia PDF Downloads 138
7372 Experimental Study of Solar Drying of Verbena in Three Types of Solar Dryers

Authors: Llham Lhoume, Rachid Tadili, Nora Arbaoui

Abstract:

One of the most crucial ways to combat food insecurity is to minimize crop losses, food drying is one of the most organic, effective, low-cost and energy-efficient food preservation methods. In this regard, we undertake in this study an experimental evaluation and analysis of the thermal performance of different natural convection drying systems: a solar greenhouse dryer, an indirect solar dryer with a single compartment and a solar dryer with two compartments. These systems have been implemented at the Solar Energy and Environment Laboratory of Mohammed V University (Morocco). The objective of this work is to study the feasibility of converting a solar greenhouse into a solar dryer for use during the summer. On the other hand, to study the thermal performances of this greenhouse dryer by comparing it with other solar dryers. The experimental study showed that the drying of verbena leaves took 6 hours in the indirect dryer 1, 3 hours in the indirect dryer, 2 and 4 hours in the greenhouse dryer, but the amortization period of the solar greenhouse dryer is lower than the other two solar dryers. The results of this study provide key information on the implementation and performance of these systems for drying a food of great global interest.

Keywords: solar energy, drying, agriculture, biotechnologie

Procedia PDF Downloads 80
7371 Sustainable Connectivity: Power-Line Communications for Home Automation in Ethiopia

Authors: Tsegahun Milkesa

Abstract:

This study investigates the implementation of Power-Line Communications (PLC) as a sustainable solution for home automation in Ethiopia. With the country's growing technological landscape and the quest for efficient energy use, this research explores the potential of PLC to facilitate smart home systems, aiming to enhance connectivity and energy management. The primary objective is to assess the feasibility and effectiveness of PLC in Ethiopian residences, considering factors such as infrastructure compatibility, reliability, and scalability. By analyzing existing PLC technologies and their adaptability to local contexts, this study aims to propose optimized solutions tailored to the Ethiopian environment. The research methodology involves a combination of literature review, field surveys, and experimental setups to evaluate PLC's performance in transmitting data and controlling various home appliances. Additionally, socioeconomic implications, including affordability and accessibility, are examined to ensure the technology's inclusivity in diverse Ethiopian households. The findings will contribute insights into the viability of PLC for sustainable connectivity in Ethiopian homes, shedding light on its potential to revolutionize energy-efficient and interconnected living spaces. Ultimately, this study seeks to pave the way for accessible and eco-friendly smart home solutions in Ethiopia, aligning with the nation's aspirations for technological advancement and sustainability.

Keywords: sustainable connectivity, power-line communications (PLC), home automation, Ethiopia, smart homes, energy efficiency, connectivity solutions, infrastructure development, sustainable living

Procedia PDF Downloads 76
7370 Antihypertensive Effect of Formulated Apium graveolens: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

Authors: Maryam Shayani Rad, Seyed Ahmad Mohajeri, Mohsen Mouhebati, Seyed Danial Mousavi

Abstract:

High blood pressure is one of the most important and serious health-threatening because of no symptoms in most people, which can lead to sudden heart attack, heart failure, and stroke. Nowadays, herbal medicine is one of the best and safest strategies for treatment that have no adverse effects. Apium graveolens (celery) can be used as an alternative treatment for many health conditions such as hypertension. Natural compounds reduce blood pressure via different mechanisms in which Apium graveolens extract provides potent calcium channel blocking properties. A randomized, double-blind, placebo-controlled, cross-over clinical trial was done to evaluate the efficacy of formulated Apium graveolens extract with a maximum yield of 3-n-butylphthalide to reduce systolic and diastolic blood pressure in patients with hypertension. 54 hypertensive patients in the range of 20-68 years old were randomly assigned to the treatment group (26 cases) and the placebo control group (26 cases) and were crossed over after washout duration. The treatment group received at least 2 grams of formulated powder in hard capsules orally, before each meal, 2 times daily. The control group received 2 grams of placebo in hard capsules orally, exactly as the same as shape, time, and doses of treatment group. Treatment was administrated in 12 weeks with 4 weeks washout period at the middle of the study, meaning 4 weeks drug consumption for the treatment group, 4 weeks washout and 4 weeks placebo consumption, and vice versa for the placebo control group. The clinical assessment was done 4 times, including at the beginning and ending of the drug and placebo consumption period by 24-hour ambulatory blood pressure monitoring (ABPM) holter, which measured blood pressure every 15 minutes continuously. There was a statistically significant decrease in both systolic blood pressure (SBP) and diastolic blood pressure (DBP) at the end of drug duration compared to baseline. The changes after 4 weeks on average was about 12.34 mm Hg for the SBP (P < 0.005) and 7.83 mm Hg for the DBP (P < 0.005). The results from this clinical trial study showed this Apium graveolens extract formulation in the mentioned dosage had a significant effect on blood pressure-lowering for hypertensive patients.

Keywords: Apium graveolens extract, clinical trial, cross-over, hypertension

Procedia PDF Downloads 212
7369 LEED Empirical Evidence in Northern and Southern Europe

Authors: Svetlana Pushkar

Abstract:

The Leadership in Energy and Environmental Design (LEED) green building rating system is recognized in Europe. LEED uses regional priority (RP) points that are adapted to different environmental conditions. However, the appropriateness of the RP points is still a controversial question. To clarify this issue, two different parts of Europe: northern Europe (Finland and Sweden) and southern Europe (Turkey and Spain) were considered. Similarities and differences in the performances of LEED 2009-new construction (LEED-NC 2009) in these four countries were analyzed. It was found that LEED-NC 2009 performances in northern and southern parts of Europe in terms of Sustainable Sites (SS), Water Efficiency (WE), Materials and Resources (MR), and Indoor Environmental Quality (EQ) were similar, whereas in Energy and Atmosphere (EA), their performances were different. WE and SS revealed high performances (70-100%); EA and EQ demonstrated intermediate performance (40-60%); and MR displayed low performance (20-40%). It should be recommended introducing the following new RP points: for Turkey - water-related points and for all four observed countries - green power-related points for improving the LEED adaptation in Europe.

Keywords: green building, Europe, LEED, leadership in energy and environmental design, regional priority points

Procedia PDF Downloads 252
7368 Photocatalytic Hydrogen Production from Butanol over Ag/TiO2

Authors: Thabelo Nelushi, Michael Scurrell, Tumelo Seadira

Abstract:

Global warming is one of the most important environmental issues which arise from occurrence of gases such as carbon dioxide (CO2) and methane (CH4) in the atmosphere. Exposure to these greenhouse gases results in health risk. Hydrogen is regarded as an alternative energy source which is a clean energy carrier for the future. There are different methods to produce hydrogen such as steam reforming, coal gasification etc., however the challenge with these processes is that they emit CO and CO2 gases and are costly. Photocatalytic reforming is a substitute process which is fascinating due to the combination of solar energy and renewable sources and the use of semiconductor materials such as catalysts. TiO2 is regarded as the most promising catalysts. TiO2 nanoparticles prepared by hydrothermal method and Ag/TiO2 are being investigated for photocatalytic production of hydrogen from butanol. The samples were characterized by raman spectroscopy, TEM/SEM, XRD, XPS, EDAX, DRS and BET surface area. 2 wt% Ag-doped TiO2 nanoparticle showed enhanced hydrogen production compared to a non-doped TiO2. The results of characterization and photoactivity shows that TiO2 nanoparticles play a very important role in producing high hydrogen by utilizing solar irradiation.

Keywords: butanol, hydrogen production, silver particles, TiO2 nanoparticles

Procedia PDF Downloads 210
7367 Mapping the Turbulence Intensity and Excess Energy Available to Small Wind Systems over 4 Major UK Cities

Authors: Francis C. Emejeamara, Alison S. Tomlin, James Gooding

Abstract:

Due to the highly turbulent nature of urban air flows, and by virtue of the fact that turbines are likely to be located within the roughness sublayer of the urban boundary layer, proposed urban wind installations are faced with major challenges compared to rural installations. The challenge of operating within turbulent winds can however, be counteracted by the development of suitable gust tracking solutions. In order to assess the cost effectiveness of such controls, a detailed understanding of the urban wind resource, including its turbulent characteristics, is required. Estimating the ambient turbulence and total kinetic energy available at different control response times is essential in evaluating the potential performance of wind systems within the urban environment should effective control solutions be employed. However, high resolution wind measurements within the urban roughness sub-layer are uncommon, and detailed CFD modelling approaches are too computationally expensive to apply routinely on a city wide scale. This paper therefore presents an alternative semi-empirical methodology for estimating the excess energy content (EEC) present in the complex and gusty urban wind. An analytical methodology for predicting the total wind energy available at a potential turbine site is proposed by assessing the relationship between turbulence intensities and EEC, for different control response times. The semi-empirical model is then incorporated with an analytical methodology that was initially developed to predict mean wind speeds at various heights within the built environment based on detailed mapping of its aerodynamic characteristics. Based on the current methodology, additional estimates of turbulence intensities and EEC allow a more complete assessment of the available wind resource. The methodology is applied to 4 UK cities with results showing the potential of mapping turbulence intensities and the total wind energy available at different heights within each city. Considering the effect of ambient turbulence and choice of wind system, the wind resource over neighbourhood regions (of 250 m uniform resolution) and building rooftops within the 4 cities were assessed with results highlighting the promise of mapping potential turbine sites within each city.

Keywords: excess energy content, small-scale wind, turbulence intensity, urban wind energy, wind resource assessment

Procedia PDF Downloads 474
7366 Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade

Authors: T. Y. Liu, C. H. Lin, Y. M. Ferng

Abstract:

Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyse the flow field and pressure distributions of the wing blades. Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm. Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyse the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data.

Keywords: horizontal axis wind turbine, turbulence model, noise, fluid dynamics

Procedia PDF Downloads 265
7365 A New Approach to the Boom Welding Technique by Determining Seam Profile Tracking

Authors: Muciz Özcan, Mustafa Sacid Endiz, Veysel Alver

Abstract:

In this paper we present a new approach to the boom welding related to the mobile cranes manufacturing, implementing a new method in order to get homogeneous welding quality and reduced energy usage during booms production. We aim to get the realization of the same welding quality carried out on the boom in every region during the manufacturing process and to detect the possible welding errors whether they could be eliminated using laser sensors. We determine the position of the welding region directly through our system and with the help of the welding oscillator we are able to perform a proper boom welding. Errors that may occur in the welding process can be observed by monitoring and eliminated by means of an operator. The major modification in the production of the crane booms will be their form of the booms. Although conventionally, more than one welding is required to perform this process, with the suggested concept, only one particular welding is sufficient, which will be more energy and environment-friendly. Consequently, as only one welding is needed for the manufacturing of the boom, the particular welding quality becomes more essential. As a way to satisfy the welding quality, a welding manipulator was made and fabricated. By using this welding manipulator, the risks of involving dangerous gases formed during the welding process for the operator and the surroundings are diminished as much as possible.

Keywords: boom welding, seam tracking, energy saving, global warming

Procedia PDF Downloads 346
7364 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 84
7363 Research on Energy Field Intervening in Lost Space Renewal Strategy

Authors: Tianyue Wan

Abstract:

Lost space is the space that has not been used for a long time and is in decline, proposed by Roger Trancik. And in his book Finding Lost Space: Theories of Urban Design, the concept of lost space is defined as those anti-traditional spaces that are unpleasant, need to be redesigned, and have no benefit to the environment and users. They have no defined boundaries and do not connect the various landscape elements in a coherent way. With the rapid development of urbanization in China, the blind areas of urban renewal have become a chaotic lost space that is incompatible with the rapid development of urbanization. Therefore, lost space needs to be reconstructed urgently under the background of infill development and reduction planning in China. The formation of lost space is also an invisible division of social hierarchy. This paper tries to break down the social class division and the estrangement between people through the regeneration of lost space. Ultimately, it will enhance vitality, rebuild a sense of belonging, and create a continuous open public space for local people. Based on the concept of lost space and energy field, this paper clarifies the significance of the energy field in the lost space renovation. Then it introduces the energy field into lost space by using the magnetic field in physics as a prototype. The construction of the energy field is support by space theory, spatial morphology analysis theory, public communication theory, urban diversity theory and city image theory. Taking Wuhan’s Lingjiao Park of China as an example, this paper chooses the lost space on the west side of the park as the research object. According to the current situation of this site, the energy intervention strategies are proposed from four aspects: natural ecology, space rights, intangible cultural heritage and infrastructure configuration. And six specific lost space renewal methods are used in this work, including “riveting”, “breakthrough”, “radiation”, “inheritance”, “connection” and “intersection”. After the renovation, space will be re-introduced into the active crow. The integration of activities and space creates a sense of place, improve the walking experience, restores the vitality of the space, and provides a reference for the reconstruction of lost space in the city.

Keywords: dynamic vitality intervention, lost space, space vitality, sense of place

Procedia PDF Downloads 112
7362 Maternal Nutrition Supplementation for Improving Progress and Outcome of Pregnancy in a Tribal Block of Maharashtra

Authors: Rajnish Gourh, Nitesh Sharma, Nikhil Patil

Abstract:

Introduction: Adequate nutrition is essential for improving pregnancy and its outcomes. Failure to comply with the required daily intake of nutrition can lead to complications threatening both mother and child survival. Objectives: To provide access to nutritious diet to mothers in antenatal and post-natal stage for supporting a healthy progressive pregnancy, positive delivery outcome, and lactation and to promote regular consumption of the foods by the mothers and help overcome the dietary gap by nutrition education during pregnancy time. Methodology: Total of 95 ANC mothers were identified from Malvada PHC area, in Palghar district of Maharashtra. This short-term cohort intended for the proposed supplementation and education was targeted for follow-up until birth and six-months of post-natal period. In month of May 2016 to June 2017. Results: Average weight of women was observed 40.01kg, (SD- 5.024) at registered for ANC at Centre in the first month. In same month, average Haemoglobin level of women was observed 9.13gm/dl. Average increase in weight of women during pregnancy in month October 2016 was 48.83kg. Birth weight of 14 babies was less than 2 kgs. 13 babies with birth weight in range of 2.1kgs to 2.4kgs. 68 babies with birth weight in range of 2.5kg to 3kg and above. Conclusion: Importance of consumption of food, improving levels of nutrient intake and outcome of delivery was excellent.

Keywords: delivery status, nutrition, pregnancy, education

Procedia PDF Downloads 164
7361 Feasibility Study and Experiment of On-Site Nuclear Material Identification in Fukushima Daiichi Fuel Debris by Compact Neutron Source

Authors: Yudhitya Kusumawati, Yuki Mitsuya, Tomooki Shiba, Mitsuru Uesaka

Abstract:

After the Fukushima Daiichi nuclear power reactor incident, there are a lot of unaccountable nuclear fuel debris in the reactor core area, which is subject to safeguard and criticality safety. Before the actual precise analysis is performed, preliminary on-site screening and mapping of nuclear debris activity need to be performed to provide a reliable data on the nuclear debris mass-extraction planning. Through a collaboration project with Japan Atomic Energy Agency, an on-site nuclear debris screening system by using dual energy X-Ray inspection and neutron energy resonance analysis has been established. By using the compact and mobile pulsed neutron source constructed from 3.95 MeV X-Band electron linac, coupled with Tungsten as electron-to-photon converter and Beryllium as a photon-to-neutron converter, short-distance neutron Time of Flight measurement can be performed. Experiment result shows this system can measure neutron energy spectrum up to 100 eV range with only 2.5 meters Time of Flightpath in regards to the X-Band accelerator’s short pulse. With this, on-site neutron Time of Flight measurement can be used to identify the nuclear debris isotope contents through Neutron Resonance Transmission Analysis (NRTA). Some preliminary NRTA experiments have been done with Tungsten sample as dummy nuclear debris material, which isotopes Tungsten-186 has close energy absorption value with Uranium-238 (15 eV). The results obtained shows that this system can detect energy absorption in the resonance neutron area within 1-100 eV. It can also detect multiple elements in a material at once with the experiment using a combined sample of Indium, Tantalum, and silver makes it feasible to identify debris containing mixed material. This compact neutron Time of Flight measurement system is a great complementary for dual energy X-Ray Computed Tomography (CT) method that can identify atomic number quantitatively but with 1-mm spatial resolution and high error bar. The combination of these two measurement methods will able to perform on-site nuclear debris screening at Fukushima Daiichi reactor core area, providing the data for nuclear debris activity mapping.

Keywords: neutron source, neutron resonance, nuclear debris, time of flight

Procedia PDF Downloads 238
7360 Noise and Thermal Analyses of Memristor-Based Phase Locked Loop Integrated Circuit

Authors: Naheem Olakunle Adesina

Abstract:

The memristor is considered as one of the promising candidates for mamoelectronic engineering and applications. Owing to its high compatibility with CMOS, nanoscale size, and low power consumption, memristor has been employed in the design of commonly used circuits such as phase-locked loop (PLL). In this paper, we designed a memristor-based loop filter (LF) together with other components of PLL. Following this, we evaluated the noise-rejection feature of loop filter by comparing the noise levels of input and output signals of the filter. Our SPICE simulation results showed that memristor behaves like a linear resistor at high frequencies. The result also showed that loop filter blocks the high-frequency components from phase frequency detector so as to provide a stable control voltage to the voltage controlled oscillator (VCO). In addition, we examined the effects of temperature on the performance of the designed phase locked loop circuit. A critical temperature, where there is frequency drift of VCO as a result of variations in control voltage, is identified. In conclusion, the memristor is a suitable choice for nanoelectronic systems owing to a small area, low power consumption, dense nature, high switching speed, and endurance. The proposed memristor-based loop filter, together with other components of the phase locked loop, can be designed using memristive emulator and EDA tools in current CMOS technology and simulated.

Keywords: Fast Fourier Transform, hysteresis curve, loop filter, memristor, noise, phase locked loop, voltage controlled oscillator

Procedia PDF Downloads 186
7359 Variable Renewable Energy Droughts in the Power Sector – A Model-based Analysis and Implications in the European Context

Authors: Martin Kittel, Alexander Roth

Abstract:

The continuous integration of variable renewable energy sources (VRE) in the power sector is required for decarbonizing the European economy. Power sectors become increasingly exposed to weather variability, as the availability of VRE, i.e., mainly wind and solar photovoltaic, is not persistent. Extreme events, e.g., long-lasting periods of scarce VRE availability (‘VRE droughts’), challenge the reliability of supply. Properly accounting for the severity of VRE droughts is crucial for designing a resilient renewable European power sector. Energy system modeling is used to identify such a design. Our analysis reveals the sensitivity of the optimal design of the European power sector towards VRE droughts. We analyze how VRE droughts impact optimal power sector investments, especially in generation and flexibility capacity. We draw upon work that systematically identifies VRE drought patterns in Europe in terms of frequency, duration, and seasonality, as well as the cross-regional and cross-technological correlation of most extreme drought periods. Based on their analysis, the authors provide a selection of relevant historical weather years representing different grades of VRE drought severity. These weather years will serve as input for the capacity expansion model for the European power sector used in this analysis (DIETER). We additionally conduct robustness checks varying policy-relevant assumptions on capacity expansion limits, interconnections, and level of sector coupling. Preliminary results illustrate how an imprudent selection of weather years may cause underestimating the severity of VRE droughts, flawing modeling insights concerning the need for flexibility. Sub-optimal European power sector designs vulnerable to extreme weather can result. Using relevant weather years that appropriately represent extreme weather events, our analysis identifies a resilient design of the European power sector. Although the scope of this work is limited to the European power sector, we are confident that our insights apply to other regions of the world with similar weather patterns. Many energy system studies still rely on one or a limited number of sometimes arbitrarily chosen weather years. We argue that the deliberate selection of relevant weather years is imperative for robust modeling results.

Keywords: energy systems, numerical optimization, variable renewable energy sources, energy drought, flexibility

Procedia PDF Downloads 72
7358 Compositional Dependence of Hydroxylated Indium-Oxide on the Reaction Rate of CO2/H2 Reduction

Authors: Joel Y. Y. Loh, Geoffrey A. Ozin, Charles A. Mims, Nazir P. Kherani

Abstract:

A major goal in the emerging field of solar fuels is to realize an ‘artificial leaf’ – a material that converts light energy in the form of solar photons into chemical energy – using CO2 as a feedstock to generate useful chemical species. Enabling this technology will allow the greenhouse gas, CO2, emitted from energy and manufacturing production exhaust streams to be converted into valuable solar fuels or chemical products. Indium Oxide (In2O3) with surface hydroxyl (OH) groups have been shown to reduce CO2 in the presence of H2 to CO with a reaction rate of 15 μmol gcat−1 h−1. The likely mechanism is via a Frustrated Lewis Pair sites heterolytically splitting H2 to be absorbed and form protonic and hydric sites that can dissociate CO2. In this study, we investigate the dependence of oxygen composition of In2O3 on the CO2 reduction rate. In2O3-x films on quartz fiber paper were DC sputtered with an Indium target and varying O2/Ar plasma mixture. OH surface groups were then introduced by immersing the In2O3-x samples in KOH. We show that hydroxylated In2O3-x reduces more CO2 than non-hydroxylated groups and that a hydroxylated and higher O2/Ar ratio sputtered In2O3-x has a higher reaction rate of 45 μmol gcat-1 h-1. We show by electrical resistivity-temperature curves that H2 is adsorbed onto the surface of In2O3 whereas CO2 itself does not affect the indium oxide surface. We also present activation and ionization energy levels of the hydroxylated In2O3-x under vacuum, CO2 and H2 atmosphere conditions.

Keywords: solar fuels, photocatalysis, indium oxide nanoparticles, carbon dioxide

Procedia PDF Downloads 240
7357 Correction Factor to Enhance the Non-Standard Hammer Effect Used in Standard Penetration Test

Authors: Khaled R. Khater

Abstract:

The weight of the SPT hammer is standard (0.623kN). The locally manufacturer drilling rigs use hammers, sometimes deviating off the standard weight. This affects the field measured blow counts (Nf) consequentially, affecting most of correlations previously obtained, as they were obtained based on standard hammer weight. The literature presents energy corrections factor (η2) to be applied to the SPT total input energy. This research investigates the effect of the hammer weight variation, as a single parameter, on the field measured blow counts (Nf). The outcome is a correction factor (ηk), equation, and correction chart. They are recommended to adjust back the measured misleading (Nf) to the standard one as if the standard hammer is used. This correction is very important to be done in such cases where a non-standard hammer is being used because the bore logs in any geotechnical report should contain true and representative values (Nf), let alone the long records of correlations, already in hand. The study here-in is achieved by using laboratory physical model to simulate the SPT dripping hammer mechanism. It is designed to allow different hammer weights to be used. Also, it is manufactured to avoid and eliminate the energy loss sources. This produces a transmitted efficiency up to 100%.

Keywords: correction factors, hammer weight, physical model, standard penetration test

Procedia PDF Downloads 387
7356 Waste to Biofuel by Torrefaction Technology

Authors: Jyh-Cherng Chen, Yu-Zen Lin, Wei-Zhi Chen

Abstract:

Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impurities and increase the energy density of biowaste effectively. To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric value of torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal.

Keywords: torrefaction, waste to energy, calorie, biofuel

Procedia PDF Downloads 372
7355 A Flexible Real-Time Eco-Drive Strategy for Electric Minibus

Authors: Felice De Luca, Vincenzo Galdi, Piera Stella, Vito Calderaro, Adriano Campagna, Antonio Piccolo

Abstract:

Sustainable mobility has become one of the major issues of recent years. The challenge in reducing polluting emissions as much as possible has led to the production and diffusion of vehicles with internal combustion engines that are less polluting and to the adoption of green energy vectors, such as vehicles powered by natural gas or LPG and, more recently, with hybrid and electric ones. While on the one hand, the spread of electric vehicles for private use is becoming a reality, albeit rather slowly, not the same is happening for vehicles used for public transport, especially those that operate in the congested areas of the cities. Even if the first electric buses are increasingly being offered on the market, it remains central to the problem of autonomy for battery fed vehicles with high daily routes and little time available for recharging. In fact, at present, solid-state batteries are still too large in size, heavy, and unable to guarantee the required autonomy. Therefore, in order to maximize the energy management on the vehicle, the optimization of driving profiles offer a faster and cheaper contribution to improve vehicle autonomy. In this paper, following the authors’ precedent works on electric vehicles in public transport and energy management strategies in the electric mobility area, an eco-driving strategy for electric bus is presented and validated. Particularly, the characteristics of the prototype bus are described, and a general-purpose eco-drive methodology is briefly presented. The model is firstly simulated in MATLAB™ and then implemented on a mobile device installed on-board of a prototype bus developed by the authors in a previous research project. The solution implemented furnishes the bus-driver suggestions on the guide style to adopt. The result of the test in a real case will be shown to highlight the effectiveness of the solution proposed in terms of energy saving.

Keywords: eco-drive, electric bus, energy management, prototype

Procedia PDF Downloads 142
7354 Performance and Structural Evaluation of the Torrefaction of Bamboo under a High Gravity (Higee) Environment Using a Rotating Packed Bed

Authors: Mark Daniel De Luna, Ma. Katreena Pillejera, Wei-Hsin Chen

Abstract:

The raw bamboo (Phyllostachys mankinoi), with a moisture content of 13.54 % and a higher heating value (HHV) of 17.657 MJ/kg, was subjected to torrefaction under a high gravity (higee) environment using a rotating packed bed. The performance of the higee torrefaction was explored in two parts: (1) effect of rotation and temperature and (2) effect of duration on the solid yield, HHV and energy yield. By statistical analyses, the results indicated that the rotation, temperature and their interaction has a significant effect on the three responses. Same remarks on the effect of duration where when the duration (temperature and rotation) increases, the HHV increases, while the solid yield and energy yield decreases. Graphical interpretations showed that at 300 °C, the rotating speed has no evident effect on the responses. At 30-min holding time, the highest HHV reached (28.389 MJ/kg) was obtained in the most severe torrefaction condition (the rotating speed at 1800 rpm and temperature at 300 °C) with an enhancement factor of HHV corresponding to 1.61 and an energy yield of 63.51%. Upon inspection, the recommended operating condition under a 30-min holding time is at 255 °C-1800 rpm since the enhancement factor of HHV (1.53), HHV (26.988 MJ/kg), and energy yield (65.21%) values are relatively close to that of the aforementioned torrefaction condition. The Van Krevelen diagram of the torrefied biomass showed that the ratios decrease as the torrefaction intensifies, hence improving the hydrophobicity of the product. The spreads of the results of the solid yield, enhancement factor (EF) of HHV, energy yield, and H/C and O/C ratios were in accordance with the trends of the responses. Overall, from the results presented, it can be concluded that the quality of the product from the process is at par to that of coal (i.e. HHV of coal is 21-35 MJ/kg). The Fourier transform infrared (FTIR) spectroscopy results indicated that cellulose and lignin may have been degraded at a lower temperature accompanied with a high rotating speed. The results suggested that torrefaction under higee environment indicates promising process for the utilization of bamboo.

Keywords: heat transfer, high gravity environment, FTIR, rotation, rotating speed, torrefaction

Procedia PDF Downloads 272
7353 Charged Momentum: Electric Vehicle Surge in India’s 2023 Landscape

Authors: Rahul Wagh, Sunil Shinde

Abstract:

Electric vehicles (EVs) have emerged as a transformative force in India's transportation sector, offering a sustainable solution to the country's growing energy and environmental challenges. Against the backdrop of rapid urbanization, rising pollution levels, and the need for energy security, EVs have gained traction as a viable alternative to traditional internal combustion engine vehicles. This paper provides a comprehensive analysis of the electric vehicle market in India, focusing particularly on the landscape of 2023. It emphasizes key aspects such as the 2023 scenario of EV adoption, the role of indigenous manufacturers, dominant players shaping the market, and the influence of government policies and initiatives, including the FAME I and II schemes. Furthermore, the paper delves into EV sales data for the fiscal year 2023, offering insights into market trends and consumer preferences. By elucidating the current state of EVs in India, this paper aims to contribute to a deeper understanding of the country's transition towards sustainable mobility and its implications for energy, the environment, and the economy.

Keywords: EV adoption 2023, FAME schemes, consumer preferences, market trends

Procedia PDF Downloads 7
7352 Pre-Cooling Strategies for the Refueling of Hydrogen Cylinders in Vehicular Transport

Authors: C. Hall, J. Ramos, V. Ramasamy

Abstract:

Hydrocarbon-based fuel vehicles are a major contributor to air pollution due to harmful emissions produced, leading to a demand for cleaner fuel types. A leader in this pursuit is hydrogen, with its application in vehicles producing zero harmful emissions and the only by-product being water. To compete with the performance of conventional vehicles, hydrogen gas must be stored on-board of vehicles in cylinders at high pressures (35–70 MPa) and have a short refueling duration (approximately 3 mins). However, the fast-filling of hydrogen cylinders causes a significant rise in temperature due to the combination of the negative Joule-Thompson effect and the compression of the gas. This can lead to structural failure and therefore, a maximum allowable internal temperature of 85°C has been imposed by the International Standards Organization. The technological solution to tackle the issue of rapid temperature rise during the refueling process is to decrease the temperature of the gas entering the cylinder. Pre-cooling of the gas uses a heat exchanger and requires energy for its operation. Thus, it is imperative to determine the least amount of energy input that is required to lower the gas temperature for cost savings. A validated universal thermodynamic model is used to identify an energy-efficient pre-cooling strategy. The model requires negligible computational time and is applied to previously validated experimental cases to optimize pre-cooling requirements. The pre-cooling characteristics include the location within the refueling timeline and its duration. A constant pressure-ramp rate is imposed to eliminate the effects of rapid changes in mass flow rate. A pre-cooled gas temperature of -40°C is applied, which is the lowest allowable temperature. The heat exchanger is assumed to be ideal with no energy losses. The refueling of the cylinders is modeled with the pre-cooling split in ten percent time intervals. Furthermore, varying burst durations are applied in both the early and late stages of the refueling procedure. The model shows that pre-cooling in the later stages of the refuelling process is more energy-efficient than early pre-cooling. In addition, the efficiency of pre-cooling towards the end of the refueling process is independent of the pressure profile at the inlet. This leads to the hypothesis that pre-cooled gas should be applied as late as possible in the refueling timeline and at very low temperatures. The model had shown a 31% reduction in energy demand whilst achieving the same final gas temperature for a refueling scenario when pre-cooling was applied towards the end of the process. The identification of the most energy-efficient refueling approaches whilst adhering to the safety guidelines is imperative to reducing the operating cost of hydrogen refueling stations. Heat exchangers are energy-intensive and thus, reducing the energy requirement would lead to cost reduction. This investigation shows that pre-cooling should be applied as late as possible and for short durations.

Keywords: cylinder, hydrogen, pre-cooling, refueling, thermodynamic model

Procedia PDF Downloads 96
7351 The Effect of Ambient Temperature on the Performance of the Simple and Modified Cycle Gas Turbine Plants

Authors: Ogbe E. E., Ossia. C. V., Saturday. E. G., Ezekwe M. C.

Abstract:

The disparity in power output between a simple and a modified gas turbine plant is noticeable when the gas turbine functions under local environmental conditions that deviate from the standard ISO specifications. Extensive research and literature have demonstrated a well-known direct correlation between ambient temperature and the power output of a gas turbine plant. In this study, the Omotosho gas turbine plant was modified into three different configurations. The reason for the modification is to improve its performance and reduce the fuel consumption and emission rate. Aspen Hysys software was used to simulate both the simple (Omotosho) and the three modified gas turbine plants. The input parameters considered include ambient temperature, air mass flow rate, fuel mass flow rate, water mass flow rate, turbine inlet temperature, compressor efficiency, and turbine efficiency, while the output parameters considered are thermal efficiency, specific fuel consumption, heat rate, emission rate, compressor power, turbine power and power output. The three modified gas turbine power plants incorporate an inlet air cooling system and a heat recovery steam generator. The variations between the modifications are due to additional components or enhancements alongside the inlet air cooling system and heat recovery steam generator incorporated; the first modification has an additional turbine, the second modification has an additional combustion chamber, and the third modification has an additional turbine and combustion chamber. This paper clearly shows ambient temperature effects on both the simple and three modified gas turbine plants. for every 10-degree kelvin increase in ambient temperature, there is an approximate reduction of 3977 kW, 4795 kW, 4681 kW, and 4793 kW of the power output for the simple gas turbine, first, second, and third modifications, respectively. Also, for every 10-degree kelvin increase in temperature, there is a thermal efficiency decrease of 1.22%, 1.45%, 1.43%, and 1.44% for the simple gas turbine, first, second, and third modifications respectively. Low ambient temperature will help save fuel; looking at the high price of fuel presently in Nigeria for every 10 degrees kelvin increase in temperature, there is a specific fuel consumption increase of 0.0074 kg/kWh, 0.0051 kg/kWh, 0.0061 kg/kWh, and 0.0057 kg/kWh for the simple gas turbine, first, second, and third modifications respectively. These findings will aid in accurately evaluating local power generating plants, particularly in hotter regions, for installing gas turbine inlet air cooling (GTIAC) systems.

Keywords: Aspen HYSYS software, Brayton Cycle, modified gas turbine, power plant, simple gas turbine, thermal efficiency.

Procedia PDF Downloads 31
7350 The Effect of Rosella Flower Flour (Hibiscus sabdariffa L.) Utilization in Ration on Performance of Broiler Chicken

Authors: Nurlisa Uke Dessy, Dwi Septian Erwinsyah, Zuprizal

Abstract:

This experiment was aimed to investigate the effect of rosella flower flour in diet on broiler chicken Performace. The materials used in this experiment were 72 broiler chickens and were divided into six treatments, those were R0 = without rosella flower flour addition, R1 = 0.5% rosella flower flour addition, R2 = 1.0% rosella flower flour addition, R3 = 1.5% rosella flower flour addition, R4 = 2.0% rosella flower flour addition, and R5 = 2.5% rosella flower flour addition. Each treatment consisted of three replications and each replication consisted of four broiler chickens. This research took 35 days to collect the data. Parameters measured were feed intake, rosella flower flour consumption, body weight gain, feed conversion and mortality. The collected data were analyzed using Completely Randomized Design (CRD) and the differences of mean were tested by Duncan’s New Multiple Range Test (DMRT). The result showed the average of feed consumption were 2154; 2154; 2034; 2154; 2034 and 2154 g/bird on broiler chicken that were feed respectively by 0.0; 0.5; 1.0; 1.5; 2.0; and 2.5% rosella flower flour level. The average consumptions of rosella flower flour respectively were 0; 10.77; 20.34; 32.31; 40.68; and 53.85 g/bird. The body weight gains were 1263.33±70.40; 1422.42±36.33; 1443.75±30.00; 1387.42± 35.30; 1411.17±29.58 and 1457.08±40.75 g/bird. Feed conversion results were 1.71±0.94; 1.51±0.37; 1.47±0.62; 1.55±0.40; 1.53±0.30 and 1.48±0.40. The conclusion of the experiment was known that using rosella flower flour until 2.5% level in diet was able to increase broiler chicken performance, and also to decrease broiler chicken feed conversion.

Keywords: feed intake, consumptions rosella flower flour, broiler chickens, body weight gain, feed conversion

Procedia PDF Downloads 634
7349 X-Ray Energy Release in the Solar Eruptive Flare from 6th of September 2012

Authors: Mirabbos Mirkamalov, Zavkiddin Mirtoshev

Abstract:

The M 1.6 class flare occurred on 6th of September 2012. Our observations correspond to the active region NOAA 11560 with the heliographic coordinates N04W71. The event took place between 04:00 UT and 04:45 UT, and was close to the solar limb at the western region. The flare temperature correlates with flux peak, increases for a short period (between 04:08 UT and 04:12 UT), rises impulsively, attains a maximum value of about 17 MK at 04:12 UT and gradually decreases after peak value. Around the peak we observe significant emissions of X-ray sources. Flux profiles of the X-ray emission exhibit a progressively faster raise and decline as the higher energy channels are considered.

Keywords: magnetic reconnection, solar atmosphere, solar flare, X-ray emission

Procedia PDF Downloads 323