Search results for: generative models
3748 Stochastic Modeling of Secretion Dynamics in Inner Hair Cells of the Auditory Pathway
Authors: Jessica A. Soto-Bear, Virginia González-Vélez, Norma Castañeda-Villa, Amparo Gil
Abstract:
Glutamate release of the cochlear inner hair cell (IHC) ribbon synapse is a fundamental step in transferring sound information in the auditory pathway. Otoferlin is the calcium sensor in the IHC and its activity has been related to many auditory disorders. In order to simulate secretion dynamics occurring in the IHC in a few milliseconds timescale and with high spatial resolution, we proposed an active-zone model solved with Monte Carlo algorithms. We included models for calcium buffered diffusion, calcium-binding schemes for vesicle fusion, and L-type voltage-gated calcium channels. Our results indicate that calcium influx and calcium binding is managing IHC secretion as a function of voltage depolarization, which in turn mean that IHC response depends on sound intensity.Keywords: inner hair cells, Monte Carlo algorithm, Otoferlin, secretion
Procedia PDF Downloads 2213747 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network
Procedia PDF Downloads 1503746 Students’ Experiential Knowledge Production in the Teaching-Learning Process of Universities
Authors: Didiosky Benítez-Erice, Frederik Questier, Dalgys Pérez-Luján
Abstract:
This paper aims to present two models around the production of students’ experiential knowledge in the teaching-learning process of higher education: the teacher-centered production model and the student-centered production model. From a range of knowledge management and experiential learning theories, the paper elaborates into the nature of students’ experiential knowledge and proposes further adjustments of existing second-generation knowledge management theories taking into account the particularities of higher education. Despite its theoretical nature the paper can be relevant for future studies that stress student-driven improvement and innovation at higher education institutions.Keywords: experiential knowledge, higher education, knowledge management, teaching-learning process
Procedia PDF Downloads 4463745 A Holistic Study of the Beta Lyrae Systems V0487 Lac, V0566 Hya and V0666 Lac
Authors: Moqbil S. Alenazi, Magdy. M. Elkhateeb
Abstract:
A comprehensive photometric study and evolutionary state for the newly discovered Beta Lyr systems V0487 Lac, V0566 Hya, and V0666 Lac were carried out by means of their first photometric observations. New times of minima were estimated from the observed light curves, and first (O-C) curves were established for all systems. A windows interface version of the Wilson and Devinney code (W-D) based on model atmospheres and a pass band prescription have been used for the radiative treatment. The accepted models reveal some absolute parameters for the studied systems, which are used in adopting the spectral type of the system's components and their evolutionary status. Distances to each system were calculated, and physical properties were estimated. Locations of the systems on the theoreticalmass–luminosity and mass–radius relations revealed a good fit for all systems components except for the secondary component of the system V0487 Lac.Keywords: eclipsing binaries, light curve modelling, evolutionary state
Procedia PDF Downloads 783744 Dynamic Soil Structure Interaction in Buildings
Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar
Abstract:
Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.Keywords: soil-structure interaction, response spectrum, analysis, finite element method, multi-storey buildings
Procedia PDF Downloads 4803743 Evolution of Classroom Languaging in Multilingual Contexts: Challenges and Prospects
Authors: Jabulani Sibanda, Clemence Chikiwa
Abstract:
This paper traces diverse language practices representative of equally diverse conceptions of language. To be dynamic with languaging practices, one needs to appreciate nuanced languaging practices, their challenges, prospects, and opportunities. The paper presents what we envision as three major conceptions of language that give impetus to diverse language practices. It examines theoretical models of the bilingual mental lexicon and how they inform language practices. The paper explores classroom languaging practices that have been promulgated and experimented with. The paper advocates the deployment of multisensory semiotic systems to complement linguistic classroom communication and the acknowledgement of learners’ linguistic and semiotic resources as valid in the learning enterprise. It recommends the enactment of specific clauses on language in education policies and curriculum documents that empower classroom interactants to exercise discretion in languaging practices.Keywords: languaging, monolingual, multilingual, semiotic and linguistic repertoire
Procedia PDF Downloads 653742 Causality Channels between Corruption and Democracy: A Threshold Non-Linear Analysis
Authors: Khalid Sekkat, Fredj Fhima, Ridha Nouira
Abstract:
This paper focuses on three main limitations of the literature regarding the impact of corruption on democracy. These limitations relate to the distinction between causality and correlation, the components of democracy underlying the impact and the shape of the relationship between corruption and democracy. The study uses recent developments in panel data causality econometrics, breaks democracy down into different components, and examines the types of the relationship. The results show that Control of Corruption leads to a higher quality of democracy. Regarding the estimated coefficients of the components of democracy, they are significant at the 1% level, and their signs and levels are in accordance with expectations except in a few cases. Overall, the results add to the literature in three respects: i). corruption has a causal effect on democracy and, hence, single equation estimation may pose a problem, ii) the assumption of the linearity of the relationships between control of corruption and democracy is also possibly problematic, and iii) the channels of transmission of the effects of corruption on democracy can be diverse. Disentangling them is useful from a policy perspective.Keywords: corruption, governance, causality, threshold models
Procedia PDF Downloads 483741 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills
Authors: Kyle De Freitas, Margaret Bernard
Abstract:
Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.Keywords: educational data mining, learning management system, learning analytics, EDM framework
Procedia PDF Downloads 3263740 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System
Authors: John Lorenzo Bautista, Yoon-Joong Kim
Abstract:
This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition
Procedia PDF Downloads 4803739 Uplift Modeling Approach to Optimizing Content Quality in Social Q/A Platforms
Authors: Igor A. Podgorny
Abstract:
TurboTax AnswerXchange is a social Q/A system supporting users working on federal and state tax returns. Content quality and popularity in the AnswerXchange can be predicted with propensity models using attributes of the question and answer. Using uplift modeling, we identify features of questions and answers that can be modified during the question-asking and question-answering experience in order to optimize the AnswerXchange content quality. We demonstrate that adding details to the questions always results in increased question popularity that can be used to promote good quality content. Responding to close-ended questions assertively improve content quality in the AnswerXchange in 90% of cases. Answering knowledge questions with web links increases the likelihood of receiving a negative vote from 60% of the askers. Our findings provide a rationale for employing the uplift modeling approach for AnswerXchange operations.Keywords: customer relationship management, human-machine interaction, text mining, uplift modeling
Procedia PDF Downloads 2443738 IT Systems of the US Federal Courts, Justice, and Governance
Authors: Joseph Zernik
Abstract:
The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high-resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.Keywords: e-justice, federal courts, human rights, banking regulation, United States
Procedia PDF Downloads 3783737 Mining Multicity Urban Data for Sustainable Population Relocation
Authors: Xu Du, Aparna S. Varde
Abstract:
In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.Keywords: data mining, environmental modeling, sustainability, urban planning
Procedia PDF Downloads 3083736 Bioresorbable Medicament-Eluting Grommet Tube for Otitis Media with Effusion
Authors: Chee Wee Gan, Anthony Herr Cheun Ng, Yee Shan Wong, Subbu Venkatraman, Lynne Hsueh Yee Lim
Abstract:
Otitis media with effusion (OME) is the leading cause of hearing loss in children worldwide. Surgery to insert grommet tube into the eardrum is usually indicated for OME unresponsive to antimicrobial therapy. It is the most common surgery for children. However, current commercially available grommet tubes are non-bioresorbable, not drug-treated, with unpredictable duration of retention on the eardrum to ventilate middle ear. Their functionality is impaired when clogged or chronically infected, requiring additional surgery to remove/reinsert grommet tubes. We envisaged that a novel fully bioresorbable grommet tube with sustained antibiotic release technology could address these drawbacks. In this study, drug-loaded bioresorbable poly(L-lactide-co-ε-caprolactone)(PLC) copolymer grommet tubes were fabricated by microinjection moulding technique. In vitro drug release and degradation model of PLC tubes were studied. Antibacterial property was evaluated by incubating PLC tubes with P. aeruginosa broth. Surface morphology was analyzed using scanning electron microscopy. A preliminary animal study was conducted using guinea pigs as an in vivo model to evaluate PLC tubes with and without drug, with commercial Mini Shah grommet tube as comparison. Our in vitro data showed sustained drug release over 3 months. All PLC tubes revealed exponential degradation profiles over time. Modeling predicted loss of tube functionality in water to be approximately 14 weeks and 17 weeks for PLC with and without drug, respectively. Generally, PLC tubes had less bacteria adherence, which were attributed to the much smoother tube surfaces compared to Mini Shah. Antibiotic from PLC tube further made bacteria adherence on surface negligible. They showed neither inflammation nor otorrhea after 18 weeks post-insertion in the eardrums of guinea pigs, but had demonstrated severe degree of bioresorption. Histology confirmed the new PLC tubes were biocompatible. Analyses on the PLC tubes in the eardrums showed bioresorption profiles close to our in vitro degradation models. The bioresorbable antibiotic-loaded grommet tubes showed good predictability in functionality. The smooth surface and sustained release technology reduced the risk of tube infection. Tube functional duration of 18 weeks allowed sufficient ventilation period to treat OME. Our ongoing studies include modifying the surface properties with protein coating, optimizing the drug dosage in the tubes to enhance their performances, evaluating their functional outcome on hearing after full resoption of grommet tube and healing of eardrums, and developing animal model with OME to further validate our in vitro models.Keywords: bioresorbable polymer, drug release, grommet tube, guinea pigs, otitis media with effusion
Procedia PDF Downloads 4503735 Removal of Copper(II) and Lead(II) from Aqueous Phase by Plum Stone Activated Carbon
Authors: Serife Parlayici, Erol Pehlivan
Abstract:
In this study, plum stone shell activated carbon (PS-AC) was prepared to adsorb Cu(II) and Pb(II) ions in aqueous solutions. Some important parameters that influence the adsorption of metal ions such as pH, contact time and metal concentration have been systematically investigated in batch type reactors. The characterization of adsorbent is carried out by means of FTIR and SEM. It was found that the adsorption capacities of PS-AC were pH-dependent, and the optimal pH values were 4.5 and 5.0 for Cu(II) and Pb(II), respectively. The adsorption was rapid and the equilibrium was reached within 60 minutes to remove of Cu(II) and Pb(II) ions. The adsorption stability was studied in various doses of adsorbent. Langmuir, Freundlich and D-R adsorption models were used to describe adsorption equilibrium studies of PS-AC. Adsorption data showed that the adsorption of Cu(II) and Pb(II) is compatible with Langmuir isotherm model. The result showed that adsorption capacities calculated from the Langmuir isotherm were 33.22 mg/g and 57.80 mg/g for Cu(II) and Pb(II), respectively.Keywords: plum-stone, activated carbon, copper and lead, isotherms
Procedia PDF Downloads 3673734 Ganga Rejuvenation through Forestation and Conservation Measures in Riverscape
Authors: Ombir Singh
Abstract:
In spite of the religious and cultural pre-dominance of the river Ganga in the Indian ethos, fragmentation and degradation of the river continued down the ages. Recognizing the national concern on environmental degradation of the river and its basin, Ministry of Water Resources, River Development & Ganga Rejuvenation (MoWR,RD&GR), Government of India has initiated a number of pilot schemes for the rejuvenation of river Ganga under the ‘Namami Gange’ Programme. Considering the diversity, complexity, and intricacies of forest ecosystems and pivotal multiple functions performed by them and their inter-connectedness with highly dynamic river ecosystems, forestry interventions all along the river Ganga from its origin at Gaumukh, Uttarakhand to its mouth at Ganga Sagar, West Bengal has been planned by the ministry. For that Forest Research Institute (FRI) in collaboration with National Mission for Clean Ganga (NMCG) has prepared a Detailed Project Report (DPR) on Forestry Interventions for Ganga. The Institute has adopted an extensive consultative process at the national and state levels involving various stakeholders relevant in the context of river Ganga and employed a science-based methodology including use of remote sensing and GIS technologies for geo-spatial analysis, modeling and prioritization of sites for proposed forestation and conservation interventions. Four sets of field data formats were designed to obtain the field based information for forestry interventions, mainly plantations and conservation measures along the river course. In response, five stakeholder State Forest Departments had submitted more than 8,000 data sheets to the Institute. In order to analyze a voluminous field data received from five participating states, the Institute also developed a software to collate, analyze and generation of reports on proposed sites in Ganga basin. FRI has developed potential plantation and treatment models for the proposed forestry and other conservation measures in major three types of landscape components visualized in the Ganga riverscape. These are: (i) Natural, (ii) Agriculture, and (iii) Urban Landscapes. Suggested plantation models broadly varied for the Uttarakhand Himalayas and the Ganga Plains in five participating states. Besides extensive plantations in three type of landscapes within the riverscape, various conservation measures such as soil and water conservation, riparian wildlife management, wetland management, bioremediation and bio-filtration and supporting activities such as policy and law intervention, concurrent research, monitoring and evaluation, and mass awareness campaigns have been envisioned in the DPR. The DPR also incorporates the details of the implementation mechanism, budget provisioned for different components of the project besides allocation of budget state-wise to five implementing agencies, national partner organizations and the Nodal Ministry.Keywords: conservation, Ganga, river, water, forestry interventions
Procedia PDF Downloads 1493733 Reduction of Content of Lead and Zinc from Wastewater by Using of Metallurgical Waste
Authors: L. Rozumová, J. Seidlerová
Abstract:
The aim of this paper was to study the sorption properties of a blast furnace sludge used as the sorbent. The sorbent was utilized for reduction of content of lead and zinc ions. Sorbent utilized in this work was obtained from metallurgical industry from process of wet gas treatment in iron production. The blast furnace sludge was characterized by X-Ray diffraction, scanning electron microscopy, and XRFS spectroscopy. Sorption experiments were conducted in batch mode. The sorption of metal ions in the sludge was determined by correlation of adsorption isotherm models. The adsorption of lead and zinc ions was best fitted with Langmuir adsorption isotherms. The adsorption capacity of lead and zinc ions was 53.8 mg.g-1 and 10.7 mg.g-1, respectively. The results indicated that blast furnace sludge could be effectively used as secondary material and could be also employed as a low-cost alternative for the removal of heavy metals ions from wastewater.Keywords: blast furnace sludge, lead, zinc, sorption
Procedia PDF Downloads 3023732 Optimisation of Extraction of Phenolic Compounds in Algerian Lavandula multifida, Algeria, NW
Authors: Mustapha Mahmoud Dif, Fouzia Benali-Toumi, Mohamed Benyahia, Sofiane Bouazza, Abbes Dellal, Slimane Baha
Abstract:
L. multifida is applied to treat rheumatism and cold and has hypoglycemic and anti-inflammatory properties. The present study is to optimize the extraction of phenolic compounds in Algerian Lavandula multifida. The influences of parameters including temperature (decoction and maceration) and extraction time (15min to 45 min) on the flavonoids concentration are studied. The optimal conditions are determined and the quadratic response surfaces draw from the mathematical models. Total phenols were evaluated using Folin sicaltieu methods, total flavonoids were estimated using the Tri chloral aluminum method. The maximum concentration extracted, for total flavonoids, equal to 0.043 mg/g was achieved with decoction and extraction time of 41.55 min. However, for total phenol compounds highest concentration of 0.218 mg/g, is obtained with 45 min at 49.99°C.Keywords: L multifidi, phenolic content, optimization, time, temperature
Procedia PDF Downloads 4203731 Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio
Authors: Danilo López, Edwin Rivas, Fernando Pedraza
Abstract:
Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology.Keywords: ANFIS, cognitive radio, prediction primary user, RNA
Procedia PDF Downloads 4213730 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces
Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur
Abstract:
In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.Keywords: aerodynamic, bi-dimensional, vegetation, synergistic
Procedia PDF Downloads 2693729 A Machine Learning Approach to Detecting Evasive PDF Malware
Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran
Abstract:
The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.Keywords: PDF, PDF malware, decision tree classifier, random forest classifier
Procedia PDF Downloads 913728 Turbulence Modeling and Wave-Current Interactions
Authors: A. C. Bennis, F. Dumas, F. Ardhuin, B. Blanke
Abstract:
The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high-resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.Keywords: numerical modeling, wave-current interactions, turbulence modeling, rip currents
Procedia PDF Downloads 4663727 A Consideration on the Offset Frontal Impact Modeling Using Spring-Mass Model
Authors: Jaemoon Lim
Abstract:
To construct the lumped spring-mass model considering the occupants for the offset frontal crash, the SISAME software and the NHTSA test data were used. The data on 56 kph 40% offset frontal vehicle to deformable barrier crash test of a MY2007 Mazda 6 4-door sedan were obtained from NHTSA test database. The overall behaviors of B-pillar and engine of simulation models agreed very well with the test data. The trends of accelerations at the driver and passenger head were similar but big differences in peak values. The differences of peak values caused the large errors of the HIC36 and 3 ms chest g’s. To predict well the behaviors of dummies, the spring-mass model for the offset frontal crash needs to be improved.Keywords: chest g’s, HIC36, lumped spring-mass model, offset frontal impact, SISAME
Procedia PDF Downloads 4573726 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images
Authors: Shenlun Chen, Leonard Wee
Abstract:
Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.Keywords: colorectal cancer, differentiation, survival analysis, tumor grading
Procedia PDF Downloads 1343725 Foodborne Outbreak Calendar: Application of Time Series Analysis
Authors: Ryan B. Simpson, Margaret A. Waskow, Aishwarya Venkat, Elena N. Naumova
Abstract:
The Centers for Disease Control and Prevention (CDC) estimate that 31 known foodborne pathogens cause 9.4 million cases of these illnesses annually in US. Over 90% of these illnesses are associated with exposure to Campylobacter, Cryptosporidium, Cyclospora, Listeria, Salmonella, Shigella, Shiga-Toxin Producing E.Coli (STEC), Vibrio, and Yersinia. Contaminated products contain parasites typically causing an intestinal illness manifested by diarrhea, stomach cramping, nausea, weight loss, fatigue and may result in deaths in fragile populations. Since 1998, the National Outbreak Reporting System (NORS) has allowed for routine collection of suspected and laboratory-confirmed cases of food poisoning. While retrospective analyses have revealed common pathogen-specific seasonal patterns, little is known concerning the stability of those patterns over time and whether they can be used for preventative forecasting. The objective of this study is to construct a calendar of foodborne outbreaks of nine infections based on the peak timing of outbreak incidence in the US from 1996 to 2017. Reported cases were abstracted from FoodNet for Salmonella (135115), Campylobacter (121099), Shigella (48520), Cryptosporidium (21701), STEC (18022), Yersinia (3602), Vibrio (3000), Listeria (2543), and Cyclospora (758). Monthly counts were compiled for each agent, seasonal peak timing and peak intensity were estimated, and the stability of seasonal peaks and synchronization of infections was examined. Negative Binomial harmonic regression models with the delta-method were applied to derive confidence intervals for the peak timing for each year and overall study period estimates. Preliminary results indicate that five infections continue to lead as major causes of outbreaks, exhibiting steady upward trends with annual increases in cases ranging from 2.71% (95%CI: [2.38, 3.05]) in Campylobacter, 4.78% (95%CI: [4.14, 5.41]) in Salmonella, 7.09% (95%CI: [6.38, 7.82]) in E.Coli, 7.71% (95%CI: [6.94, 8.49]) in Cryptosporidium, and 8.67% (95%CI: [7.55, 9.80]) in Vibrio. Strong synchronization of summer outbreaks were observed, caused by Campylobacter, Vibrio, E.Coli and Salmonella, peaking at 7.57 ± 0.33, 7.84 ± 0.47, 7.85 ± 0.37, and 7.82 ± 0.14 calendar months, respectively, with the serial cross-correlation ranging 0.81-0.88 (p < 0.001). Over 21 years, Listeria and Cryptosporidium peaks (8.43 ± 0.77 and 8.52 ± 0.45 months, respectively) have a tendency to arrive 1-2 weeks earlier, while Vibrio peaks (7.8 ± 0.47) delay by 2-3 weeks. These findings will be incorporated in the forecast models to predict common paths of the spread, long-term trends, and the synchronization of outbreaks across etiological agents. The predictive modeling of foodborne outbreaks should consider long-term changes in seasonal timing, spatiotemporal trends, and sources of contamination.Keywords: foodborne outbreak, national outbreak reporting system, predictive modeling, seasonality
Procedia PDF Downloads 1283724 Estimation and Forecasting with a Quantile AR Model for Financial Returns
Authors: Yuzhi Cai
Abstract:
This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology.Keywords: combining forecasts, MCMC, quantile modelling, quantile forecasting, predictive density functions
Procedia PDF Downloads 3473723 Market-Power, Stability, and Risk-Taking: An Analysis Surrounding the Riba-Free Banking
Authors: Louati Salma, Louhichi Awatef, Boujelbene Younes
Abstract:
Analysis of the trade-off between competition and financial stability has been at the center of academic and policy debate for over two decades and especially since the 2007-2008 global financial crises. We use information on 10 OIC countries from 2005 to 2014 to investigate the influence of bank competition on individual bank stability and risk-taking. Alternatively, we explore whether the quality of prudential regulation may affect the nexus between competition and banking stability/risk-taking. We provide a particular attention to the Islamic banking system which principally involves with the Riba-free instruments as compared to the conventional interest-based system. We first run a dynamic panel regression (GMM), and then we apply a panel vector autoregressive (PVAR) methodology to compare both banking business models.Keywords: Lerner index, Islamic banks, non-performing loans, prudential regulations, z-score
Procedia PDF Downloads 2973722 Numerical Investigation the Effect of Adjustable Guide Vane for Improving the Airflow Rate in Axial Fans
Authors: Behzad Shahizare, N. Nik-Ghazali, Kannan M. Munisamy, Seyedsaeed Tabatabaeikia
Abstract:
The main objective of this study is to clarify the effect of the adjustable outlet guide vane (OGV) on the axial fan. Three-dimensional Numerical study was performed to analyze the effect of adjustable guide vane for improving the airflow rate in axial fans. Grid independence test was done between five different meshes in order to choose the reliable mesh. In flow analyses, Reynolds averaged Navier-Stokes (RANS) equations was solved using three types of turbulence models named k-ɛ, k-ω and k-ω SST. The aerodynamic performances of the fan and guide vane were evaluated. Numerical method was validated by comparing with experimental test according to AMECA 210 standard. Results showed that, by using the adjustable guide vane the airflow rate is increased around 3% to 6 %. The maximum enhancement of the airflow rate was achieved when pressure was 374pa.Keywords: axial fan, adjustable guide vane, CFD, turbo machinery
Procedia PDF Downloads 3383721 Improvement of Brige Weigh-In-Motion Technique Considering the Driving Conditions of Vehicles
Authors: Changgil Lee, Jooyoung Park, Seunghee Park
Abstract:
In this study, bridge weigh-in-motion (BWIM) system was simulated under various driving conditions of vehicles to improve the performance of the BWIM system. Two driving conditions were considered. One was the number of the axle of the vehicles. Since the vehicles have different number of axle according to the types of the vehicle, the vehicles were modeled considering the number of the axle. The other was the speed of the vehicles because the speed of the vehicles is not consistent on the bridge. To achieve the goal, the dynamic characteristics of a bridge such as modal parameters were considered in numerical simulation by analyzing precision models. Also, the driving vehicles were modeled as mass-spring-damping systems reflecting the axle information.Keywords: bridge weigh-in-motion (BWIM) system, driving conditions, precision analysis model, the number of axle, the speed of vehicle
Procedia PDF Downloads 4693720 Hypergraph Models of Metabolism
Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova
Abstract:
In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterize a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.Keywords: complexity, hypergraphs, reciprocity, metabolism
Procedia PDF Downloads 2973719 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax
Authors: Svitov David, Alyamkin Sergey
Abstract:
The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.Keywords: ArcFace, distillation, face recognition, margin-based softmax
Procedia PDF Downloads 146