Search results for: surface ignition temperature
9145 Unbalanced Cylindrical Magnetron for Accelerating Cavities Coating
Authors: G. Rosaz, V. Semblanet, S. Calatroni, A. Sublet, M. Taborelli
Abstract:
We report in this paper the design and qualification of a cylindrical unbalanced magnetron source. The dedicated magnetic assemblies were simulated using a finite element model. A hall-effect magnetic probe was then used to characterize those assemblies and compared to the theoretical magnetic profiles. These show a good agreement between the expected and actual values. The qualification of the different magnetic assemblies was then performed by measuring the ion flux density reaching the surface of the sample to be coated using a commercial retarding field energy analyzer. The strongest unbalanced configuration shows an increase from 0.016 A.cm-2 to 0.074 A.cm-2 of the ion flux density reaching the sample surface compared to the standard balanced configuration for a pressure 5.10-3 mbar and a plasma source power of 300 W.Keywords: ion energy distribution function, magnetron sputtering, niobium, unbalanced, SRF cavities, thin film
Procedia PDF Downloads 2569144 Optimization of Hepatitis B Surface Antigen Purifications to Improving the Production of Hepatitis B Vaccines on Pichia pastoris
Authors: Rizky Kusuma Cahyani
Abstract:
Hepatitis B is a liver inflammatory disease caused by hepatitis B virus (HBV). This infection can be prevented by vaccination which contains HBV surface protein (sHBsAg). However, vaccine supply is limited. Several attempts have been conducted to produce local sHBsAg. However, the purity degree and protein yield are still inadequate. Therefore optimization of HBsAg purification steps is required to obtain high yield with better purification fold. In this study, optimization of purification was done in 2 steps, precipitation using variation of NaCl concentration (0,3 M; 0,5 M; 0,7 M) and PEG (3%, 5%, 7%); ion exchange chromatography (IEC) using NaCl 300-500 mM elution buffer concentration.To determine HBsAg protein, bicinchoninic acid assay (BCA) and enzyme-linked immunosorbent assay (ELISA) was used in this study. Visualization of HBsAg protein was done by SDS-PAGE analysis. Based on quantitative analysis, optimal condition at precipitation step was given 0,3 M NaCl and PEG 3%, while in ion exchange chromatography step, the optimum condition when protein eluted with NaCl 500 mM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicates that the presence of protein HBsAg with a molecular weight of 25 kDa (monomer) and 50 kDa (dimer). The optimum condition for purification of sHBsAg produced in Pichia pastoris gave a yield of 47% and purification fold 17x so that it would increase the production of hepatitis B vaccine to be more optimal.Keywords: hepatitis B virus, HBsAg, hepatitis B surface antigen, Pichia pastoris, purification
Procedia PDF Downloads 1519143 High Temperature Tolerance of Chironomus Sulfurosus and Its Molecular Mechanisms
Authors: Tettey Afi Pamela, Sotaro Fujii, Hidetoshi Saito, Kawaii Koichiro
Abstract:
Introduction: Organisms employ adaptive mechanisms when faced with any stressor or risk of being wiped out. This has made it possible for them to survive in harsh environmental conditions such as increasing temperature, low pH, and anoxia. Some of the mechanisms they utilize include the expression of heat shock proteins, synthesis of cryoprotectants, and anhydrobiosis. Heat shock proteins (HSPs) have been widely studied to determine their involvement in stress tolerance among various organism, of which chironomid species have been no exception. We examined the survival and expression of genes encoding five (5) heat shock proteins (HSP70, HSP67, HSP60, HSP27, and HSP23) from Chironomus sulfurosus larvae reared from 1st instar at 25°C, 30°C, 35°C, and 40°C. Results: The highest survival rate was recorded at 30°C, followed by 25°C, then 35°C. Only a small percentage of C. sulfurosus survived at 40°C (14.5%). With regards to HSPs expression, some HSPs responded to an increase in high temperature. The relative expression levels were lowest at 30°C for HSP70, HSP60, HSP27, and HSP23. At 25°C and 40°C, HSP70, HSP67, HSP60, HSP27, and HSP23 had the highest expression. At 35°C, all had the lowest expression. Discussion: The expression of heat shock proteins varies from one species to another. We designated the genes HSP 70, HSP 67, HSP 60, HSP 27, and HSP 23 genes based on transcriptome analysis of C. sulfurosus. Our study can be termed as a long-heat shock study as C. sulfurosus was reared from the first instar to the fourth instar, and this might have led to a continuous induction of HSPs at 25°C. 40°C had the lowest survival but highest HSPs expression as C. sulfurosus larvae had to utilize HSPs for sustenance. These results and future high-throughput studies at both the transcriptome and proteome level will improve the information needed to predict the future geographic distribution of these species within the context of global warming.Keywords: chironomid, heat shock proteins, high temperature, heat shock protein expression
Procedia PDF Downloads 959142 Failure and Stress Analysis of Super Heater Tubes of a 67 TPH Coke Dry Quenching Boiler
Authors: Subodh N. Patel, Abhijit Pusty, Manashi Adhikary, Sandip Bhattacharyya
Abstract:
The steam superheater (SH) is a coil type heat exchanger which is used to produce superheated steam or to convert the wet steam to dry steam (69.6 kg/cm² and 495°C), generated by a boiler. There were two superheaters in the system, SH I and SH II. SH II is a set of tubes that faces the initial interaction with flue gas at high temperature followed by SH I tubes. After a service life of 2100 hours, a tube in the SH II found to be punctured. Dye penetrant test revealed that out of 50 such tubes, 14 more tubes had severe cracks at a similar location. The failure was investigated in detail. The materials and scale were characterized by optical microscope and advance characterization technique. Scale, observed on fracture surface, was characterized under scanning electron microscope and Raman spectroscopy. Stresses acting on the tubes in working condition were analyzed by finite element method software, ANSYS. Cyclic stresses were observed in the simulation at the same prone location due to restriction in expansion of tubes. Based on scale characterization and stress analysis, it was concluded that the tube failed in thermo-mechanical fatigue. Finally, prevention and control measures were taken to avoid such failure in the future.Keywords: finite element analysis, oxide scale, superheater tube, thermomechanical fatigue
Procedia PDF Downloads 1179141 Contribution to the Study of the Rill Density Effects on Soil Erosion: Laboratory Experiments
Authors: L. Mouzai, M. Bouhadef
Abstract:
Rills begin to be generated once overland flow shear capacity overcomes the soil surface resistance. This resistance depends on soil texture, the arrangement of soil particles and on chemical and physical properties. The rill density could affect soil erosion, especially when the distance between the rills (interrill) contributes to the variation of the rill characteristics, and consequently on sediment concentration. To investigate this point, agricultural sandy soil, a soil tray of 0.2x1x3m³ and a piece of hardwood rectangular in shape to build up rills were the base of this work. The results have shown that small lines have been developed between the rills and the flow acceleration increased in comparison to the flow on the flat surface (interrill). Sediment concentration increased with increasing rill number (density).Keywords: artificial rainfall, experiments, rills, soil erosion, transport capacity
Procedia PDF Downloads 1649140 Synthesis and Characterization of SnO2: Ti Thin Films Spray-Deposited on Optical Glass
Authors: Demet Tatar, Bahattin Düzgün
Abstract:
In this study, we have newly developed titanium-tin oxide (TiSnO) thin films as the transparent conducting oxides materials by the spray pyrolysis technique. Tin oxide thin films doped with different Ti content were successfully grown by spray pyrolysis and they were characterized as a function of Ti content. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited SnO2:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), atomic force microscopy (AFM), UV-vis spectrometer and photoluminecenc spectrophotometer. The X-ray diffraction patterns taken at room temperature showed that the films are polycrystalline. The preferred directions of crystal growth appeared in the difractogram of SnO2: Ti (TiTO) films were correspond to the reflections from the (110), (200), (211) and (301) planes. The grain size varies from 21.8 to 27.8 nm for (110) preferred plane. SEM and AFM study reveals the surface of TiTO to be made of nanocrystalline particles. The highest visible transmittance (570 nm) of the deposited films is 80 % for 20 wt % titanium doped tin oxide films. The obtained results revealed that the structures and optical properties of the films were greatly affected by doping levels. These films are useful as conducting layers in electro chromic and photovoltaic devices.Keywords: transparent conducting oxide, gas sensors, SnO2, Ti, optoelectronic, spray pyrolysis
Procedia PDF Downloads 3859139 Reduction of Biofilm Formation in Closed Circuit Cooling Towers
Authors: Irfan Turetgen
Abstract:
Closed-circuit cooling towers are cooling units that operate according to the indirect cooling principle. Unlike the open-loop cooling tower, the filler material includes a closed-loop water-operated heat exchanger. The main purpose of this heat exchanger is to prevent the cooled process water from contacting with the external environment. In order to ensure that the hot water is cooled, the water is cooled by the air flow and the circulation water of the tower as it passes through the pipe. They are now more commonly used than open loop cooling towers that provide cooling with plastic filling material. As with all surfaces in contact with water, there is a biofilm formation on the outer surface of the pipe. Although biofilm has been studied very well on plastic surfaces in open loop cooling towers, studies on biofilm layer formed on the heat exchangers of the closed circuit tower have not been found. In the recent study, natural biofilm formation was observed on the heat exchangers of the closed loop tower for 6 months. At the same time, nano-silica coating, which is known to reduce the formation of the biofilm layer, a comparison was made between the two different surfaces in terms of biofilm formation potential. Test surfaces were placed into biofilm reactor along with the untreated control coupons up to 6-months period for biofilm maturation. Natural bacterial communities were monitored to analyze the impact to mimic the real-life conditions. Surfaces were monthly analyzed in situ for their microbial load using epifluorescence microscopy. Wettability is known to play a key role in biofilm formation on surfaces, because characteristics of surface properties affect the bacterial adhesion. Results showed that surface-conditioning with nano-silica significantly reduce (up to 90%) biofilm formation. Easy coating process is a facile and low-cost method to prepare hydrophobic surface without any kinds of expensive compounds or methods.Keywords: biofilms, cooling towers, fill material, nano silica
Procedia PDF Downloads 1299138 Relation of Electromyography, Strength and Fatigue During Ramp Isometric Contractions
Authors: Cesar Ferreira Amorim, Tamotsu Hirata, Runer Augusto Marson
Abstract:
The purpose of this study was to determine the effect of strength ramp isometric contraction on changes in surface electromyography (sEMG) signal characteristics of the hamstrings muscles. All measurements were obtained from 20 healthy well trained healthy adults (age 19.5 ± 0.8 yrs, body mass 63.4 ± 1.5 kg, height: 1.65 ± 0.05 m). Subjects had to perform isometric ramp contractions in knee flexion with the force gradually increasing from 0 to 40% of the maximal voluntary contraction (MVC) in a 20s period. The root mean square (RMS) amplitude of sEMG signals obtained from the biceps femoris (caput longum) were calculated at four different strength levels (10, 20, 30, and 40% MVC) from the ramp isometric contractions (5s during the 20s task %MVC). The main results were a more pronounced increase non-linear in sEMG-RMS amplitude for the muscles. The protocol described here may provide a useful index for measuring of strength neuromuscular fatigue.Keywords: biosignal, surface electromyography, ramp contractions, strength
Procedia PDF Downloads 4839137 Oxidation Behavior of Ferritic Stainless Steel Interconnects Modified Using Nanoparticles of Rare-Earth Elements under Operating Conditions Specific to Solid Oxide Electrolyzer Cells
Authors: Łukasz Mazur, Kamil Domaradzki, Bartosz Kamecki, Justyna Ignaczak, Sebastian Molin, Aleksander Gil, Tomasz Brylewski
Abstract:
The rising global power consumption necessitates the development of new energy storage solutions. Prospective technologies include solid oxide electrolyzer cells (SOECs), which convert surplus electrical energy into hydrogen. An electrolyzer cell consists of a porous anode, and cathode, and a dense electrolyte. Power output is increased by connecting cells into stacks using interconnects. Interconnects are currently made from high-chromium ferritic steels – for example, Crofer 22 APU – which exhibit high oxidation resistance and a thermal expansion coefficient that is similar to that of electrode materials. These materials have one disadvantage – their area-specific resistance (ASR) gradually increases due to the formation of a Cr₂O₃ scale on their surface as a result of oxidation. The chromia in the scale also reacts with the water vapor present in the reaction media, forming volatile chromium oxyhydroxides, which in turn react with electrode materials and cause their deterioration. The electrochemical efficiency of SOECs thus decreases. To mitigate this, the interconnect surface can be modified with protective-conducting coatings of spinel or other materials. The high prices of SOEC components -especially the Crofer 22 APU- have prevented their widespread adoption. More inexpensive counterparts, therefore, need to be found, and their properties need to be enhanced to make them viable. Candidates include the Nirosta 4016/1,4016 low-chromium ferritic steel with a chromium content of just 16.3 wt%. This steel's resistance to high-temperature oxidation was improved by depositing Gd₂O₃ nanoparticles on its surface via either dip coating or electrolysis. Modification with CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles deposited by means of spray pyrolysis was also tested. These methods were selected because of their low cost and simplicity of application. The aim of this study was to investigate the oxidation kinetics of Nirosta 4016/1,4016 modified using the afore-mentioned methods and to subsequently measure the obtained samples' ASR. The samples were oxidized for 100 h in the air as well as air/H₂O and Ar/H₂/H₂O mixtures at 1073 K. Such conditions reflect those found in the anode and cathode operating space during real-life use of SOECs. Phase and chemical composition and the microstructure of oxidation products were determined using XRD and SEM-EDS. ASR was measured over the range of 623-1073 K using a four-point, two-probe DC technique. The results indicate that the applied nanoparticles improve the oxidation resistance and electrical properties of the studied layered systems. The properties of individual systems varied significantly depending on the applied reaction medium. Gd₂O₃ nanoparticles improved oxidation resistance to a greater degree than either CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles. On the other hand, the cerium-containing nanoparticles improved electrical properties regardless of the reaction medium. The ASR values of all surface-modified steel samples were below the 0.1 Ω.cm² threshold set for interconnect materials, which was exceeded in the case of the unmodified reference sample. It can be concluded that the applied modifications increased the oxidation resistance of Nirosta 4016/1.4016 to a level that allows its use as SOEC interconnect material. Acknowledgments: Funding of Research project supported by program "Excellence initiative – research university" for the AGH University of Krakow" is gratefully acknowledged (TB).Keywords: cerium oxide, ferritic stainless steel, gadolinium oxide, interconnect, SOEC
Procedia PDF Downloads 879136 Simulation Model of Biosensor Based on Gold Nanoparticles
Authors: Kholod Hajo
Abstract:
In this study COMSOL Multiphysics was used to design lateral flow biosensors (LFBs) which provide advantages in low cost, simplicity, rapidity, stability and portability thus making LFBs popular in biomedical, agriculture, food and environmental sciences. This study was focused on simulation model of biosensor based on gold nanoparticles (GNPs) designed using software package (COMSOL Multiphysics), the magnitude of the laminar velocity field in the flow cell, concentration distribution in the analyte stream and surface coverage of adsorbed species and average fractional surface coverage of adsorbed analyte were discussed from the model and couples of suggestion was given in order to functionalize GNPs and to increase the accuracy of the biosensor design, all above were obtained acceptable results.Keywords: model, gold nanoparticles, biosensor, COMSOL Multiphysics
Procedia PDF Downloads 2579135 Improvement in Tool Life Through Optimizing Cutting Parameters Using Cryogenic Media in Machining of Aerospace Alloy Steel
Authors: Waseem Tahir, Syed Hussain Imran Jaffery, Mohammad Azam
Abstract:
In this research work, liquid nitrogen gas (LN2) is used as a cryogenic media to optimize the cutting parameters for evaluation of tool flank wear width of Tungsten Carbide Insert (CNMG 120404-WF 4215) while turning a high strength alloy steel. Robust design concept of Taguchi L9 (34) method is applied to determine the optimum conditions. The analysis is revealed that cryogenic impact is more significant in reduction of the tool flank wear. However, High Speed Machining is shown most significant as compare to cooling media on work piece surface roughness.Keywords: turning, cryogenic cooling, liquid nitrogen, flank wear, surface finish
Procedia PDF Downloads 5129134 Probing Extensive Air Shower Primaries and Their Interactions by Combining Individual Muon Tracks and Shower Depth
Authors: Moon Moon Devi, Ran Budnik
Abstract:
The current large area cosmic ray detector surface arrays typically measure only the net flux and arrival-time of the charged particles produced in an extensive air shower (EAS). Measurement of the individual charged particles at a surface array will provide additional distinguishing parameters to identify the primary and to map the very high energy interactions in the upper layers of the atmosphere. In turn, these may probe anomalies in QCD interactions at energies beyond the reach of current accelerators. The recent attempts of studying the individual muon tracks are limited in their expandability to larger arrays and can only probe primary particles with energy up to about 10^15.5 eV. New developments in detector technology allow for a realistic cost of large area detectors, however with limitations on energy resolutions, directional information, and dynamic range. In this study, we perform a simulation study using CORSIKA to combine the energy spectrum and lateral spread of the muons with the longitudinal depth (Xmax) of an EAS initiated by a primary at ultra high energies (10¹⁶ – 10¹⁹) eV. Using proton and iron as the shower primaries, we show that the muon observables and Xmax together can be used to distinguish the primary. This study can be used to design a future detector for the surface array, which will be able to enhance our knowledge of primaries and QCD interactions.Keywords: ultra high energy extensive air shower, muon tracking, air shower primaries, QCD interactions
Procedia PDF Downloads 2299133 Evaluation of tribological performance of aged and unaged biodiesel
Authors: Yuan-Ching Lin, Tian-Yi Huang, Ming-Jhe Hsieh
Abstract:
In this work, soybean biodiesel was blended with petroleum diesel as testing oils (B2). The tribiological performance of the B2 biodiesel before and after aging was evaluated using a reciprocating cylinder-on-flat wear test rig (Cameron-Plint TE-77) at various temperatures. The worn surface of each tested specimen was observed using a field-emission scanning electron microscope (FESEM). The compositions of the chemical films on each worn surface were determined using an energy dispersive spectrometer (EDS). The experimental results demonstrate that the tribiological behavior of the B2 was superior to that of other testing oils. Furthermore, the aging of biodiesel caused acidification, which resulted in poorer wear performance in the same experimental condition compared with others. The worn morphology of the specimen that was tested in the aged soybean biodiesel exhibited corrosion wear, reflecting low wear resistance.Keywords: biodiesel, soybean, tribological performance
Procedia PDF Downloads 4949132 Vegetables and Fruits Solar Tunnel Dryer for Small-Scale Farmers in Kassala
Authors: Sami Mohamed Sharif
Abstract:
The current study focuses on the design and construction of a solar tunnel dryer intended for small-scale farmers in Kassala, Sudan. To determine the appropriate dimensions of the dryer, the heat and mass balance equations are used, taking into account factors such as the target agricultural product, climate conditions, solar irradiance, and desired drying time. In Kassala, a dryer with a width of 88 cm, length of 600 cm, and height of 25 cm has been built, capable of drying up to 40 kg of vegetables or fruits. The dryer is divided into two chambers of different lengths. The air passing through is heated to the desired drying temperature in a separate heating chamber that is 200 cm long. From there, the heated air enters the drying chamber, which is 400 cm long. In this section, the agricultural product is placed on a slightly elevated net. The tunnel dryer was constructed using materials from the local market. The paper also examines the solar irradiance in Kassala, finding an average of 23.6 MJ/m2/day, with a maximum of 26.6 MJ/m2/day in April and a minimum of 20.2 MJ/m2/day in December. A DC fan powered by a 160Wp solar panel is utilized to circulate air within the tunnel. By connecting the fan and three 12V, 60W bulbs in series, four different speeds can be achieved using a speed controller. Temperature and relative humidity measurements were taken hourly over three days, from 10:00 a.m. to 3:00 p.m. The results demonstrate the promising technology and sizing techniques of solar tunnel dryers, which can significantly increase the temperature within the tunnel by more than 90%.Keywords: tunnel dryer, solar drying, moisture content, fruits drying modeling, open sun drying
Procedia PDF Downloads 559131 Effect of Thermal Treatment on Mechanical Properties of Reduced Activation Ferritic/Martensitic Eurofer Steel Grade
Authors: Athina Puype, Lorenzo Malerba, Nico De Wispelaere, Roumen Petrov, Jilt Sietsma
Abstract:
Reduced activation ferritic/martensitic (RAFM) steels like EUROFER97 are primary candidate structural materials for first wall application in the future demonstration (DEMO) fusion reactor. Existing steels of this type obtain their functional properties by a two-stage heat treatment, which consists of an annealing stage at 980°C for thirty minutes followed by quenching and an additional tempering stage at 750°C for two hours. This thermal quench and temper (Q&T) treatment creates a microstructure of tempered martensite with, as main precipitates, M23C6 carbides, with M = Fe, Cr and carbonitrides of MX type, e.g. TaC and VN. The resulting microstructure determines the mechanical properties of the steel. The ductility is largely determined by the tempered martensite matrix, while the resistance to mechanical degradation, determined by the spatial and size distribution of precipitates and the martensite crystals, plays a key role in the high temperature properties of the steel. Unfortunately, the high temperature response of EUROFER97 is currently insufficient for long term use in fusion reactors, due to instability of the matrix phase and coarsening of the precipitates at prolonged high temperature exposure. The objective of this study is to induce grain refinement by appropriate modifications of the processing route in order to increase the high temperature strength of a lab-cast EUROFER RAFM steel grade. The goal of the work is to obtain improved mechanical behavior at elevated temperatures with respect to conventionally heat treated EUROFER97. A dilatometric study was conducted to study the effect of the annealing temperature on the mechanical properties after a Q&T treatment. The microstructural features were investigated with scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the mechanical properties of the furnace-heated lab-cast EUROFER RAFM steel grade. A significant prior austenite grain (PAG) refinement was obtained by lowering the annealing temperature of the conventionally used Q&T treatment for EUROFER97. The reduction of the PAG results in finer martensitic constituents upon quenching, which offers more nucleation sites for carbide and carbonitride formation upon tempering. The ductile-to-brittle transition temperature (DBTT) was found to decrease with decreasing martensitic block size. Additionally, an increased resistance against high temperature degradation was accomplished in the fine grained martensitic materials with smallest precipitates obtained by tailoring the annealing temperature of the Q&T treatment. It is concluded that the microstructural refinement has a pronounced effect on the DBTT without significant loss of strength and ductility. Further investigation into the optimization of the processing route is recommended to improve the mechanical behavior of RAFM steels at elevated temperatures.Keywords: ductile-to-brittle transition temperature (DBTT), EUROFER, reduced activation ferritic/martensitic (RAFM) steels, thermal treatments
Procedia PDF Downloads 3009130 Effect of Various Capping Agents on Photocatalytic, Antibacterial and Antibiofilm of ZnO Nanoparticles
Authors: K. Akhil, J. Jayakumar, S. Sudheer Khan
Abstract:
Zinc oxide nanoparticles (ZnO NPs) are extensively used in a wide variety of commercial products including sunscreen, textile and paints. The present study evaluated the effect of surface capping agents including polyethylene glycol (EG), gelatin, polyvinyl alcohol(PVA) and poly vinyl pyrrolidone(PVP) on photocatalytic activity of ZnO NPs. The particles were also tested for its antibacterial and antibiofilm activity against Staphylococcus aureus (MTCC 3160) and Pseudomonas aeruginosa (MTCC 1688). Preliminary characterization was done by UV-Visible spectroscopy. Electron microscopic analysis showed that the particles were hexagonal in shape. The hydrodynamic size distribution was analyzed by using dynamic light scattering method and crystalline nature was determined by X-Ray diffraction method.Keywords: antibacterial, antibiofilm, capping agents, photodegradation, surface coating, zinc oxide nanoparticles
Procedia PDF Downloads 2729129 Ziegler Nichols Based Integral Proportional Controller for Superheated Steam Temperature Control System
Authors: Amil Daraz, Suheel Abdullah Malik, Tahir Saleem, Sajid Ali Bhati
Abstract:
In this paper, Integral Proportional (I-P) controller is employed for superheated steam temperature control system. The Ziegler-Nichols (Z-N) method is used for the tuning of I-P controller. The performance analysis of Z-N based I-P controller is assessed on superheated steam system of 500-MW boiler. The comparison of transient response parameters such as rise time, settling time, and overshoot is made with Z-N based Proportional Integral (PI) controller. It is observed from the results that Z-N based I-P controller completely eliminates the overshoot in the output response.Keywords: superheated steam, process reaction curve, PI and I-P controller, Ziegler-Nichols Tuning
Procedia PDF Downloads 3319128 Improving the Efficiency of Wheat and Triticale Androgenesis: Ultrastructural and Transcriptomic Study
Authors: M. Szechynska-Hebda, M. Sobczak, E. Rozanska, J. Troczynska, Z. Banaszak, N. Hordyńska, M. Dyda, M. Wedzony
Abstract:
Chloroplasts, as essential organelles for photosynthesis, play a critical role in plant development. However, disturbances in the proper functioning of chloroplasts, in the extreme case manifesting as albinism of tissues and whole plants, are a phenomenon often occurring in conditions deviating from natural (e.g., in vitro cultures applied in breeding programs). Using whole-transcriptome analysis (RNA-Seq) together with light, fluorescent and electron microscopy, it was shown, that development of chloroplasts and formation of green or albino plants in the androgenesis process are genotype-dependent; however, they could be modulated by sub-optimal temperature treatment. The reprogramming of the microspore development from gametophytic to sporophytic, and then regeneration of green plant can be positively regulated by cold stress (4 ⁰C). A high temperature stress (32 ⁰C) can induce androgenesis, but it is a factor negatively influencing green plant regeneration (promoting albinism). A similar effect on microspores, androgenesis, and subsequent chloroplast formation, is elicited as a result of postponing the date of spike collection from spring to summer in field conditions (natural temperature rise). It is determined in both environmental or genotypic manner. The delay of the sowing date (environmental effect) or growing of late genotypes (genotypic effect) result in spike maturation at higher temperatures and significantly enhance albino plant formation in androgenesis process. Such a temperature system (4 ⁰C vs. 32 ⁰C) was used to study the chloroplast biogenesis process in wheat and triticale. It was shown, that efficiency of physiological processes differentiates microspore development during cold reprograming in genotypes susceptible and resistant to androgenesis. Moreover, a great variation in developmental stages of the microspores in one anther is observed for susceptible genotypes. Microspores that are more physiologically active under cold conditions can activate signaling pathways and processes, which provide an appropriate supply of metabolites to cell compartments. This, in turn, fully correlates with the genotype-dependent efficiency of chloroplast formation (or different types of plastid) at particular steps of androgenesis. The effect obtained after applying a high temperature stress is different. High temperature causes a significant acceleration of microspore development and less variation in developmental stages at the end of the treatment. Therefore, the developmental diversity of the microspores in one anther seems to be a critical factor for subsequent cell and chloroplast differentiation. The work was financed by Ministry of Agriculture and Rural Development within Program: 'Biological Progress in Plant Production', project no HOR.hn.802.15.2018Keywords: androgenesis, chloroplast biogenesis, temperature stress, wheat
Procedia PDF Downloads 1459127 Numerical Simulation of a Single Cell Passing through a Narrow Slit
Authors: Lanlan Xiao, Yang Liu, Shuo Chen, Bingmei Fu
Abstract:
Most cancer-related deaths are due to metastasis. Metastasis is a complex, multistep processes including the detachment of cancer cells from the primary tumor and the migration to distant targeted organs through blood and/or lymphatic circulations. During hematogenous metastasis, the emigration of tumor cells from the blood stream through the vascular wall into the tissue involves arrest in the microvasculature, adhesion to the endothelial cells forming the microvessel wall and transmigration to the tissue through the endothelial barrier termed as extravasation. The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used Dissipative Particle Dynamics method to investigate an individual cell passing through a narrow slit numerically. The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and surrounding fluid. The effects of the cell elasticity, cell shape and cell surface area increase, and slit size on the cell transmigration through the slit were investigated. Under a fixed driven force, the cell with higher elasticity can be elongated more and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to ellipsoidal shape and increasing the cell surface area only by 3% can enable the cell to pass the narrow slit. Therefore the cell shape and surface area increase play a more important role than the cell elasticity in cell passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases during entry but increases during exit of the slit, which is qualitatively in agreement with the experimental observation.Keywords: dissipative particle dynamics, deformability, surface area increase, cell migration
Procedia PDF Downloads 3349126 Non-Isothermal Stationary Laminar Oil Flow Numerical Simulation
Authors: Daniyar Bossinov
Abstract:
This paper considers a non-isothermal stationary waxy crude oil flow in a two-dimensional axisymmetric pipe with the transition of a Newtonian fluid to a non-Newtonian fluid. The viscosity and yield stress of waxy crude oil are highly dependent on temperature changes. During the hot pumping of waxy crude oil through a buried pipeline, a non-isothermal flow occurs due to heat transfer to the surrounding soil. This leads to a decrease in flow temperature, an increase in viscosity, the appearance of yield stress, the crystallization of wax, and the deposition of solid particles on the pipeline's inner wall. The deposition of oil solid particles reduces a pipeline flow area and leads to the appearance of a stagnant zone with thermal insulation in the near-wall area. Waxy crude oil properties change. A Newtonian fluid at low temperatures transits to a non-Newtonian fluid. The one-dimensional modeling of a non-isothermal waxy crude oil flow in a two-dimensional axisymmetric pipeline by traditional averaging of temperature and velocity over the pipeline cross-section does not allow for explaining a physics phenomenon. Therefore, in this work, a two-dimensional flow model and the heat transfer of waxy oil are constructed. The calculated data show the transition of a Newtonian fluid to a non-Newtonian fluid due to the heat exchange of waxy oil with the environment.Keywords: non-isothermal laminar flow, waxy crude oil, stagnant zone, yield stress
Procedia PDF Downloads 289125 Thermal Evaluation of Printed Circuit Board Design Options and Voids in Solder Interface by a Simulation Tool
Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles
Abstract:
Quad Flat No-Lead (QFN) packages have become very popular for turners, converters and audio amplifiers, among others applications, needing efficient power dissipation in small footprints. Since semiconductor junction temperature (TJ) is a critical parameter in the product quality. And to ensure that die temperature does not exceed the maximum allowable TJ, a thermal analysis conducted in an earlier development phase is essential to avoid repeated re-designs process with huge losses in cost and time. A simulation tool capable to estimate die temperature of components with QFN package was developed. Allow establish a non-empirical way to define an acceptance criterion for amount of voids in solder interface between its exposed pad and Printed Circuit Board (PCB) to be applied during industrialization process, and evaluate the impact of PCB designs parameters. Targeting PCB layout designer as an end user for the application, a user-friendly interface (GUI) was implemented allowing user to introduce design parameters in a convenient and secure way and hiding all the complexity of finite element simulation process. This cost effective tool turns transparent a simulating process and provides useful outputs after acceptable time, which can be adopted by PCB designers, preventing potential risks during the design stage and make product economically efficient by not oversizing it. This article gathers relevant information related to the design and implementation of the developed tool, presenting a parametric study conducted with it. The simulation tool was experimentally validated using a Thermal-Test-Chip (TTC) in a QFN open-cavity, in order to measure junction temperature (TJ) directly on the die under controlled and knowing conditions. Providing a short overview about standard thermal solutions and impacts in exposed pad packages (i.e. QFN), accurately describe the methods and techniques that the system designer should use to achieve optimum thermal performance, and demonstrate the effect of system-level constraints on the thermal performance of the design.Keywords: QFN packages, exposed pads, junction temperature, thermal management and measurements
Procedia PDF Downloads 2569124 Occurrence of Pharmaceutical Compounds in an Urban Lake
Authors: J. D. Villanueva, N. Peyraube, I. Allan, G. D. Salvosa, M. Reid, C. Harman, K. D. Salvosa, J. M. V. Castro, M. V. O. Espaldon, J. B. Sevilla-Nastor, P. Le Coustumer
Abstract:
The main objectives of this research are to (1) assess the occurrence of the pharmaceutical compounds and (2) present the environmental challenges posed by the existence of these pharmaceutical compounds in the surface water. These pharmaceuticals were measured in Napindan Lake, Philippines. This lake is not only a major tributary of the Pasig River (an estuary) and Laguna Lake (freshwater). It also joins these two important surface waters of the National Capital Region. Pharmaceutical compounds such as Atenolol, Carbamazepine, and two other over the counter medicines: Cetirizine, and Ibuprofen were measured in Napindan Lake. Atenolol is a beta blocker that helps in lowering hypertensions. Carbamazepine is an anticonvulsant used as treatment for epilepsy and neuropathic pain. Cetirizine is an antihistamine that can relieve allergies. Ibuprofen is a non-steroidal anti-inflammatory drug normally used to relieve pains. Three different climatological conditions with corresponding hydro physico chemical characteristics were considered. First, was during a dry season with a simultaneous dredging. Second was during a transition period from dry to wet season. Finally, the third was during a continuous wet event. Based from the results of the study, most of these pharmaceuticals can be found in Napindan Lake. This is a proof that these pharmaceutical compounds are being released to a natural surface water. Even though climatological conditions were different, concentrations of these pharmaceuticals can still be detected. This implies that there is an incessant supply of these pharmaceutical compounds in Napindan Lake. Chronic exposure to these compounds even at low concentrations can lead to possible environmental and health risks. Given this information and since consistent occurrence of these compounds can be expected, the main challenge, at present, is on how to control the sources of these pharmaceutical compounds. Primarily, there is a need to manage the disposal of the pharmaceutical compounds. Yet, the main question is how to? This study would like to present the challenges and institutional roles in helping manage the pharmaceutical disposals in a developing country like the Philippines.Keywords: atenolol, carbamazepine, cetirizine, ibuprofen, institutional roles, Napindan lake, pharmaceutical compound disposal management, surface water, urban lake
Procedia PDF Downloads 1629123 Improvement in Ni (II) Adsorption Capacity by Using Fe-Nano Zeolite
Authors: Pham-Thi Huong, Byeong-Kyu Lee, Jitae Kim, Chi-Hyeon Lee
Abstract:
Fe-nano zeolite adsorbent was used for removal of Ni (II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the surface area Brunauer–Emmett–Teller (BET) using for analysis of functional groups, morphology and surface area. Bath adsorption experiments were analyzed on the effect of pH, time, adsorbent doses and initial Ni (II) concentration. The optimum pH for Ni (II) removal using Fe-nano zeolite was found at 5.0 and 90 min of reaction time. The maximum adsorption capacity of Ni (II) was 231.68 mg/g based on the Langmuir isotherm. The kinetics data for the adsorption process was fitted with the pseudo-second-order model. The desorption of Ni (II) from Ni-loaded Fe-nano zeolite was analyzed and even after 10 cycles 72 % desorption was achieved. These finding supported that Fe-nano zeolite with high adsorption capacity, high reuse ability would be utilized for Ni (II) removal from water.Keywords: Fe-nano zeolite, adsorption, Ni (II) removal, regeneration
Procedia PDF Downloads 2329122 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water
Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien
Abstract:
Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment
Procedia PDF Downloads 2349121 Alcohols as a Phase Change Material with Excellent Thermal Storage Properties in Buildings
Authors: Dehong Li, Yuchen Chen, Alireza Kaboorani, Denis Rodrigue, Xiaodong (Alice) Wang
Abstract:
Utilizing solar energy for thermal energy storage has emerged as an appealing option for lowering the amount of energy that is consumed by buildings. Due to their high heat storage density, and non-corrosive and non-polluting properties, alcohols can be a good alternative to petroleum-derived paraffin phase change materials (PCMs). In this paper, ternary eutectic PCMs with suitable phase change temperatures were designed and prepared using lauryl alcohol (LA), cetyl alcohol (CA), stearyl alcohol (SA), and xylitol (X). The differential scanning calorimetry (DSC) results revealed that the phase change temperatures of LA-CA-SA, LA-CA-X, and LA-SA-X were 20.52°C, 20.37°C, and 22.18°C, respectively. The latent heat of phase change of the ternary eutectic PCMs was all stronger than that of the paraffinic PCMs at roughly the same temperature. The highest latent heat was 195 J/g. It had good thermal energy storage capacity. The preparation mechanism was investigated using Fourier-transform Infrared Spectroscopy (FTIR), and it was found that the ternary eutectic PCMs were only physically mixed among the components. Ternary eutectic PCMs had a simple preparation process, suitable phase change temperature, and high energy storage density. They are suitable for low-temperature architectural packaging applications.Keywords: thermal energy storage, buildings, phase change materials, alcohols
Procedia PDF Downloads 989120 Experimental Investigation of the Effect of Temperature on A PEM Fuel Cell Performance
Authors: Remzi Şahin, Sadık Ata, Kevser Dincer
Abstract:
In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated. The efficiency of energy conversion in PEM fuel cells is dependent on the catalytic activities of the catalysts used in the cathode and anode of membrane electrode assemblies. Membrane is considered the heart of PEM fuel cells without which they cannot produce electricity. PEM fuel cell performance increased with coating carbon nanotube (CNT). CNT show a unique combination of stiffness, strength, and tenacity compared to other fiber materials which usually lack one or more of these properties. Two different experiments were performed and the membrane performance has been determined by repeating the two experiments that were done before coating. The purposes of these experiments are the observation of power change due to a temperature change in the same voltage value.Keywords: carbon nanotube (CNT), proton exchange membrane (PEM), fuel cell, spin method
Procedia PDF Downloads 3829119 Texturing of Tool Insert Using Femtosecond Laser
Authors: Ashfaq Khan, Aftab Khan, Mushtaq Khan, Sarem Sattar, Mohammad A Sheikh, Lin Li
Abstract:
Chip removal processes are one of key processes of the manufacturing industry where chip removal is conducted by tool inserts of exceptionally hard materials. Tungsten carbide has been extensively used as tool insert for machining processes involving chip removal processes. These hard materials are generally fabricated by single step sintering process as further modification after fabrication in these materials cannot be done easily. Advances in tool surface modification have revealed that advantages such as improved tribological properties and extended tool life can be harnessed from the same tool by texturing the tool rake surface. Moreover, it has been observed that the shape and location of the texture also influences the behavior. Although texturing offers plentiful advantages the challenge lies in the generation of textures on the tool surface. Extremely hard material such as diamond is required to process tungsten carbide. Laser is unique processing tool that does not have a physical contact with the material and thus does not wear. In this research the potential of utilizing laser for texturing of tungsten carbide to develop custom features would be studied. A parametric study of texturing of Tungsten Carbide with a femtosecond laser would be conducted to investigate the process parameters and establish the feasible processing window. The effect of fluence, scan speed and number of repetition would be viewed in detail. Moreover, the mechanism for the generation of features would also be reviewed.Keywords: laser, texturing, femtosecond, tungsten carbide
Procedia PDF Downloads 6589118 Assessing the Effect of Freezing and Thawing of Coverzone of Ground Granulated Blast-Furnace Slag Concrete
Authors: Abdulkarim Mohammed Iliyasu, Mahmud Abba Tahir
Abstract:
Freezing and thawing are considered to be one of the major causes of concrete deterioration in the cold regions. This study aimed at assessing the freezing and thawing of concrete within the cover zone by monitoring the formation of ice and melting at different temperatures using electrical measurement technique. A multi-electrode array system was used to obtain the resistivity of ice formation and melting at discrete depths within the cover zone of the concrete. A total number of four concrete specimens (250 mm x 250 mm x 150 mm) made of ordinary Portland cement concrete and ordinary Portland cement replaced by 65% ground granulated blast furnace slag (GGBS) is investigated. Water/binder ratios of 0.35 and 0.65 were produced and ponded with water to ensure full saturation and then subjected to freezing and thawing process in a refrigerator within a temperature range of -30 0C and 20 0C over a period of time 24 hours. The data were collected and analysed. The obtained results show that the addition of GGBS changed the pore structure of the concrete which resulted in the decrease in conductance. It was recommended among others that, the surface of the concrete structure should be protected as this will help to prevent the instantaneous propagation of ice trough the rebar and to avoid corrosion and subsequent damage.Keywords: concrete, conductance, deterioration, freezing and thawing
Procedia PDF Downloads 4179117 Numerical Modeling of hybrid Photovoltaic-Thermoelectric Solar Unit by Applying Various Cross-Sections of Cooling Ducts
Authors: Ziba Khalili, Mohsen Sheikholeslami, Ladan Momayez
Abstract:
Combining the photovoltaic/thermal (PVT) systems with a thermoelectric (TE) module can raise energy yields since the TE module boosts the system's energy conversion efficiency. In the current study, a PVT system integrated with a TE module was designed and simulated in ANSYS Fluent 19.2. A copper heat transfer tube (HTT) was employed for cooling the photovoltaic (PV) cells. Four different shapes of HTT cross-section, i.e., circular, square, elliptical, and triangular, with equal cross-section areas were investigated. Also, the influence of Cu-Al2O3/water hybrid nanofluid (0.024% volume concentration), fluid inlet velocity (uᵢ ), and amount of solar radiation (G), on the PV temperature (Tₚᵥ) and system performance were investigated. The ambient temperature (Tₐ), wind speed (u𝓌), and fluid inlet temperature (Tᵢ), were considered to be 25°C, 1 m/s, and 27°C, respectively. According to the obtained data, the triangular case had the greatest impact on reducing the compared to other cases. In the triangular case, examination of the effect of hybrid nanofluid showed that the use of hybrid nanofluid at 800 W/m2 led to a reduction of the TPV by 0.6% compared to water, at 0.19 m/s. Moreover, the thermal efficiency ( ) and the overall electrical efficiency (nₜ) of the system improved by 0.93% and 0.22%, respectively, at 0.19 m/s. In a triangular case where G and were 800 W/m2 and 19 m/s, respectively, the highest amount of, thermal power (Eₜ), and, were obtained as 72.76%, 130.84 W and 12.03%, respectively.Keywords: electrical performance, photovoltaic/thermal, thermoelectric, hybrid nanofluid, thermal efficiency
Procedia PDF Downloads 789116 Zinc Adsorption Determination of H2SO4 Activated Pomegranate Peel
Authors: S. N. Turkmen Koc, A. S. Kipcak, M. B. Piskin, E. Moroydor Derun, N. Tugrul
Abstract:
Active carbon can be obtained from agricultural sources. Due to the high surface area, the production of activated carbon from cheap resources is very important. Since the surface area of 1 g activated carbon is approximately between 300 and 2000 m2, it can be used to remove both organic and inorganic impurities. In this study, the adsorption of Zn metal was studied with the product of activated carbon, which is obtained from pomegranate peel by microwave and chemical activation methods. The microwave process of pomegranate peel was carried out under constant microwave power of 800 W and 1 to 4 minutes. After the microwave process, samples were treated with H2SO4 for 3 h. Then prepared product was used in synthetic waste water including 40 ppm Zn metal. As a result, removal of waste Zn in waste water ranged from 91% to 93%.Keywords: activated carbon, chemical activation, H₂SO₄, microwave, pomegranate peel
Procedia PDF Downloads 169