Search results for: clean construction
1557 Evaluation of Soil Stiffness and Strength for Quality Control of Compacted Earthwork
Authors: A. Sawangsuriya, T. B. Edil
Abstract:
Microstructure and fabric of soils play an important role on structural properties e.g. stiffness and strength of compacted earthwork. Traditional quality control monitoring based on moisture-density tests neither reflects the variability of soil microstructure nor provides a direct assessment of structural property, which is the ultimate objective of the earthwork quality control. Since stiffness and strength are sensitive to soil microstructure and fabric, any independent test methods that provide simple, rapid, and direct measurement of stiffness and strength are anticipated to provide an effective assessment of compacted earthen materials’ uniformity. In this study, the soil stiffness gauge (SSG) and the dynamic cone penetrometer (DCP) were respectively utilized to measure and monitor the stiffness and strength in companion with traditional moisture-density measurements of various earthen materials used in Thailand road construction projects. The practical earthwork quality control criteria are presented herein in order to assure proper earthwork quality control and uniform structural property of compacted earthworks.Keywords: dynamic cone penetrometer, moisture content, quality control, relative compaction, soil stiffness gauge, structural properties
Procedia PDF Downloads 3601556 Experimental Investigation on Effects of Carrier Solvent and Oxide Fluxes in Activated TIG Welding of Reduced Activation Ferritic/Martensitic Steel
Authors: Jay J. Vora, Vishvesh J. Badheka
Abstract:
This work attempts to investigate the effect of oxide fluxes on 6mm thick Reduced Activation ferritic/martensitic steels (RAFM) during Activated TIG (A-TIG) welding. Six different fluxes Al₂O₃, Co₃O₄, CuO, HgO, MoO₃, and NiO were mixed with methanol for conversion into paste and bead-on-plate experiments were then carried out. This study, systematically investigates the influence of oxide-based flux powder and carrier solvent composition on the weld bead shape, geometric shape of weld bead and dominant depth enhancing mechanism in tungsten inert gas (TIG) welding of reduced activation ferritic/martensitic (RAFM) steel. It was inferred from the study that flux Co₃O₄ and MoO₃ imparted full and secure (more than 6mm) penetration with methanol owing to dual mechanism of reversed Marangoni and arc construction. The use of methanol imparted good spreadabilty and coverability and ultimately higher peak temperatures were observed with its use owing to stronger depth enhancing mechanisms than use of acetone with same oxide fluxes and welding conditions.Keywords: A-TIG, flux, oxides, penetration, RAFM, temperature, welding
Procedia PDF Downloads 2071555 Reducing Crash Risk at Intersections with Safety Improvements
Authors: Upal Barua
Abstract:
Crash risk at intersections is a critical safety issue. This paper examines the effectiveness of removing an existing off-set at an intersection by realignment, in reducing crashes. Empirical Bayes method was applied to conduct a before-and-after study to assess the effect of this safety improvement. The Transportation Safety Improvement Program in Austin Transportation Department completed several safety improvement projects at high crash intersections with a view to reducing crashes. One of the common safety improvement techniques applied was the realignment of intersection approaches removing an existing off-set. This paper illustrates how this safety improvement technique is applied at a high crash intersection from inception to completion. This paper also highlights the significant crash reductions achieved from this safety improvement technique applying Empirical Bayes method in a before-and-after study. The result showed that realignment of intersection approaches removing an existing off-set can reduce crashes by 53%. This paper also features the state of the art techniques applied in planning, engineering, designing and construction of this safety improvement, key factors driving the success, and lessons learned in the process.Keywords: crash risk, intersection, off-set, safety improvement technique, before-and-after study, empirical Bayes method
Procedia PDF Downloads 2451554 Printing Imperfections: Development of Buckling Patterns to Improve Strength of 3D Printed Steel Plated Elements
Authors: Ben Chater, Jingbang Pan, Mark Evernden, Jie Wang
Abstract:
Traditional structural steel manufacturing routes normally produce prismatic members with flat plate elements. In these members, plate instability in the lowest buckling mode often dominates failure. It is proposed in the current study to use a new technology of metal 3D printing to print steel-plated elements with predefined imperfection patterns that can lead to higher modes of failure with increased buckling resistances. To this end, a numerical modeling program is carried out to explore various combinations of predefined buckling waves with different amplitudes in stainless steel square hollow section stub columns. Their stiffness, strength, and material consumption against the traditional structural steel members with the same nominal dimensions are assessed. It is found that depending on the slenderness of the plate elements; it is possible for an ‘imperfect’ steel member to achieve up to a 30% increase in strength with just a 3% increase in the material consumption. The obtained results shed some light on the significant potential of the new metal 3D printing technology in achieving unprecedented material efficiency and economical design in the future steel construction industry.Keywords: 3D printing, additive manufacturing, buckling resistance, steel plate buckling, structural optimisation
Procedia PDF Downloads 1441553 Construction of QSAR Models to Predict Potency on a Series of substituted Imidazole Derivatives as Anti-fungal Agents
Authors: Sara El Mansouria Beghdadi
Abstract:
Quantitative structure–activity relationship (QSAR) modelling is one of the main computer tools used in medicinal chemistry. Over the past two decades, the incidence of fungal infections has increased due to the development of resistance. In this study, the QSAR was performed on a series of esters of 2-carboxamido-3-(1H-imidazole-1-yl) propanoic acid derivatives. These compounds have showed moderate and very good antifungal activity. The multiple linear regression (MLR) was used to generate the linear 2d-QSAR models. The dataset consists of 115 compounds with their antifungal activity (log MIC) against «Candida albicans» (ATCC SC5314). Descriptors were calculated, and different models were generated using Chemoffice, Avogadro, GaussView software. The selected model was validated. The study suggests that the increase in lipophilicity and the reduction in the electronic character of the substituent in R1, as well as the reduction in the steric hindrance of the substituent in R2 and its aromatic character, supporting the potentiation of the antifungal effect. The results of QSAR could help scientists to propose new compounds with higher antifungal activities intended for immunocompromised patients susceptible to multi-resistant nosocomial infections.Keywords: quantitative structure–activity relationship, imidazole, antifungal, candida albicans (ATCC SC5314)
Procedia PDF Downloads 841552 CPT Pore Water Pressure Correlations with PDA to Identify Pile Drivability Problem
Authors: Fauzi Jarushi, Paul Cosentino, Edward Kalajian, Hadeel Dekhn
Abstract:
At certain depths during large diameter displacement pile driving, rebound well over 0.25 inches was experienced, followed by a small permanent set during each hammer blow. High pile rebound (HPR) soils may stop the pile driving and results in a limited pile capacity. In some cases, rebound leads to pile damage, delaying the construction project, and the requiring foundations redesign. HPR was evaluated at seven Florida sites, during driving of square precast, prestressed concrete piles driven into saturated, fine silty to clayey sands and sandy clays. Pile Driving Analyzer (PDA) deflection versus time data recorded during installation, was used to develop correlations between cone penetrometer (CPT) pore-water pressures, pile displacements and rebound. At five sites where piles experienced excessive HPR with minimal set, the pore pressure yielded very high positive values of greater than 20 tsf. However, at the site where the pile rebounded, followed by an acceptable permanent set, the measured pore pressure ranged between 5 and 20 tsf. The pore pressure exhibited values of less than 5 tsf at the site where no rebound was noticed. In summary, direct correlations between CPTu pore pressure and rebound were produced, allowing identification of soils that produce HPR.Keywords: CPTU, pore water pressure, pile rebound
Procedia PDF Downloads 3201551 Public Transport Assignment at Adama City
Authors: Selamawit Mulubrhan Gidey
Abstract:
Adama city, having an area of 29.86 km2, is one of the main cities in Ethiopia experiencing rapid growth in business and construction activities which in turn with an increasing number of vehicles at an alarming rate. For this reason, currently, there is an attempt to develop public transport assignment modeling in the city. Still, there is a huge gap in developing public transport assignments along the road segments of the city with operational and safety performance due to high traffic volume. Thus, the introduction of public transport assignment modeling in Adama City can have a massive impact on the road safety and capacity problem in the city. City transport modeling is important in city transportation planning, particularly in overcoming existing transportation problems such as traffic congestion. In this study, the Adama City transportation model was developed using the PTV VISUM software, whose transportation modeling is based on the four-step model of transportation. Based on the traffic volume data fed and simulated, the result of the study shows that the developed model has better reliability in representing the traffic congestion conditions in Adama city, and the simulation clearly indicates the level of congestion of each route selected and thus, the city road administrative office can take managerial decisions on public transport assignment so as to overcome traffic congestion executed along the selected routes.Keywords: trip modelling, PTV VISUM, public transport assignment, congestion
Procedia PDF Downloads 431550 Safety Culture Implementation Based on Occupational Health and Safety Assessment
Authors: Nyambayar Davaadorj, Ichiro Koshijima
Abstract:
Safety or the state of being safe can be described as a condition of being not dangerous or not harmful. It is necessary for an individual to avoid dangerous situations every day. Also, an organization is subject to legal requirements for the health and safety of persons inside and around the immediate workplace, or who are exposed to the workplace activities. Although it might be difficult to keep a situation where complete safety is ensured, efforts must nonetheless be made to consider ways of removing any potential danger within an organization. In order to ensure a safe working environment, the capability of responding (i.e., resilience) to signals (i.e., information concerning events that could pose future problems that must be taken into account) that occur in and around corporations is necessary. The ability to evaluate this essential point is thus one way in which safety and security can be managed. This study focuses on OHSAS18001, an internationally applied standard for the construction and operation of occupational health and safety management systems, by using IDEF0 for Function Modeling (IDEF0) and the Resilience Matrix originally made by Bracco. Further, this study discusses a method for evaluating a manner in which Occupational Health and Safety Assessment Series (OHSAS) systematically functions within corporations. Based on the findings, this study clarifies the potential structural objection for corporations when implementing and operating the OHSAS standard.Keywords: OHSAS18001, IDEF0, resilience engineering, safety culture
Procedia PDF Downloads 2401549 Effect of Cantilever Sheet Pile Wall to Adjacent Buildings
Authors: Ahmed A. Mohamed Aly
Abstract:
Ground movements induced from excavations is a major cause of deformation and damage to the adjacent buildings and utilities. With the increasing rate of construction work in urban area, this problem is growing more significant and has become the cause of numerous legal disputes. This problem is investigated numerically in the present study using finite element method. Five-story reinforced concrete building rests on raft foundation is idealized as two dimensional model. The building is considered to be constructed adjacent to excavation affected by an adjacent excavation in medium sand. Excavation is supported using sheet pile wall. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with Mohr-Coulomb model. Five nodes isoperimetric beam element is used to idealize sheet pile and building. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the building distance from the excavation. Nodal displacements and elements straining actions were obtained and studied from the analyzed finite element model results.Keywords: excavation, relative distance, effective stresses, lateral deformation, relative depth
Procedia PDF Downloads 1381548 Corporate Governance and Performance of Islamic Banks in GCC Countries
Authors: Samir Srairi
Abstract:
This paper investigates the impact of the internal corporate governance on bank performance by constructing a corporate governance index (CGI) for 27 Islamic banks operating in five Arab Gulf countries. Using content analysis on the banks’ annual reports for 3 years (2011-2013), the index construction uses information on six important corporate governance mechanisms, namely board structure, risk management, transparency and disclosure, audit committee, Sharia supervisory board and investment account holders. The results demonstrate that Islamic banks adhere to 54% of the attributes addressed in the CGI. The most frequently reported and disclosed elements are Sharia supervisory board followed by board structure and risk management. The findings related to countries revealed that only two countries, the United Arab Emirates and Bahrain, possess a higher level of CGI. Our regression results provide evidence that Islamic banks with higher levels of corporate governance report high operating performance measured by return on assets and net interest margin. Finally, as of the effect of internal and external factors, we identified four variables that were associated with bank performance, namely size, equity, risk and concentration.Keywords: governance mechanisms, corporate governance index, bank performance, Islamic banks, GCC countries
Procedia PDF Downloads 3241547 Analysis on the Building Energy Performance of a Retrofitted Residential Building with RETScreen Expert Software
Authors: Abdulhameed Babatunde Owolabi, Benyoh Emmanuel Kigha Nsafon, Jeung-Soo Huh
Abstract:
Energy efficiency measures for residential buildings in South Korea is a national issue because most of the apartments built in the last decades were constructed without proper energy efficiency measures making the energy performance of old buildings to be very poor when compared with new buildings. However, the adoption of advanced building technologies and regulatory building codes are effective energy efficiency strategies for new construction. There is a need to retrofits the existing building using energy conservation measures (ECMs) equipment’s in order to conserve energy and reduce GHGs emissions. To achieve this, the Institute for Global Climate Change and Energy (IGCCE), Kyungpook National University (KNU), Daegu, South Korea employed RETScreen Expert software to carry out measurement and verification (M&V) analysis on an existing building in Korea by using six years gas consumption data collected from Daesung Energy Co., Ltd in order to determine the building energy performance after the introduction of ECM. Through the M&V, energy efficiency is attained, and the resident doubt was reduced. From the analysis, a total of 657 Giga Joules (GJ) of liquefied natural gas (LNG) was consumed at the rate of 0.34 GJ/day having a peak in the year 2015, which cost the occupant the sum of $10,821.Keywords: energy efficiency, measurement and verification, performance analysis, RETScreen experts
Procedia PDF Downloads 1381546 A Study on the Influence of Aswan High Dam Reservoir Loading on Earthquake Activity
Authors: Sayed Abdallah Mohamed Dahy
Abstract:
Aswan High Dam Reservoir extends for 500 km along the Nile River; it is a vast reservoir in southern Egypt and northern Sudan. It was created as a result of the construction of the Aswan High Dam between 1958 and 1970; about 95% of the main water resources for Egypt are from it. The purpose of this study is to discuss and understand the effect of the fluctuation of the water level in the reservoir on natural and human-induced environmental like earthquakes in the Aswan area, Egypt. In summary, the correlation between the temporal variations of earthquake activity and water level changes in the Aswan reservoir from 1982 to 2014 are investigated and analyzed. This analysis confirms a weak relation between the fluctuation of the water level and earthquake activity in the area around Aswan reservoir. The result suggests that the seismicity in the area becomes active during a period when the water level is decreasing from the maximum to the minimum. Behavior of the water level in this reservoir characterized by a special manner that is the unloading season extends to July or August, and the loading season starts to reach its maximum in October or November every year. Finally, daily rate of change in the water level did not show any direct relation with the size of the earthquakes, hence, it is not possible to be used as a single tool for prediction.Keywords: Aswan high dam reservoir, earthquake activity, environmental, Egypt
Procedia PDF Downloads 3801545 Integrated Wastewater Reuse Project of the Faculty of Sciences AinChock, Morocco
Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Fouad Amraoui
Abstract:
In Morocco, water scarcity requires the exploitation of non-conventional resources. Rural areas are under-equipped with sanitation infrastructure, unlike urban areas. Decentralized and low-cost solutions could improve the quality of life of the population and the environment. In this context, the Faculty of Sciences Ain Chock "FSAC" has undertaken an integrated project to treat part of its wastewater using a decentralized compact system. The project will propose alternative solutions that are inexpensive and adapted to the context of peri-urban and rural areas in order to treat the wastewater generated and use it for irrigation, watering, and cleaning. For this purpose, several tests were carried out in the laboratory in order to develop a liquid waste treatment system optimized for local conditions. Based on the results obtained at the laboratory scale of the different proposed scenarios, we designed and implemented a prototype of a mini wastewater treatment plant for the Faculty. In this article, we will outline the steps of dimensioning, construction, and monitoring of the mini-station in our Faculty.Keywords: wastewater, purification, optimization, vertical filter, MBBR process, sizing, decentralized pilot, reuse, irrigation, sustainable development
Procedia PDF Downloads 1141544 Simulation of Hydraulic Fracturing Fluid Cleanup for Partially Degraded Fracturing Fluids in Unconventional Gas Reservoirs
Authors: Regina A. Tayong, Reza Barati
Abstract:
A stable, fast and robust three-phase, 2D IMPES simulator has been developed for assessing the influence of; breaker concentration on yield stress of filter cake and broken gel viscosity, varying polymer concentration/yield stress along the fracture face, fracture conductivity, fracture length, capillary pressure changes and formation damage on fracturing fluid cleanup in tight gas reservoirs. This model has been validated as against field data reported in the literature for the same reservoir. A 2-D, two-phase (gas/water) fracture propagation model is used to model our invasion zone and create the initial conditions for our clean-up model by distributing 200 bbls of water around the fracture. A 2-D, three-phase IMPES simulator, incorporating a yield-power-law-rheology has been developed in MATLAB to characterize fluid flow through a hydraulically fractured grid. The variation in polymer concentration along the fracture is computed from a material balance equation relating the initial polymer concentration to total volume of injected fluid and fracture volume. All governing equations and the methods employed have been adequately reported to permit easy replication of results. The effect of increasing capillary pressure in the formation simulated in this study resulted in a 10.4% decrease in cumulative production after 100 days of fluid recovery. Increasing the breaker concentration from 5-15 gal/Mgal on the yield stress and fluid viscosity of a 200 lb/Mgal guar fluid resulted in a 10.83% increase in cumulative gas production. For tight gas formations (k=0.05 md), fluid recovery increases with increasing shut-in time, increasing fracture conductivity and fracture length, irrespective of the yield stress of the fracturing fluid. Mechanical induced formation damage combined with hydraulic damage tends to be the most significant. Several correlations have been developed relating pressure distribution and polymer concentration to distance along the fracture face and average polymer concentration variation with injection time. The gradient in yield stress distribution along the fracture face becomes steeper with increasing polymer concentration. The rate at which the yield stress (τ_o) is increasing is found to be proportional to the square of the volume of fluid lost to the formation. Finally, an improvement on previous results was achieved through simulating yield stress variation along the fracture face rather than assuming constant values because fluid loss to the formation and the polymer concentration distribution along the fracture face decreases as we move away from the injection well. The novelty of this three-phase flow model lies in its ability to (i) Simulate yield stress variation with fluid loss volume along the fracture face for different initial guar concentrations. (ii) Simulate increasing breaker activity on yield stress and broken gel viscosity and the effect of (i) and (ii) on cumulative gas production within reasonable computational time.Keywords: formation damage, hydraulic fracturing, polymer cleanup, multiphase flow numerical simulation
Procedia PDF Downloads 1301543 Influence of Superplasticizer and Alkali Activator Concentration on Slag-Fly Ash Based Geopolymer
Authors: Sulaem Musaddiq Laskar, Sudip Talukdar
Abstract:
Sustainable supplementary cementitious material is the prime need in the construction industry. Geopolymer has strong potential for replacing the conventional Portland cement used in mortar and concrete in the industry. This study deals with experimental investigations performed on geopolymer mixes prepared from both ultra-fine ground granulated blast furnace slag and fly ash in a certain proportion. Geopolymer mixes were prepared with alkali activator composed of sodium hydroxide solution and varying amount of superplasticizer. The mixes were tested to study fresh and hardened state properties such as setting time, workability and compressive strength. Influence of concentration of alkali activator on effectiveness of superplasticizer in modifying the properties of geopolymer mixes was also investigated. Results indicated that addition of superplasticizer to ultra-fine slag-fly ash based geopolymer is advantageous in terms of setting time, workability and strength performance but up to certain dosage level. Higher concentration of alkali activator renders ineffectiveness in superplasticizer in improving the fresh and hardened state properties of geopolymer mixes.Keywords: ultra-fine slag, fly ash, superplasticizer, setting time, workability, compressive strength
Procedia PDF Downloads 1861542 Lean Airport Infrastructure Development: A Sustainable Solution for Integration of Remote Regions
Authors: Joeri N. Aulman
Abstract:
In the remote Indian region of Gulbarga a case study of lean airport infrastructure development is getting ‘cast in stone’; In April the first turbo-props will land, and the optimized terminal building will process its first passengers, using minimal square meters in a facility that is based on a complete dress-down of the core operational processes. Yet the solution that resulted from this case study has such elegance in its simplicity that it has emboldened the local administration to invest in its construction and thus secure this remote region’s connectivity to India’s growth story. This paper aims to provide further background to the Gulbarga case study and its relevance to remote region connectivity, covering the demand that was identified, its practical application and its regulatory context and relevance for today’s airport manager and local administrators. This embodies the scope of the paper. In summary, the paper will give airport managers and regional authorities an overview and background to innovative case studies of lean airport infrastructure developments which combine both optimized CAPEX and running costs/OPEX without losing sight of the aspirational nature of up and coming remote regions; a truly sustainable model.Keywords: airport, CAPEX, lean, sustainable, air connectivity, remote regions
Procedia PDF Downloads 3101541 Traffic Congestion Analysis and Modeling for Urban Roads of Srinagar City
Authors: Adinarayana Badveeti, Mohammad Shafi Mir
Abstract:
In Srinagar City, in India, traffic congestion is a condition on transport networks that occurs as use increases and is characterized by slower speeds, longer trip times, and increased vehicular queuing. Traffic congestion is conventionally measured using indicators such as roadway level-of-service, the Travel Time Index and their variants. Several measures have been taken in order to counteract congestion like road pricing, car pooling, improved traffic management, etc. While new road construction can temporarily relieve congestion in the longer term, it simply encourages further growth in car traffic through increased travel and a switch away from public transport. The full paper report, on which this abstract is based, aims to provide policymakers and technical staff with the real-time data, conceptual framework and guidance on some of the engineering tools necessary to manage congestion in such a way as to reduce its overall impact on individuals, families, communities, and societies dynamic, affordable, liveable and attractive urban regions will never be free of congestion. Road transport policies, however, should seek to manage congestion on a cost-effective basis with the aim of reducing the burden that excessive congestion imposes upon travellers and urban dwellers throughout the urban road network.Keywords: traffic congestion, modeling, traffic management, travel time index
Procedia PDF Downloads 3191540 A Multi-Criteria Decision Making (MCDM) Approach for Assessing the Sustainability Index of Building Façades
Authors: Golshid Gilani, Albert De La Fuente, Ana Blanco
Abstract:
Sustainability assessment of new and existing buildings has generated a growing interest due to the evident environmental, social and economic impacts during their construction and service life. Façades, as one of the most important exterior elements of a building, may contribute to the building sustainability by reducing the amount of energy consumption and providing thermal comfort for the inhabitants, thus minimizing the environmental impact on both the building and on the environment. Various methods have been used for the sustainability assessment of buildings due to the importance of this issue. However, most of the existing methods mainly concentrate on environmental and economic aspects, disregarding the third pillar of sustainability, which is the social aspect. Besides, there is a little focus on comprehensive sustainability assessment of facades, as an important element of a building. This confirms the need of developing methods for assessing the sustainable performance of building façades as an important step in achieving building sustainability. In this respect, this paper aims at presenting a model for assessing the global sustainability of façade systems. for that purpose, the Integrated Value Model for Sustainable Assessment (MIVES), a Multi-Criteria Decision Making model that integrates the main sustainability requirements (economic, environmental and social) and includes the concept of value functions, used as an assessment tool.Keywords: façade, MCDM, MIVES, sustainability
Procedia PDF Downloads 3451539 Influence of Free Field Vibrations Due to Vibratory Pile Driving
Authors: Shashank Mukkoti, Mainak Majumder, Srinivasan Venkatraman
Abstract:
Owing to the land scarcity in the modern-day, most of the construction activities are carried out closed to the existing buildings. Most of the high-rise buildings are constructed on pile foundations to transfer the design loads to a strong stratum below the ground surface. Due to the proximity of the new and existing structures, noise disturbances are prominent during the pile installation. Installation of vibratory piles is most suitable in urban areas. The ground vibrations developed due to the vibratory pile driving may cause many detrimental effects on the surrounding structures based on the proximity of the sources and nature of the structures. In the present study, an attempt has been made to study the severity of ground vibrations induced by vibratory pile driving. For this purpose, a three-dimensional finite element model has been developed in the ABAQUS/ Explicit finite element program. The couple finite/infinite element method has been employed for the capturing of propagating waves due to the pile installation. The geometry of the pile foundations, frequency of the pile driving, length of the pile has been considered for the parametric study. The results show that vibrations generated due to the vibratory pile installation are either very close or more than the thresholds tolerance limits set by different guidelines.Keywords: FE model, pile driving, free field vibrations, wave propagation
Procedia PDF Downloads 2981538 Investigation of Optimal Parameter Settings in Super Duplex Stainless Steel Welding Welding
Authors: R. M. Chandima Ratnayake, Daniel Dyakov
Abstract:
Super steel materials play vital role in construction and fabrication of structural, piping and pipeline components. They enable to minimize the life cycle costs in assuring the integrity of onshore and offshore operating systems. In this context, Duplex stainless steel (DSS) material related welding on constructions and fabrications play a significant role in maintaining and assuring integrity at an optimal expenditure over the life cycle of production and process systems as well as associated structures. In DSS welding, the factors such as gap geometry, shielding gas supply rate, welding current, and type of the welding process play a vital role on the final joint performance. Hence, an experimental investigation has been performed using engineering robust design approach (ERDA) to investigate the optimal settings that generate optimal super DSS (i.e. UNS S32750) joint performance. This manuscript illustrates the mathematical approach and experimental design, optimal parameter settings and results of verification experiment.Keywords: duplex stainless steel welding, engineering robust design, mathematical framework, optimal parameter settings
Procedia PDF Downloads 4151537 The Rise and Effects of Social Movement on Ethnic Relations in Malaysia: The Bersih Movement as a Case Study
Authors: Nur Rafeeda Daut
Abstract:
The significance of this paper is to provide an insight on the role of social movement in building stronger ethnic relations in Malaysia. In particular, it focuses on how the BERSIH movement have been able to bring together the different ethnic groups in Malaysia to resist the present political administration that is seen to manipulate the electoral process and oppress the basic freedom of expression of Malaysians. Attention is given on how and why this group emerged and its mobilisation strategies. Malaysia which is a multi-ethnic and multi-religious society gained its independence from the British in 1957. Like many other new nations, it faces the challenges of nation building and governance. From economic issues to racial and religious tension, Malaysia is experiencing high level of corruption and income disparity among the different ethnic groups. The political parties in Malaysia are also divided along ethnic lines. BERSIH which is translated as ‘clean’ is a movement which seeks to reform the current electoral system in Malaysia to ensure equality, justice, free and fair elections. It was originally formed in 2007 as a joint committee that comprised leaders from political parties, civil society groups and NGOs. In April 2010, the coalition developed as an entirely civil society movement unaffiliated to any political party. BERSIH claimed that the electoral roll in Malaysia has been marred by fraud and other irregularities. In 2015, the BERSIH movement organised its biggest rally in Malaysia which also includes 38 other rallies held internationally. Supporters of BERSIH that participated in the demonstration were comprised of all the different ethnic groups in Malaysia. In this paper, two social movement theories are used: resource mobilization theory and political opportunity structure to explain the emergence and mobilization of the BERSIH movement in Malaysia. Based on these two theories, corruption which is believed to have contributed to the income disparity among Malaysians has generated the development of this movement. The rise of re-islamisation values propagated by certain groups in Malaysia and the shift in political leadership has also created political opportunities for this movement to emerge. In line with the political opportunity structure theory, the BERSIH movement will continue to create more opportunities for the empowerment of civil society and the unity of ethnic relations in Malaysia. Comparison is made on the degree of ethnic unity in the country before and after BERSIH was formed. This would include analysing the level of re-islamisation values and also the level of corruption in relation to economic income under the premiership of the former Prime Minister Mahathir and the present Prime Minister Najib Razak. The country has never seen such uprisings like BERSIH where ethnic groups which over the years have been divided by ethnic based political parties and economic disparity joined together with a common goal for equality and fair elections. As such, the BERSIH movement is a unique case where it illustrates the change of political landscape, ethnic relations and civil society in Malaysia.Keywords: ethnic relations, Malaysia, political opportunity structure, resource mobilization theory and social movement
Procedia PDF Downloads 3481536 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems
Authors: Eugene Stepanov, Arkadi Ponossov
Abstract:
Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics
Procedia PDF Downloads 1621535 Urbanization Effects on the Food-Water-Energy Nexus within Ecosystem Services: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration in China
Authors: Ke Yang, QiHan, Bauke de Veirs
Abstract:
This study addresses the need for coordinated management of natural resources in urban agglomeration. Using ecosystem services theory, The study explore the relationship between land use in the Beijing-Tianjin-Hebei (B-T-H) region and the Food-Water-Energy (F-W-E) nexus from 2000 to 2030. We assess ecosystem services using the InVEST: Habitat Quality (HQ), Water Yield (WY), Carbon Sequestration (CS), Soil Retention (SDR), and Food Production (FP). The study find an annual expansion of construction land alongside a significant decline in cultivated land. Additionally, HQ, CS, and per capita FP decline annually until 2020 and are expected to persist through 2030. In contrast, WY and SDR grow annually but may decline by 2030. Spearman coefficient analysis reveals synergies between HQ and CS, SDR and CS, and SDR and HQ, with trade-offs between CS and WY and HQ and WY. Utilizing the K-means clustering analysis method, we introduce county-based spatial planning for the F-W-E system, offering valuable insights and recommendations for sustainable resource management.Keywords: food-water-energy (F-W-E), ecosystem services, trade-offs and synergies, ecosystem service bundle, county-based
Procedia PDF Downloads 621534 India’s Energy Transition, Pathways for Green Economy
Authors: B. Sudhakara Reddy
Abstract:
In modern economy, energy is fundamental to virtually every product and service in use. It has been developed on the dependence of abundant and easy-to-transform polluting fossil fuels. On one hand, increase in population and income levels combined with increased per capita energy consumption requires energy production to keep pace with economic growth, and on the other, the impact of fossil fuel use on environmental degradation is enormous. The conflicting policy objectives of protecting the environment while increasing economic growth and employment has resulted in this paradox. Hence, it is important to decouple economic growth from environmental degeneration. Hence, the search for green energy involving affordable, low-carbon, and renewable energies has become global priority. This paper explores a transition to a sustainable energy system using the socio-economic-technical scenario method. This approach takes into account the multifaceted nature of transitions which not only require the development and use of new technologies, but also of changes in user behaviour, policy and regulation. The scenarios that are developed are: baseline business as usual (BAU) as well as green energy (GE). The baseline scenario assumes that the current trends (energy use, efficiency levels, etc.) will continue in future. India’s population is projected to grow by 23% during 2010 –2030, reaching 1.47 billion. The real GDP, as per the model, is projected to grow by 6.5% per year on average between 2010 and 2030 reaching US$5.1 trillion or $3,586 per capita (base year 2010). Due to increase in population and GDP, the primary energy demand will double in two decades reaching 1,397 MTOE in 2030 with the share of fossil fuels remaining around 80%. The increase in energy use corresponds to an increase in energy intensity (TOE/US $ of GDP) from 0.019 to 0.036. The carbon emissions are projected to increase by 2.5 times from 2010 reaching 3,440 million tonnes with per capita emissions of 2.2 tons/annum. However, the carbon intensity (tons per US$ of GDP) decreases from 0.96 to 0.67. As per GE scenario, energy use will reach 1079 MTOE by 2030, a saving of about 30% over BAU. The penetration rate of renewable energy resources will reduce the total primary energy demand by 23% under GE. The reduction in fossil fuel demand and focus on clean energy will reduce the energy intensity to 0.21 (TOE/US$ of GDP) and carbon intensity to 0.42 (ton/US$ of GDP) under the GE scenario. The study develops new ‘pathways out of poverty’ by creating more than 10 million jobs and thus raise the standard of living of low-income people. Our scenarios are, to a great extent, based on the existing technologies. The challenges to this path lie in socio-economic-political domains. However, to attain a green economy the appropriate policy package should be in place which will be critical in determining the kind of investments that will be needed and the incidence of costs and benefits. These results provide a basis for policy discussions on investments, policies and incentives to be put in place by national and local governments.Keywords: energy, renewables, green technology, scenario
Procedia PDF Downloads 2481533 Harnessing Sunlight for Clean Water: Scalable Approach for Silver-Loaded Titanium Dioxide Nanoparticles
Authors: Satam Alotibi, Muhammad J. Al-Zahrani, Fahd K. Al-Naqidan, Turki S. Hussein, Moteb Alotaibi, Mohammed Alyami, Mahdy M. Elmahdy, Abdellah Kaiba, Fatehia S. Alhakami, Talal F. Qahtan
Abstract:
Water pollution is a critical global challenge that demands scalable and effective solutions for water decontamination. In this captivating research, we unveil a groundbreaking strategy for harnessing solar energy to synthesize silver (Ag) clusters on stable titanium dioxide (TiO₂) nanoparticles dispersed in water, without the need for traditional stabilization agents. These Ag-loaded TiO₂ nanoparticles exhibit exceptional photocatalytic activity, surpassing that of pristine TiO₂ nanoparticles, offering a promising solution for highly efficient water decontamination under sunlight irradiation. To the best knowledge, we have developed a unique method to stabilize TiO₂ P25 nanoparticles in water without the use of stabilization agents. This breakthrough allows us to create an ideal platform for the solar-driven synthesis of Ag clusters. Under sunlight irradiation, the stable dispersion of TiO₂ P25 nanoparticles acts as a highly efficient photocatalyst, generating electron-hole pairs. The photogenerated electrons effectively reduce silver ions derived from a silver precursor, resulting in the formation of Ag clusters. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit remarkable photocatalytic activity for water decontamination under sunlight irradiation. Acting as active sites, these Ag clusters facilitate the generation of reactive oxygen species (ROS) upon exposure to sunlight. These ROS play a pivotal role in rapidly degrading organic pollutants, enabling efficient water decontamination. To confirm the success of our approach, we characterized the synthesized Ag-loaded TiO₂ P25 nanoparticles using cutting-edge analytical techniques, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and spectroscopic methods. These characterizations unequivocally confirm the successful synthesis of Ag clusters on stable TiO₂ P25 nanoparticles without traditional stabilization agents. Comparative studies were conducted to evaluate the superior photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles compared to pristine TiO₂ P25 nanoparticles. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit significantly enhanced photocatalytic activity, benefiting from the synergistic effect between the Ag clusters and TiO₂ nanoparticles, which promotes ROS generation for efficient water decontamination. Our scalable strategy for synthesizing Ag clusters on stable TiO₂ P25 nanoparticles without stabilization agents presents a game-changing solution for highly efficient water decontamination under sunlight irradiation. The use of commercially available TiO₂ P25 nanoparticles streamlines the synthesis process and enables practical scalability. The outstanding photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles opens up new avenues for their application in large-scale water treatment and remediation processes, addressing the urgent need for sustainable water decontamination solutions.Keywords: water pollution, solar energy, silver clusters, TiO₂ nanoparticles, photocatalytic activity
Procedia PDF Downloads 691532 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors
Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria
Abstract:
The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels
Procedia PDF Downloads 1671531 Characterization of Enterotoxigenic Escherichia coli CS6 Promoter
Authors: Mondal Indranil, Bhakat Debjyoti, Mukhopadayay Asish K., Chatterjee Nabendu S.
Abstract:
CS6 is the prevalent CF in our region and deciphering its molecular regulators would play a pivotal role in reducing the burden of ETEC pathogenesis. In prokaryotes, most of the genes are under the control of one operon and the promoter present upstream of the gene regulates the transcription of that gene. Here the promoter of CS6 was characterized by computational method and further analyzed by β-galactosidase assay and sequencing. Promoter constructs and deletions were prepared as required to analyze promoter activity. The effect of different additives on the CS6 promoter was analysed by the β-galactosidase assay. Bioinformatics analysis done by Softberry/BPROM predicted fur, lrp, and crp boxes, -10 and -35 region upstream of the CS6 gene. The promoter construction in no promoter plasmid pTL61T showed that region -573 to +1 is actually the promoter region as predicted. Sequential deletion of the region upstream of CS6 revealed that promoter activity remains the same when -573bp to -350bp is deleted. But after the deletion of the upstream region -350 bp to -255bp, promoter expression decreases drastically to 26%. Further deletion also decreases promoter activity up to a little range. So the region -355bp to -255bp holds the promoter sequence for the CS6 gene. Additives like iron, NaCl, etc., modulate promoter activity in a dose-dependent manner. From the promoter analysis, it can be said that the minimum region lies between -254 and +1. Important region(s) lies between -350 bp to -255 bp upstream in the promoter, which might have important elements needed to control CS6 gene expression.Keywords: microbiology, promoter, colonization factor, ETEC
Procedia PDF Downloads 1621530 Possibilities of Building Regional Migration Governance due to the Venezuelan Diaspora in Ibero-America (2015-2018)
Authors: Jonathan Palatz Cedeño
Abstract:
The paper will seek to examine the scope and limitations of the process of construction of ordinary and extraordinary migration regulatory tools of the countries of Latin America, due to the Venezuelan diaspora in Ibero-America (2015-2018). The analysis methodology will be based on a systematic presentation of the existing advances in the subject under a qualitative approach, in which the results are detailed. We hold that an important part of the Latin American countries that used to be the emitters of migrants have had to generate, with greater or lesser success both nationally and regionally, ordinary and extraordinary migration regulatory tools to respond to the rapid intensification of the current Venezuelan migratory flows. This fact beyond implementing policies for the reception and integration of this population marks a new moment that represents a huge challenge both for the receiving States and for the young Ibero-American institutional migration system. Therefore, we can say that measures to adopt reception and solidarity policies, despite being supported by organs of the multilateral system such as UNHCR and IOM, are not found as guidelines for national and regional action, at the expense of the reactions of the respective public opinions and the influence of what to do of the neighboring countries in the face of the problem.Keywords: Venezuela, migration, migration policies and governance, Venezuelan diaspora
Procedia PDF Downloads 1311529 Role of Geomatics in Architectural and Cultural Conservation
Authors: Shweta Lall
Abstract:
The intent of this paper is to demonstrate the role of computerized auxiliary science in advancing the desired and necessary alliance of historians, surveyors, topographers, and analysts of architectural conservation and management. The digital era practice of recording architectural and cultural heritage in view of its preservation, dissemination, and planning developments are discussed in this paper. Geomatics include practices like remote sensing, photogrammetry, surveying, Geographic Information System (GIS), laser scanning technology, etc. These all resources help in architectural and conservation applications which will be identified through various case studies analysed in this paper. The standardised outcomes and the methodologies using relevant case studies are listed and described. The main component of geomatics methodology adapted in conservation is data acquisition, processing, and presentation. Geomatics is used in a wide range of activities involved in architectural and cultural heritage – damage and risk assessment analysis, documentation, 3-D model construction, virtual reconstruction, spatial and structural decision – making analysis and monitoring. This paper will project the summary answers of the capabilities and limitations of the geomatics field in architectural and cultural conservation. Policy-makers, urban planners, architects, and conservationist not only need answers to these questions but also need to practice them in a predictable, transparent, spatially explicit and inexpensive manner.Keywords: architectural and cultural conservation, geomatics, GIS, remote sensing
Procedia PDF Downloads 1451528 Investigation of Mechanical Properties on natural fiber Reinforced Epoxy Composites
Authors: Gopi Kerekere Rangaraju, Madhu Puttegowda
Abstract:
Natural fibres composites include coir, jute, bagasse, cotton, bamboo, and hemp. Natural fibers come from plants. These fibers contain lingo cellulose in nature. Natural fibers are eco-friendly; lightweight, strong, renewable, cheap, and biodegradable. The natural fibers can be used to reinforce both thermosetting and thermoplastic matrices. Thermosetting resins such as epoxy, polyester, polyurethane, and phenolic are commonly used composites requiring higher performance applications. They provide sufficient mechanical properties, in particular, stiffness and strength at acceptably low-price levels. Recent advances in natural fibers development are genetic engineering. The composites science offers significant opportunities for improved materials from renewable resources with enhanced support for global sustainability. Natural fibers composites are attractive to industry because of their low density and ecological advantages over conventional composites. These composites are gaining importance due to their non-carcinogenic and bio-degradable nature. Natural fibers composites are a very costeffective material, especially in building and construction, packaging, automobile and railway coach interiors, and storage devices. These composites are potential candidates for the replacement of high- cost glass fibers for low load bearing applications. Natural fibers have the advantages of low density, low cost, and biodegradabilityKeywords: PMC, basalt, coir, carbon fibers
Procedia PDF Downloads 132