Search results for: protein-protein interaction networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6623

Search results for: protein-protein interaction networks

3533 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition

Authors: Li Zhang, Yuehong Su

Abstract:

Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.

Keywords: neural network, bended lightpipe, transmittance, Photopia

Procedia PDF Downloads 152
3532 Islam-Oriented Movements' Recruiting Strategies in Morocco

Authors: Driss Bouyahya

Abstract:

During the late 1960s, Islam-oriented social movements have encroached to reach the Moroccan public spheres and mobilize huge waves of people from different walks of life under the banners of a rhetoric that resonates with the Muslim way of life away from Modernity and globalization tenets. In this respect, the present study investigates and explores some of the ways utilized by the Movement for Unity and Reform in Morocco as an Islam-oriented movement to recruit students massively at universities. The significance of this study lies in demystifying the recruitment strategies and mechanisms, considered essential for the Islam-oriented social movements to mobilize. This research paper uses a quantitative method to collect and analyze data through two different structured questionnaires. One of the major findings is that this Islam-oriented movement uses different techniques to recruit students, namely social networks, its websites and You-tube as three main modern and sophisticated means of communication. In a nutshell, this paper´s findings fill some of the gaps in the literature in regard to Islam-oriented movements ‘mobilization strategies.

Keywords: changing, ideology, Islam, party

Procedia PDF Downloads 220
3531 Numerical and Experimental Investigation of the Aerodynamic Performances of Counter-Rotating Rotors

Authors: Ibrahim Beldjilali, Adel Ghenaiet

Abstract:

The contra-rotating axial machine is a promising solution for several applications, where high pressure and efficiencies are needed. Also, they allow reducing the speed of rotation, the radial spacing and a better flexibility of use. However, this requires a better understanding of their operation, including the influence of second rotor on the overall aerodynamic performances. This work consisted of both experimental and numerical studies to characterize this counter-rotating fan, especially the analysis of the effects of the blades stagger angle and the inter-distance between the rotors. The experimental study served to validate the computational fluid dynamics model (CFD) used in the simulations. The numerical study permitted to cover a wider range of parameter and deeper investigation on flow structures details, including the effects of blade stagger angle and inter-distance, associated with the interaction between the rotors. As a result, there is a clear improvement in aerodynamic performance compared with a conventional machine.

Keywords: aerodynamic performance, axial fan, counter rotating rotors, CFD, experimental study

Procedia PDF Downloads 159
3530 Social Affiliation Effects of Technology in 2022

Authors: Johanna Goeß

Abstract:

In this field study, it is hypothesised that affiliation motivation is relevant to dark terminal technology readiness. The theoretical basis for this work was the TAM 2, focusing on the social process variables and the short-scale technology readiness. Two hypotheses to be tested are the focus of consideration:
 H1: The TAM constructs are independently positively related to dark device use. H2: Sense of social belonging is positively related to dark device use.
 In this quantitative study, 30 male subjects participated with their dark devices. Using a post-basket exercise, affiliation is manipulated by content items on the website to investigate whether affiliation between computers and people and smartphones and people leads to similar effects as an affiliation between people. The entire scientific study, including the questionnaire, took about 30 minutes. This study contributes to the current literature and draws attention to the fact that male users' terminal devices have an influence in the form of affiliation effects.

Keywords: human-computer-interaction, computers, smartphones, addiction, social affiliation effects, TAM 2, pyramid of needs, social actors

Procedia PDF Downloads 117
3529 Passenger Flow Characteristics of Seoul Metropolitan Subway Network

Authors: Kang Won Lee, Jung Won Lee

Abstract:

Characterizing the network flow is of fundamental importance to understand the complex dynamics of networks. And passenger flow characteristics of the subway network are very relevant for an effective transportation management in urban cities. In this study, passenger flow of Seoul metropolitan subway network is investigated and characterized through statistical analysis. Traditional betweenness centrality measure considers only topological structure of the network and ignores the transportation factors. This paper proposes a weighted betweenness centrality measure that incorporates monthly passenger flow volume. We apply the proposed measure on the Seoul metropolitan subway network involving 493 stations and 16 lines. Several interesting insights about the network are derived from the new measures. Using Kolmogorov-Smirnov test, we also find out that monthly passenger flow between any two stations follows a power-law distribution and other traffic characteristics such as congestion level and throughflow traffic follow exponential distribution.

Keywords: betweenness centrality, correlation coefficient, power-law distribution, Korea traffic DB

Procedia PDF Downloads 289
3528 An Investigation Into an Essential Property of Creativity, Which Is the First-Person Experience

Authors: Ukpaka Paschal

Abstract:

Margret Boden argues that a creative product is one that is new, surprising, and valuable as a result of the combination, exploration, or transformation involved in producing it. Boden uses examples of artificial intelligence systems that fit all of these criteria and argues that real creativity involves autonomy, intentionality, valuation, emotion, and consciousness. This paper provides an analysis of all these elements in order to try to understand whether they are sufficient to account for creativity, especially human creativity. This paper focuses on Generative Adversarial Networks (GANs), which is a class of artificial intelligence algorithms that are said to have disproved the common perception that creativity is something that only humans possess. This paper will then argue that Boden’s listed properties of creativity, which capture the creativity exhibited by GANs, are not sufficient to account for human creativity, and this paper will further identify “first-person phenomenological experience” as an essential property of human creativity. The rationale behind the proposed essential property is that if creativity involves comprehending our experience of the world around us into a form of self-expression, then our experience of the world really matters with regard to creativity.

Keywords: artificial intelligence, creativity, GANs, first-person experience

Procedia PDF Downloads 136
3527 Identifying Learning Support Patterns for Enhancing Quality Outputs in Massive Open Online Courses

Authors: Cristina Galván-Fernández, Elena Barberà, Jingjing Zhang

Abstract:

In recent years, MOOCs have been in the spotlight for its high drop-out rates, which potentially impact on the quality of the learning experience. This study attempts to explore how learning support can be used to keep student retention, and in turn to improve the quality of learning in MOOCs. In this study, the patterns of learning support were identified from a total of 4202592 units of video sessions, clickstream data of 25600 students, and 382 threads generated in 10 forums (optional and mandatory) in five different types of MOOCs (e.g. conventional MOOCs, professional MOOCs, and informal MOOCs). The results of this study have shown a clear correlation between the types of MOOCs, the design framework of the MOOCs, and the learning support. The patterns of tutor-peer interaction are identified, and are found to be highly correlated with student retention in all five types of MOOCs. In addition, different patterns of ‘good’ students were identified, which could potentially inform the instruction design of MOOCs.

Keywords: higher education, learning support, MOOC, retention

Procedia PDF Downloads 335
3526 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains

Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda

Abstract:

In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).

Keywords: features extraction, handwritten numeric chains, image processing, neural networks

Procedia PDF Downloads 265
3525 Abdominal Exercises Can Modify Abdominal Function in Postpartum Women: A Randomized Control Trial Comparing Curl-up to Drawing-in Combined With Diaphragmatic Aspiration

Authors: Yollande Sènan Djivoh, Dominique de Jaeger

Abstract:

Background: Abdominal exercises are commonly practised nowadays. Specific techniques of abdominal muscles strengthening like hypopressive exercises have recently emerged and their practice is encouraged against the practice of Curl-up especially in postpartum. The acute and the training effects of these exercises did not allow to advise one exercise to the detriment of another. However, physiotherapists remain reluctant to perform Curl-up with postpartum women because of its potential harmful effect on the pelvic floor. Design: This study was a randomized control trial registered under the number PACTR202110679363984. Objective: to observe the training effect of two experimental protocols (Curl-up versus Drawing-in+Diaphragmatic aspiration) on the abdominal wall (interrecti distance, rectus and transversus abdominis thickness, abdominal strength) in Beninese postpartum women. Pelvic floor function (tone, endurance, urinary incontinence) will be assessed to evaluate potential side effects of exercises on the pelvic floor. Method: Postpartum women diagnosed with diastasis recti were randomly assigned to one of three groups (Curl-up, Drawingin+Diaphragmatic aspiration and control). Abdominal and pelvic floor parameters were assessed before and at the end of the 6-week protocol. The interrecti distance and the abdominal muscles thickness were assessed by ultrasound and abdominal strength by dynamometer. Pelvic floor tone and strength were assessed with Biofeedback and urinary incontinence was quantified by pad test. To compare the results between the three groups and the two measurements, a two-way Anova test with repeated measures was used (p<0.05). When interaction was significant, a posthoc using Student t test, with Bonferroni correction, was used to compare the three groups regarding the difference (end value minus initial value). To complete these results, a paired Student t test was used to compare in each group the initial and end values. Results: Fifty-eight women participated in this study, divided in three groups with similar characteristics regarding their age (29±5 years), parity (2±1 children), BMI (26±4 kg/m2 ), time since the last birth (10±2 weeks), weight of their baby at birth (330±50 grams). Time effect and interaction were significant (p<0.001) for all abdominal parameters. Experimental groups improved more than control group. Curl-up group improved more (p=0.001) than Drawing-in+Diaphragmatic aspiration group regarding the interrecti distance (9.3±4.2 mm versus 6.6±4.6 mm) and abdominal strength (20.4±16.4 Newton versus 11.4±12.8 Newton). Drawingin+Diaphragmatic aspiration group improved (0.8±0.7 mm) more than Curl-up group (0.5±0.7 mm) regarding the transversus abdominis thickness (p=0.001). Only Curl-up group improved (p<0.001) the rectus abdominis thickness (1.5±1.2 mm). For pelvic floor parameters, both experimental groups improved (p=0.01) except for tone which improved (p=0.03) only in Drawing-in+Diaphragmatic aspiration group from 19.9±4.1 cmH2O to 22.2±4.5 cmH2O. Conclusion: Curl-up was more efficient to improve abdominal function than Drawingin+Diaphragmatic aspiration. However, these exercises are complementary. None of them degraded the pelvic floor, but Drawing-in+Diaphragmatic aspiration improved further the pelvic floor function. Clinical implications: Curl-up, Drawing-in and Diaphragmatic aspiration can be used for the management of abdominal function in postpartum women. Exercises must be chosen considering the specific needs of each woman’s abdominal and pelvic floor function.

Keywords: curl-up, drawing-in, diaphragmatic aspiration, hypopressive exercise, postpartum women

Procedia PDF Downloads 82
3524 Using Happening Performance in Vocabulary Teaching

Authors: Mustafa Gultekin

Abstract:

It is believed that drama can be used in language classes to create a positive atmosphere for students to use the target language in an interactive way. Thus, drama has been extensively used in many settings in language classes. Although happening has been generally used as a performance art of theatre, this new kind of performance has not been widely known in language teaching area. Therefore, it can be an innovative idea to use happening in language classes, and thus a positive environment can be created for students to use the language in an interactive way. Happening can be defined as an art performance that puts emphasis on interaction in an audience. Because of its interactive feature, happening can also be used in language classes to motivate students to use the language in an interactive environment. The present study aims to explain how a happening performance can be applied to a learning environment to teach vocabulary in English. In line with this purpose, a learning environment was designed for a vocabulary presentation lesson. At the end of the performance, students were asked to compare the traditional way of teaching and happening performance in terms of effectiveness. It was found that happening performance provided the students with a more creative and interactive environment to use the language. Therefore, happening can be used in language classrooms as an innovative tool for education.

Keywords: English, happening, language learning, vocabulary teaching

Procedia PDF Downloads 367
3523 The Lightener of Love, the World Piece Religion

Authors: Abdul Razzaq Azad

Abstract:

It is known that every human society throughout the world and throughout history, the various religions and their theologies, ethics, and traditions influence everything in their life, shaping socio-economic and political ideas, attitudes and institutions. It is observed that religious teachings and traditions shape how people respond to each other in their daily social inter-course and interaction in the community at large. The majorities of us preserves and protect our own religious beliefs and traditions as generally they symbolize our essential identities, theologically, historically, culturally, socially, and even politically. Our religious faiths symbolize our dignity as persons and our very souls as communities and individuals. It thus goes without saying that in our multi racial and multi religious society, the only way for us to live in peace and harmony is for us to live in peaceful co-existence. It is important for us to recognize, understand, accept and respect each other regardless of our respective belief. The history of interfaith is as ancient as the religions since men and women when not at war with their neighbors have always made an effort to understand them (not least because understanding is a strategy for defense, but also because for as long as there is dialogue wars are delayed).

Keywords: interfaith harmony, world piece order, Islam, religions, lightness,

Procedia PDF Downloads 623
3522 Unified Theory of the Security Dilemma: Geography, MAD and Democracy

Authors: Arash Heydarian Pashakhanlou

Abstract:

The security dilemma is one of the key concepts in International Relations (IR), and the numerous engagements with it have created a great deal of confusion regarding its essence. That is why this article seeks to dissect the security dilemma and rebuild it from its foundational core. In doing so, the present study highlights that the security dilemma requires interaction among actors that seek to protect themselves from other's capacity for harm under the condition of uncertainty to operate. In this constellation, actors are confronted with the dilemma of motives, power, and action, which they seek to resolve by acquiring information regarding their opponents. The relationship between the parties is shaped by the harm-uncertainty index (HUI) consisting of geographical distance, MAD, and joint democracy that determines the intensity of the security dilemma. These elements define the unified theory of the security dilemma (UTSD) developed here. UTSD challenges the prevailing view that the security dilemma is a unidimensional paradoxical concept, regulated by the offense-defense balance and differentiation that only occurs in anarchic settings with tragic outcomes and is equivalent to the spiral model.

Keywords: security dilemma, revisionism, status quo, anarchy, uncertainty, tragedy, spiral, deterrence

Procedia PDF Downloads 239
3521 Classification of IoT Traffic Security Attacks Using Deep Learning

Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem

Abstract:

The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.

Keywords: IoT, traffic security, deep learning, classification

Procedia PDF Downloads 154
3520 Learning through Gaming with Mobile Devices

Authors: Luis Rodrigo Valencia Pérez, Juan Manuel Peña Aguilar, Adelina Morita Alexander, Alberto Lamadrid Alvarez, Héctor Fernando Valencia Pérez

Abstract:

Financial education is among the areas of opportunity in the Spanish-speaking from an early age to high school, through mobile devices such as cell phones and tablets using ludic and fun applications like interactive games, children can learn money management and investment through time, thereby fostering the habit of saving and/or sound management of cash and family business resources, having interaction with an uncontrolled environment such as the involvement of other players in the external decisions of the environment in which the game is play. The application proposed in Phase 1 (design and development) was designed in multi-user environments, under methodologies of hybrid programming for any platform on the market and designed under CMMI standards that allow for quality production over time, following up on these improvements counting with continuous user feedback and usage statistics.

Keywords: mobile educational games, ludic games, children, multiuser, design and software development

Procedia PDF Downloads 382
3519 Web 2.0 in Higher Education: The Instructors’ Acceptance in Higher Educational Institutes in Kingdom of Bahrain

Authors: Amal M. Alrayes, Hayat M. Ali

Abstract:

Since the beginning of distance education with the rapid evolution of technology, the social network plays a vital role in the educational process to enforce the interaction been the learners and teachers. There are many Web 2.0 technologies, services and tools designed for educational purposes. This research aims to investigate instructors’ acceptance towards web-based learning systems in higher educational institutes in Kingdom of Bahrain. Questionnaire is used to investigate the instructors’ usage of Web 2.0 and the factors affecting their acceptance. The results confirm that instructors had high accessibility to such technologies. However, patterns of use were complex. Whilst most expressed interest in using online technologies to support learning activities, learners seemed cautious about other values associated with web-based system, such as the shared construction of knowledge in a public format. The research concludes that there are main factors that affect instructors’ adoption which are security, performance expectation, perceived benefits, subjective norm, and perceived usefulness.

Keywords: Web 2.0, higher education, acceptance, students' perception

Procedia PDF Downloads 337
3518 Developing a GIS-Based Tool for the Management of Fats, Oils, and Grease (FOG): A Case Study of Thames Water Wastewater Catchment

Authors: Thomas D. Collin, Rachel Cunningham, Bruce Jefferson, Raffaella Villa

Abstract:

Fats, oils and grease (FOG) are by-products of food preparation and cooking processes. FOG enters wastewater systems through a variety of sources such as households, food service establishments, and industrial food facilities. Over time, if no source control is in place, FOG builds up on pipe walls, leading to blockages, and potentially to sewer overflows which are a major risk to the Environment and Human Health. UK water utilities spend millions of pounds annually trying to control FOG. Despite UK legislation specifying that discharge of such material is against the law, it is often complicated for water companies to identify and prosecute offenders. Hence, it leads to uncertainties regarding the attitude to take in terms of FOG management. Research is needed to seize the full potential of implementing current practices. The aim of this research was to undertake a comprehensive study to document the extent of FOG problems in sewer lines and reinforce existing knowledge. Data were collected to develop a model estimating quantities of FOG available for recovery within Thames Water wastewater catchments. Geographical Information System (GIS) software was used in conjunction to integrate data with a geographical component. FOG was responsible for at least 1/3 of sewer blockages in Thames Water waste area. A waste-based approach was developed through an extensive review to estimate the potential for FOG collection and recovery. Three main sources were identified: residential, commercial and industrial. Commercial properties were identified as one of the major FOG producers. The total potential FOG generated was estimated for the 354 wastewater catchments. Additionally, raw and settled sewage were sampled and analysed for FOG (as hexane extractable material) monthly at 20 sewage treatment works (STW) for three years. A good correlation was found with the sampled FOG and population equivalent (PE). On average, a difference of 43.03% was found between the estimated FOG (waste-based approach) and sampled FOG (raw sewage sampling). It was suggested that the approach undertaken could overestimate the FOG available, the sampling could only capture a fraction of FOG arriving at STW, and/or the difference could account for FOG accumulating in sewer lines. Furthermore, it was estimated that on average FOG could contribute up to 12.99% of the primary sludge removed. The model was further used to investigate the relationship between estimated FOG and number of blockages. The higher the FOG potential, the higher the number of FOG-related blockages is. The GIS-based tool was used to identify critical areas (i.e. high FOG potential and high number of FOG blockages). As reported in the literature, FOG was one of the main causes of sewer blockages. By identifying critical areas (i.e. high FOG potential and high number of FOG blockages) the model further explored the potential for source-control in terms of ‘sewer relief’ and waste recovery. Hence, it helped targeting where benefits from implementation of management strategies could be the highest. However, FOG is still likely to persist throughout the networks, and further research is needed to assess downstream impacts (i.e. at STW).

Keywords: fat, FOG, GIS, grease, oil, sewer blockages, sewer networks

Procedia PDF Downloads 209
3517 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing

Procedia PDF Downloads 245
3516 Developing Medium Term Maintenance Plan For Road Networks

Authors: Helen S. Ghali, Haidy S. Ghali, Salma Ibrahim, Ossama Hosny, Hatem S. Elbehairy

Abstract:

Infrastructure systems are essential assets in any community; accordingly, authorities aim to maximize its life span while minimizing the life cycle cost. This requires studying the asset conditions throughout its operation and forming a cost-efficient maintenance strategy plan. The objective of this study is to develop a highway management system that provides medium-term maintenance plans with the minimum life cycle cost subject to budget constraints. The model is applied to data collected for the highway network in India with the aim to output a 5-year maintenance plan strategy from 2019 till 2023. The main element considered is the surface coarse, either rigid or flexible pavement. The model outputs a 5-year maintenance plan for each segment given the budget constraint while maximizing the new pavement condition rating and minimizing its life cycle cost.

Keywords: infrastructure, asset management, optimization, maintenance plan

Procedia PDF Downloads 218
3515 Cyber Victimization: School Experience of Malaysian Cyberbullied Teenagers

Authors: Shireen Simon

Abstract:

Cyberbullying among schoolchildren and teenagers became a hot issue discussed by Malaysian society. Cyberbullying is a new age of bullying because it uses the modern digital technology intentionally to hurt and degrade someone in the cyber world. Cyberbullying is a problem affecting many teenagers as they embrace online communication and interaction whereby virtual world with no borders. By adopting a qualitative approach, this study has captured 8 cyberbullied victims’ school experience. Even years after leaving school, these 8 cyberbullied victims remember how it feels to be bullied in the cyber world. The principal investigator also tries to identify the possibility factors that contribute to cyberbullying among these 8 victims. The result shows that these victims were bullied differently in cyber world. This study not just primarily focuses on cyberbullying issues among schoolchildren and teenagers; it also addresses the motives and causes of cyberbullying. Lastly, this article will be served as guidance for school teachers, parents and teenagers to prepare to tackle cyberbullying together. Cyberbullying is no laughing matter in our community, and it is time to spread the seeds of peace inspires others to do the same.

Keywords: cyberbullying, cyber victimization, internet, school experience, teenagers

Procedia PDF Downloads 287
3514 Modeling and Optimal Control of Acetylene Catalytic Hydrogenation Reactor in Olefin Plant by Artificial Neural Network

Authors: Faezeh Aghazadeh, Mohammad Javad Sharifi

Abstract:

The application of neural networks to model a full-scale industrial acetylene hydrogenation in olefin plant has been studied. The operating variables studied are the, input-temperature of the reactor, output-temperature of the reactor, hydrogen ratio of the reactor, [C₂H₂]input, and [C₂H₆]input. The studied operating variables were used as the input to the constructed neural network to predict the [C₂H₆]output at any time as the output or the target. The constructed neural network was found to be highly precise in predicting the quantity of [C₂H₆]output for the new input data, which are kept unaware of the trained neural network showing its applicability to determine the [C₂H₆]output for any operating conditions. The enhancement of [C₂H₆]output as compared with [C₂H₆]input was a consequence of low selective acetylene hydrogenation to ethylene.

Keywords: acetylene hydrogenation, Pd-Ag/Al₂O₃, artificial neural network, modeling, optimal design

Procedia PDF Downloads 276
3513 Intrusion Detection Using Dual Artificial Techniques

Authors: Rana I. Abdulghani, Amera I. Melhum

Abstract:

With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.

Keywords: IDS, SI, BP, NSL_KDD, PSO

Procedia PDF Downloads 382
3512 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 88
3511 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 70
3510 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 174
3509 Adsorption of Phenolic Compounds on Activated Carbon DSAC36-24

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi, Dhananjay R. Mishra, Ammar Houas

Abstract:

Activated carbon DSAC36-24 iy is adsorbent materials, characterized by a specific surface area of 548.13 m²g⁻¹. Their manufacture uses the natural raw materials like the nucleus of dates. In this study the treatment is done in two stages: A chemical treatment by H3PO4 followed by a physical treatment under nitrogen for 1 hour then under stream of CO2 for 24 hours. A characterization of the various parameters was determined such as the measurement of the specific surface area, determination of pHPZC, bulk density, iodine value. The study of the adsorption of organic molecules (hydroquinone, paranitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol) indicates that the adsorption phenomena are essentially due to the van der Waals interaction. In the case of organic molecules carrying the polar substituents, the existence of hydrogen bonds is also proved by the donor-acceptor forces. The study of the pH effect was done with modeling by different models (Langmuir, Freundlich, Langmuir-Freundlich, Redlich-Peterson), a kinetic treatment is also followed by the application of Lagergren, Weber, Macky.

Keywords: adsoprtion ishoterms, adsorption kinetics, DSAC36-24, organic molecule

Procedia PDF Downloads 279
3508 Comparative Study of Dynamic Effect on Analysis Approaches for Circular Tanks Using Codal Provisions

Authors: P. Deepak Kumar, Aishwarya Alok, P. R. Maiti

Abstract:

Liquid storage tanks have become widespread during the recent decades due to their extensive usage. Analysis of liquid containing tanks is known to be complex due to hydrodynamic force exerted on tank which makes the analysis a complex one. The objective of this research is to carry out analysis of liquid domain along with structural interaction for various geometries of circular tanks considering seismic effects. An attempt has been made to determine hydrodynamic pressure distribution on the tank wall considering impulsive and convective components of liquid mass. To get a better picture, a comparative study of Draft IS 1893 Part 2, ACI 350.3 and Eurocode 8 for Circular Shaped Tank has been performed. Further, the differences in the magnitude of shear and moment at base as obtained from static (IS 3370 IV) and dynamic (Draft IS 1892 Part 2) analysis of ground supported circular tank highlight the need for us to mature from the old code to a newer code, which is more accurate and reliable.

Keywords: liquid filled containers, circular tanks, IS 1893 (part 2), seismic analysis, sloshing

Procedia PDF Downloads 353
3507 Modelling of Atomic Force Microscopic Nano Robot's Friction Force on Rough Surfaces

Authors: M. Kharazmi, M. Zakeri, M. Packirisamy, J. Faraji

Abstract:

Micro/Nanorobotics or manipulation of nanoparticles by Atomic Force Microscopic (AFM) is one of the most important solutions for controlling the movement of atoms, particles and micro/nano metrics components and assembling of them to design micro/nano-meter tools. Accurate modelling of manipulation requires identification of forces and mechanical knowledge in the Nanoscale which are different from macro world. Due to the importance of the adhesion forces and the interaction of surfaces at the nanoscale several friction models were presented. In this research, friction and normal forces that are applied on the AFM by using of the dynamic bending-torsion model of AFM are obtained based on Hurtado-Kim friction model (HK), Johnson-Kendall-Robert contact model (JKR) and Greenwood-Williamson roughness model (GW). Finally, the effect of standard deviation of asperities height on the normal load, friction force and friction coefficient are studied.

Keywords: atomic force microscopy, contact model, friction coefficient, Greenwood-Williamson model

Procedia PDF Downloads 199
3506 Particle Jetting Induced by the Explosive Dispersal

Authors: Kun Xue, Lvlan Miu, Jiarui Li

Abstract:

Jetting structures are widely found in particle rings or shells dispersed by the central explosion. In contrast, some explosive dispersal of particles only results in a dispersed cloud without distinctive structures. Employing the coupling method of the compressible computational fluid mechanics and discrete element method (CCFD-DEM), we reveal the underlying physics governing the formation of the jetting structure, which is related to the competition between the shock compaction and gas infiltration, two major processes during the shock interaction with the granular media. If the shock compaction exceeds the gas infiltration, the discernable jetting structures are expected, precipitated by the agglomerates of fast-moving particles induced by the heterogenous network of force chains. Otherwise, particles are uniformly accelerated by the interstitial flows, and no distinguishable jetting structures are formed. We proceed to devise the phase map of the jetting formation in the space defined by two dimensionless parameters which characterize the timescales of the shock compaction and the gas infiltration, respectively.

Keywords: compressible multiphase flows, DEM, granular jetting, pattern formation

Procedia PDF Downloads 77
3505 Inflammatory Markers in the Blood and Chronic Periodontitis

Authors: Saimir Heta, Ilma Robo, Nevila Alliu, Tea Meta

Abstract:

Background: Plasma levels of inflammatory markers are the expression of the infectious wastes of existing periodontitis, as well as of existing inflammation everywhere in the body. Materials and Methods: The study consists of the clinical part of the measurement of inflammatory markers of 23 patients diagnosed with chronic periodontitis and the recording of parental periodontal parameters of patient periodontal status: hemorrhage index and probe values, before and 7-10 days after non-surgical periodontal treatment. Results: The level of fibrinogen drops according to the categorization of disease progression, active and passive, with the biggest % (18%-30%) at the fluctuation 10-20 mg/d. Fluctuations in fibrinogen level according to the age of patients in the range 0-10 mg/dL under 40 years and over 40 years was 13%-26%, in the range 10-20 mg/dL was 26%-22%, in the 20-40 mg/dL was 9%-4%. Conclusions: Non-surgical periodontal treatment significantly reduces the level of non-inflammatory markers in the blood. Oral health significantly reduces the potential source for periodontal bacteria, with the potential of promoting thromboembolism, through interaction between thrombocytes.

Keywords: chronic periodontitis, atherosclerosis, risk factor, inflammatory markers

Procedia PDF Downloads 126
3504 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 162