Search results for: Color Structure-Texture Image Decomposition
1141 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano
Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das
Abstract:
Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption
Procedia PDF Downloads 4151140 Effects, Causes, and Prevention of Teen Dating Violence
Authors: Isabel Jones
Abstract:
As adolescence is a formative time, experiences during adolescence often affect the rest of one’s life. Therefore, dating, specifically violence in dating, can have lasting effects on the rest of one’s life. In order to find sources, searches were conducted on PsycINFO, specifically EBSCO, and narrowed down under the criteria that the source contained information about adolescent dating violence rather than adult, and focused on causes, effects, or prevention methods. This literature review examines research regarding the effects and causes of TDV, and then what methods are effective in the prevention of TDV development. This will allow for a clear image of how these prevention methods are effective and why they are important. Effects of TDV extend beyond the physical, including psychological and sexual long-lasting effects. These are caused by a number of concepts, including learned behavior, inhibitory issues/substance abuse, and cultural factors. When both of these are taken into account, preventative measures such as school-based interventions, parental/adult monitoring, and the presence of positive family examples are more clear as to their effectiveness. This literature review may provide further awareness to this public health crisis and give the public a view of how adolescents are affected by TDV on their path from child to adult.Keywords: adolescence, dating violence, risk factors, predictors, relationship
Procedia PDF Downloads 681139 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers
Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya
Abstract:
In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.Keywords: IVF, embryo, machine learning, time-lapse imaging data
Procedia PDF Downloads 921138 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World
Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber
Abstract:
Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.Keywords: semantic segmentation, urban environment, deep learning, urban building, classification
Procedia PDF Downloads 1911137 Electrodeposition of Silicon Nanoparticles Using Ionic Liquid for Energy Storage Application
Authors: Anjali Vanpariya, Priyanka Marathey, Sakshum Khanna, Roma Patel, Indrajit Mukhopadhyay
Abstract:
Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LiBs) due to its low cost, non-toxicity, and a high theoretical capacity of 4200 mAhg⁻¹. The primary challenge of the application of Si-based LiBs is large volume expansion (~ 300%) during the charge-discharge process. Incorporation of graphene, carbon nanotubes (CNTs), morphological control, and nanoparticles was utilized as effective strategies to tackle volume expansion issues. However, molten salt methods can resolve the issue, but high-temperature requirement limits its application. For sustainable and practical approach, room temperature (RT) based methods are essentially required. Use of ionic liquids (ILs) for electrodeposition of Si nanostructures can possibly resolve the issue of temperature as well as greener media. In this work, electrodeposition of Si nanoparticles on gold substrate was successfully carried out in the presence of ILs media, 1-butyl-3-methylimidazolium-bis (trifluoromethyl sulfonyl) imide (BMImTf₂N) at room temperature. Cyclic voltammetry (CV) suggests the sequential reduction of Si⁴⁺ to Si²⁺ and then Si nanoparticles (SiNs). The structure and morphology of the electrodeposited SiNs were investigated by FE-SEM and observed interconnected Si nanoparticles of average particle size ⁓100-200 nm. XRD and XPS data confirm the deposition of Si on Au (111). The first discharge-charge capacity of Si anode material has been found to be 1857 and 422 mAhg⁻¹, respectively, at current density 7.8 Ag⁻¹. The irreversible capacity of the first discharge-charge process can be attributed to the solid electrolyte interface (SEI) formation via electrolyte decomposition, and trapped Li⁺ inserted into the inner pores of Si. Pulverization of SiNs results in the creation of a new active site, which facilitates the formation of new SEI in the subsequent cycles leading to fading in a specific capacity. After 20 cycles, charge-discharge profiles have been stabilized, and a reversible capacity of 150 mAhg⁻¹ is retained. Electrochemical impedance spectroscopy (EIS) data shows the decrease in Rct value from 94.7 to 47.6 kΩ after 50 cycles of charge-discharge, which demonstrates the improvements of the interfacial charge transfer kinetics. The decrease in the Warburg impedance after 50 cycles of charge-discharge measurements indicates facile diffusion in fragmented and smaller Si nanoparticles. In summary, Si nanoparticles deposited on gold substrate using ILs as media and characterized well with different analytical techniques. Synthesized material was successfully utilized for LiBs application, which is well supported by CV and EIS data.Keywords: silicon nanoparticles, ionic liquid, electrodeposition, cyclic voltammetry, Li-ion battery
Procedia PDF Downloads 1251136 Statistical Shape Analysis of the Human Upper Airway
Authors: Ramkumar Gunasekaran, John Cater, Vinod Suresh, Haribalan Kumar
Abstract:
The main objective of this project is to develop a statistical shape model using principal component analysis that could be used for analyzing the shape of the human airway. The ultimate goal of this project is to identify geometric risk factors for diagnosis and management of Obstructive Sleep Apnoea (OSA). Anonymous CBCT scans of 25 individuals were obtained from the Otago Radiology Group. The airways were segmented between the hard-palate and the aryepiglottic fold using snake active contour segmentation. The point data cloud of the segmented images was then fitted with a bi-cubic mesh, and pseudo landmarks were placed to perform PCA on the segmented airway to analyze the shape of the airway and to find the relationship between the shape and OSA risk factors. From the PCA results, the first four modes of variation were found to be significant. Mode 1 was interpreted to be the overall length of the airway, Mode 2 was related to the anterior-posterior width of the retroglossal region, Mode 3 was related to the lateral dimension of the oropharyngeal region and Mode 4 was related to the anterior-posterior width of the oropharyngeal region. All these regions are subjected to the risk factors of OSA.Keywords: medical imaging, image processing, FEM/BEM, statistical modelling
Procedia PDF Downloads 5141135 Malignancy Assessment of Brain Tumors Using Convolutional Neural Network
Authors: Chung-Ming Lo, Kevin Li-Chun Hsieh
Abstract:
The central nervous system in the World Health Organization defines grade 2, 3, 4 gliomas according to the aggressiveness. For brain tumors, using image examination would have a lower risk than biopsy. Besides, it is a challenge to extract relevant tissues from biopsy operation. Observing the whole tumor structure and composition can provide a more objective assessment. This study further proposed a computer-aided diagnosis (CAD) system based on a convolutional neural network to quantitatively evaluate a tumor's malignancy from brain magnetic resonance imaging. A total of 30 grade 2, 43 grade 3, and 57 grade 4 gliomas were collected in the experiment. Transferred parameters from AlexNet were fine-tuned to classify the target brain tumors and achieved an accuracy of 98% and an area under the receiver operating characteristics curve (Az) of 0.99. Without pre-trained features, only 61% of accuracy was obtained. The proposed convolutional neural network can accurately and efficiently classify grade 2, 3, and 4 gliomas. The promising accuracy can provide diagnostic suggestions to radiologists in the clinic.Keywords: convolutional neural network, computer-aided diagnosis, glioblastoma, magnetic resonance imaging
Procedia PDF Downloads 1471134 The Revival of Cultural Heritage through Social Space Upliftment: Case Study of the Walled City of Ajmer, India
Authors: Vaishali Sharma
Abstract:
The research is an attempt to hunt a scientific and objective method to transform Ajmer's traditional walled city into a living cultural heritage space, exploring urban management methods to elevate local economy and social space in relation to specific cultural-based initiatives. Ajmer is among the oldest and religiously diverse settlements in Rajasthan, that has seen superimposed developments through the eras. With numerous agencies operating towards the development of the town core of Ajmer, it becomes essential to structure development changes in tune with the transformations and the existing heritage. The study was radio-controlled by the subsequent analysis question: What is the way to overcome the genetic social and economic stress inside the communities and revive public life? In order to create necessary interventions at the neighbourhood level, fifteen neighbourhoods were identified. Each of those was analyzed relatively on three major dimensions: Heritage, Social and Local Economy. Each dimension was further broken down into multiple sub-aspects for an overall and exhaustive understanding. The average median values of the responses were used to develop a color-coded matrix to represent the scores in an exceedingly structured quantified manner, moreover, linking it to the spatial structure. Respondent perceptions on numerous dimensions were additionally recorded, so that the proposals are inclusive in nature. The goals are targeted at Ajmer's traditional walled towns, which will make it easier for the community to regulate the rapid transformations and commercialization occurring within the space. The study recommends the necessity for accrued support in methods and policies from the non-public sector, businesses as well as local stakeholders. An expansion, revitalization and maintenance of the major business and heritage corridors, for an increased local and visitor experience, can produce an impetus for promotion of the intangible heritage, to spur the local economic processes, conservation of heritage precincts and upward development.Keywords: cultural heritage, economic revitalization, neighbourhoods in walled cities, social space, tangible and intangible heritage
Procedia PDF Downloads 1601133 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment
Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay
Abstract:
Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.Keywords: machine learning, system performance, performance metrics, IoT, edge
Procedia PDF Downloads 1951132 Good Banks, Bad Banks, and Public Scrutiny: The Determinants of Corporate Social Responsibility in Times of Financial Volatility
Authors: A. W. Chalmers, O. M. van den Broek
Abstract:
This article examines the relationship between the global financial crisis and corporate social responsibility activities of financial services firms. It challenges the general consensus in existing studies that firms, when faced with economic hardship, tend to jettison CSR commitments. Instead, and building on recent insights into the institutional determinants of CSR, it is argued that firms are constrained in their ability to abandon CSR by the extent to which they are subject to intense public scrutiny by regulators and the news media. This argument is tested in the context of the European sovereign debt crisis drawing on a unique dataset of 170 firms in 15 different countries over a six-year period. Controlling for a battery of alternative explanations and comparing financial service providers to firms operating in other economic sectors, results indicate considerable evidence supporting the main argument. Rather than abandoning CSR during times of economic hardship, financial industry firms ramp up their CSR commitments in order to manage their public image and foster public trust in light of intense public scrutiny.Keywords: corporate social responsibility (CSR), public scrutiny, global financial crisis, financial services firms
Procedia PDF Downloads 3061131 Arsenic (III) Removal by Zerovalent Iron Nanoparticles Synthesized with the Help of Tea Liquor
Authors: Tulika Malviya, Ritesh Chandra Shukla, Praveen Kumar Tandon
Abstract:
Traditional methods of synthesis are hazardous for the environment and need nature friendly processes for the treatment of industrial effluents and contaminated water. Use of plant parts for the synthesis provides an efficient alternative method. In this paper, we report an ecofriendly and nonhazardous biobased method to prepare zerovalent iron nanoparticles (ZVINPs) using the liquor of commercially available tea. Tea liquor as the reducing agent has many advantages over other polymers. Unlike other polymers, the polyphenols present in tea extract are nontoxic and water soluble at room temperature. In addition, polyphenols can form complexes with metal ions and thereafter reduce the metals. Third, tea extract contains molecules bearing alcoholic functional groups that can be exploited for reduction as well as stabilization of the nanoparticles. Briefly, iron nanoparticles were prepared by adding 2.0 g of montmorillonite K10 (MMT K10) to 5.0 mL of 0.10 M solution of Fe(NO3)3 to which an equal volume of tea liquor was then added drop wise over 20 min with constant stirring. The color of the mixture changed from whitish yellow to black, indicating the formation of iron nanoparticles. The nanoparticles were adsorbed on montmorillonite K10, which is safe and aids in the separation of hazardous arsenic species simply by filtration. Particle sizes ranging from 59.08±7.81 nm were obtained which is confirmed by using different instrumental analyses like IR, XRD, SEM, and surface area studies. Removal of arsenic was done via batch adsorption method. Solutions of As(III) of different concentrations were prepared by diluting the stock solution of NaAsO2 with doubly distilled water. The required amount of in situ prepared ZVINPs supported on MMT K10 was added to a solution of desired strength of As (III). After the solution had been stirred for the preselected time, the solid mass was filtered. The amount of arsenic [in the form of As (V)] remaining in the filtrate was measured using ion chromatograph. Stirring of contaminated water with zerovalent iron nanoparticles supported on montmorillonite K10 for 30 min resulted in up to 99% removal of arsenic as As (III) from its solution at both high and low pH (2.75 and 11.1). It was also observed that, under similar conditions, montmorillonite K10 alone provided only <10% removal of As(III) from water. Adsorption at low pH with precipitation at higher pH has been proposed for As(III) removal.Keywords: arsenic removal, montmorillonite K10, tea liquor, zerovalent iron nanoparticles
Procedia PDF Downloads 1301130 Sustainable Renovation and Restoration of the Rural — Based on the View Point of Psychology
Authors: Luo Jin China, Jin Fang
Abstract:
Countryside has been generally recognized and regarded as a characteristic symbol which presents in human memory for a long time. As a result of the change of times, because of it’s failure to meet the growing needs of the growing life and mental decline, the vast rural area began to decline. But their history feature image which accumulated by the ancient tradition provides people with the origins of existence on the spiritual level, such as "identity" and "belonging", makes people closer to the others in the spiritual and psychological aspects of a common experience about the past, thus the sense of a lack of culture caused by the losing of memory symbols is weakened. So, in the modernization process, how to repair its vitality and transform and planning it in a sustainable way has become a hot topics in architectural and urban planning. This paper aims to break the constraints of disciplines, from the perspective of interdiscipline, using the research methods of systems science to analyze and discuss the theories and methods of rural form factors, which based on the viewpoint of memory in psychology. So, we can find a right way to transform the Rural to give full play to the role of the countryside in the actual use and the shape of history spirits.Keywords: rural, sustainable renovation, restoration, psychology, memory
Procedia PDF Downloads 5731129 Decreased Non-Communicable Disease by Surveillance, Control, Prevention Systems, and Community Engagement Process in Phayao, Thailand
Authors: Vichai Tienthavorn
Abstract:
Background: Recently, the patients of non-communicable diseases (NCDs) are increasing in Thailand; especially hypertension and diabetes. Hypertension and Diabetes patients were found to be of 3.7 million in 2008. The varieties of human behaviors have been extensively changed in health. Hence, Thai Government has a policy to reduce NCDs. Generally, primary care plays an important role in treatment using medical process. However, NCDs patients have not been decreased. Objectives: This study not only reduce the patient and mortality rate but also increase the quality of life, could apply in different areas and propose to be the national policy, effectively for a long term operation. Methods: Here we report that primary health care (PHC), which is a primary process to screening, rapidly seek the person's risk. The screening tool of the study was Vichai's 7 color balls model, the medical education tool to transfer knowledge from student health team to community through health volunteers, creating community engagement in terms of social participation. It was found that people in community were realized in their health and they can evaluate the level of risk using this model. Results: Projects implementation (2015) in Nong Lom Health Center in Phayao (target group 15-65 years, 2529); screening hypertension coveraged 99.01%, risk group (light green) was decreased to normal group (white) from 1806 to 1893, significant severe patient (red) was decreased to moderate (orange) from 10 to 5. Health Program in behaving change with best practice of 3Es (Eating, Exercise, Emotion) and 3Rs (Reducing tobacco, alcohol, obesity) were applied in risk group; and encourage strictly medication, investigation in severe patient (red). Conclusion: This is the first demonstration of knowledge transfer to community engagement by student, which is the sustainable education in PHC.Keywords: non-communicable disease, surveillance control and prevention systems, community engagement, primary health care
Procedia PDF Downloads 2501128 The Use of Remote Sensing in the Study of Vegetation Jebel Boutaleb, Setif, Algeria
Authors: Khaled Missaoui, Amina Beldjazia, Rachid Gharzouli, Yamna Djellouli
Abstract:
Optical remote sensing makes use of visible, near infrared and short-wave infrared sensors to form images of the earth's surface by detecting the solar radiation reflected from targets on the ground. Different materials reflect and absorb differently at different wavelengths. Thus, the targets can be differentiated by their spectral reflectance signatures in the remotely sensed images. In this work, we are interested to study the distribution of vegetation in the massif forest of Boutaleb (North East of Algeria) which suffered between 1998 and 1999 very large fires. In this case, we use remote sensing with Landsat images from two dates (1984 and 2000) to see the results of these fires. Vegetation has a unique spectral signature which enables it to be distinguished readily from other types of land cover in an optical/near-infrared image. Normalized Difference Vegetation Index (NDVI) is calculated with ENVI 4.7 from Band 3 and 4. The results showed a very important floristic diversity in this forest. The comparison of NDVI from the two dates confirms that there is a decrease of the density of vegetation in this area due to repeated fires.Keywords: remote sensing, boutaleb, diversity, forest
Procedia PDF Downloads 5601127 Attendance Management System Implementation Using Face Recognition
Authors: Zainab S. Abdullahi, Zakariyya H. Abdullahi, Sahnun Dahiru
Abstract:
Student attendance in schools is a very important aspect in school management record. In recent years, security systems have become one of the most demanding systems in school. Every institute have its own method of taking attendance, many schools in Nigeria use the old fashion way of taking attendance. That is writing the students name and registration number in a paper and submitting it to the lecturer at the end of the lecture which is time-consuming and insecure, because some students can write for their friends without the lecturer’s knowledge. In this paper, we propose a system that takes attendance using face recognition. There are many automatic methods available for this purpose i.e. biometric attendance, but they all waste time, because the students have to follow a queue to put their thumbs on a scanner which is time-consuming. This attendance is recorded by using a camera attached in front of the class room and capturing the student images, detect the faces in the image and compare the detected faces with database and mark the attendance. The principle component analysis was used to recognize the faces detected with a high accuracy rate. The paper reviews the related work in the field of attendance system, then describe the system architecture, software algorithm and result.Keywords: attendance system, face detection, face recognition, PCA
Procedia PDF Downloads 3651126 A Review of Different Studies on Hidden Markov Models for Multi-Temporal Satellite Images: Stationarity and Non-Stationarity Issues
Authors: Ali Ben Abbes, Imed Riadh Farah
Abstract:
Due to the considerable advances in Multi-Temporal Satellite Images (MTSI), remote sensing application became more accurate. Recently, many advances in modeling MTSI are developed using various models. The purpose of this article is to present an overview of studies using Hidden Markov Model (HMM). First of all, we provide a background of using HMM and their applications in this context. A comparison of the different works is discussed, and possible areas and challenges are highlighted. Secondly, we discussed the difference on vegetation monitoring as well as urban growth. Nevertheless, most research efforts have been used only stationary data. From another point of view, in this paper, we describe a new non-stationarity HMM, that is defined with a set of parts of the time series e.g. seasonal, trend and random. In addition, a new approach giving more accurate results and improve the applicability of the HMM in modeling a non-stationary data series. In order to assess the performance of the HMM, different experiments are carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time series of the northwestern region of Tunisia and Landsat time series of tres Cantos-Madrid in Spain.Keywords: multi-temporal satellite image, HMM , nonstationarity, vegetation, urban
Procedia PDF Downloads 3541125 Smart BIM Documents - the Development of the Ontology-Based Tool for Employer Information Requirements (OntEIR), and its Transformation into SmartEIR
Authors: Shadan Dwairi
Abstract:
Defining proper requirements is one of the key factors for a successful construction projects. Although there have been many attempts put forward in assist in identifying requirements, but still this area is under developed. In Buildings Information Modelling (BIM) projects. The Employer Information Requirements (EIR) is the fundamental requirements document and a necessary ingredient in achieving a successful BIM project. The provision on full and clear EIR is essential to achieving BIM Level-2. As Defined by PAS 1192-2, EIR is a “pre-tender document that sets out the information to be delivered and the standards and processes to be adopted by the supplier as part of the project delivery process”. It also notes that “EIR should be incorporated into tender documentation to enable suppliers to produce an initial BIM Execution Plan (BEP)”. The importance of effective definition of EIR lies in its contribution to a better productivity during the construction process in terms of cost and time, in addition to improving the quality of the built asset. Proper and clear information is a key aspect of the EIR, in terms of the information it contains and more importantly the information the client receives at the end of the project that will enable the effective management and operation of the asset, where typically about 60%-80% of the cost is spent. This paper reports on the research done in developing the Ontology-based tool for Employer Information Requirements (OntEIR). OntEIR has proven the ability to produce a full and complete set of EIRs, which ensures that the clients’ information needs for the final model delivered by BIM is clearly defined from the beginning of the process. It also reports on the work being done into transforming OntEIR into a smart tool for Defining Employer Information Requirements (smartEIR). smartEIR transforms the OntEIR tool into enabling it to develop custom EIR- tailored for the: Project Type, Project Requirements, and the Client Capabilities. The initial idea behind smartEIR is moving away from the notion “One EIR fits All”. smartEIR utilizes the links made in OntEIR and creating a 3D matrix that transforms it into a smart tool. The OntEIR tool is based on the OntEIR framework that utilizes both Ontology and the Decomposition of Goals to elicit and extract the complete set of requirements needed for a full and comprehensive EIR. A new ctaegorisation system for requirements is also introduced in the framework and tool, which facilitates the understanding and enhances the clarification of the requirements especially for novice clients. Findings of the evaluation of the tool that was done with experts in the industry, showed that the OntEIR tool contributes towards effective and efficient development of EIRs that provide a better understanding of the information requirements as requested by BIM, and support the production of a complete BIM Execution Plan (BEP) and a Master Information Delivery Plan (MIDP).Keywords: building information modelling, employer information requirements, ontology, web-based, tool
Procedia PDF Downloads 1271124 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams
Authors: Nidhi Sharotri, Dhiraj Sud
Abstract:
Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.Keywords: quinalphos, doped-TiO2, mineralization, EPR
Procedia PDF Downloads 3281123 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 861122 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper
Authors: Ahmed S. Afifi, Ahmed Magdy
Abstract:
Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster
Procedia PDF Downloads 1061121 New Insights Into Fog Role In Atmospheric Deposition Using Satellite Images
Authors: Suruchi
Abstract:
This study aims to examine the spatial and temporal patterns of fog occurrences across Czech Republic. It utilizes satellite imagery and other data sources to achieve this goal. The main objective is to understand the role of fog in atmospheric deposition processes and its potential impact on the environment and ecosystems. Through satellite image analysis, the study will identify and categorize different types of fog, including radiation fog, orographic fog, and mountain fog. Fog detection algorithms and cloud type products will be evaluated to assess the frequency and distribution of fog events throughout the Czech Republic. Furthermore, the regions covered by fog will be classified based on their fog type and associated pollution levels. This will provide insights into the variability in fog characteristics and its implications for atmospheric deposition. Spatial analysis techniques will be used to pinpoint areas prone to frequent fog events and evaluate their pollution levels. Statistical methods will be employed to analyze patterns in fog occurrence over time and its connection with environmental factors. The ultimate goal of this research is to offer fresh perspectives on fog's role in atmospheric deposition processes, enhancing our understanding of its environmental significance and informing future research and environmental management initiatives.Keywords: pollution, GIS, FOG, satellie, atmospheric deposition
Procedia PDF Downloads 221120 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction
Authors: William Whiteley, Jens Gregor
Abstract:
In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography
Procedia PDF Downloads 1111119 Analyses of Copper Nanoparticles Impregnated Wood and Its Fungal Degradation Performance
Authors: María Graciela Aguayo, Laura Reyes, Claudia Oviedo, José Navarrete, Liset Gómez, Hugo Torres
Abstract:
Most wood species used in construction deteriorate when exposed to environmental conditions that favor wood-degrading organisms’ growth. Therefore, chemical protection by impregnation allows more efficient use of forest resources extending the wood useful life. A wood protection treatment which has attracted considerable interest in the scientific community during the last decade is wood impregnation with nano compounds. Radiata pine is the main wood species used in the Chilean construction industry, with total availability of 8 million m³ sawn timber. According to the requirements of the American Wood Protection Association (AWPA) and the Chilean Standards (NCh) radiata pine timber used in construction must be protected due to its low natural durability. In this work, the impregnation with copper nanoparticles (CuNP) was studied in terms of penetration and its protective effect against wood rot fungi. Two concentrations: 1 and 3 g/L of NPCu were applied by impregnation on radiata pine sapwood. Test penetration under AWPA A3-91 standard was carried out, and wood decay tests were performed according to EN 113, with slight modifications. The results of penetration for 1 g/L CuNP showed an irregular total penetration, and the samples impregnated with 3 g/L showed a total penetration with uniform concentration (blue color in all cross sections). The impregnation wood mass losses due to fungal exposure were significantly reduced, regardless of the concentration of the solution or the fungus. In impregnated wood samples, exposure to G. trabeum resulted ML values of 2.70% and 1.19% for 1 g/L and 3 g/L CuNP, respectively, and exposure to P. placenta resulted in 4.02% and 0.70%-ML values for 1 g/L and 3 g/L CuNP, respectively. In this study, the penetration analysis confirmed a uniform distribution inside the wood, and both concentrations were effective against the tested fungi, giving mass loss values lower than 5%. Therefore, future research in wood preservatives should focus on new nanomaterials that are more efficient and environmentally friendly. Acknowledgments: CONICYT FONDEF IDeA I+D 2019, grant number ID19I10122.Keywords: copper nanoparticles, fungal degradation, radiata pine wood, wood preservation
Procedia PDF Downloads 1991118 Solid Oral Leiomyoma: Clinical Case Report
Authors: Hurtado Zuñiga Yonel Marcos, Ferreira Joao Tiago
Abstract:
Introduction: Leiomyoma is a benign smooth muscle tumor. It is predominantly found between 40-49 years with a small prevalence in men. It is commonly found in the uterus, stomach, and in areas with smooth muscle. It presents as nodular, solitary, variable size, slow growing, and asymptomatic. It is classified into solid, vascular, and epithelioid leiomyoma. Vascular leiomyoma is the most common in the oral cavity. Oral leiomyomas are very rare because a smooth muscle in the oral cavity isn’t common. The most frequent areas of this pathologyaretongue, lip, buccal mucosa, and palate. It may be derived from the vascular walls or excretory ducts of the salivary glands. The diagnosis is made by histologically analysis. The treatment of choice is complete excision. Recurrence is rare. Objective: To report the case of a solid leiomyoma on the dorsum of the tongue and review the literature. Case description: A 78-year-old female patient presented a nodular (ovoid) elevation of 8x6mm, brownish color, with irregular limits and firm consistency located in the dorsal part of the tongue with slight symptoms. An excisional biopsy was performed, photographic record, and 3 weeks post-surgical follow-up. Result: The surgical specimen was submitted to an anatomopathological analysis, resulting in a benign nodule with defined limits compatible with solid leiomyoma of the tongue. Discussion: It is a pathology that presents in a solitary, nodular, well-defined, asymptomatic form; in the oral cavity, leiomyomas are found in the tongue, lip, buccal mucosa, and palate; as in our patient, it was nodular and, in the tongue, with a difference only in the symptomatology. The most prevalent age is 40-49 years and with small predominance in men, unlike our female patient with 78 years. Conclusions: Oral leiomyoma is a rare benign lesion that presents as a solitary nodular nodule; for its diagnosis, an anatomopathological analysis should be performed, and the treatment of choice is total excision with little recurrence.Keywords: tongue, bening tumor, oral leiomyoma, leiomyoma
Procedia PDF Downloads 2171117 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping
Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton
Abstract:
Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.Keywords: pollen recognition, logistic model tree, expectation-maximization, local binary pattern
Procedia PDF Downloads 1821116 Emotion Recognition Using Artificial Intelligence
Authors: Rahul Mohite, Lahcen Ouarbya
Abstract:
This paper focuses on the interplay between humans and computer systems and the ability of these systems to understand and respond to human emotions, including non-verbal communication. Current emotion recognition systems are based solely on either facial or verbal expressions. The limitation of these systems is that it requires large training data sets. The paper proposes a system for recognizing human emotions that combines both speech and emotion recognition. The system utilizes advanced techniques such as deep learning and image recognition to identify facial expressions and comprehend emotions. The results show that the proposed system, based on the combination of facial expression and speech, outperforms existing ones, which are based solely either on facial or verbal expressions. The proposed system detects human emotion with an accuracy of 86%, whereas the existing systems have an accuracy of 70% using verbal expression only and 76% using facial expression only. In this paper, the increasing significance and demand for facial recognition technology in emotion recognition are also discussed.Keywords: facial reputation, expression reputation, deep gaining knowledge of, photo reputation, facial technology, sign processing, photo type
Procedia PDF Downloads 1211115 The Image of Future Spouse in Indonesian Folktale: Man's Acceptance of Woman and vice Versa
Authors: Titik Wahyuningsih
Abstract:
The folktale to discuss is Ande-Ande Lumut, a story that is believed to be a history of two kingdoms in East Java, Indonesia. The title refers to the main male character in the story. This research is a library research which aims to know the patriarchal values in Indonesia. The data for the research is the song in the story that is actually the conversation between Ande-Ande Lumut and a mom who adopts him. It is told in the lines that many beautiful girls come to propose Ande-Ande Lumut but he does not want to accept them and keeps on staying in his upstairs room. Finally, he says yes for Klething Kuning to whom his mom describes as a girl with ugly face. Ande-Ande Lumut's decision is taken as Klething Kuning is the only girl who doesn't let Yuyu Kangkang help her. Yuyu Kangkang is described as a very big crab that helps the girls to cross the river but ask them to kiss him. Through the lense of feminist approach, Ande-Ande Lumut shows the men’s preference and dominance to make final decision over women. Even though the girls are actively propose their future husband, but they do it without giving any requirements. Meanwhile, the future husband chooses a girl with a criterion that no male has ever touched her, although the male is a crab.Keywords: future spouse, Indonesian folktale, acceptance, patriarchal
Procedia PDF Downloads 2951114 Neonatal Subcutaneous Fat Necrosis with Severe Hypercalcemia: Case Report
Authors: Atitallah Sofien, Bouyahia Olfa, Krifi farah, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir
Abstract:
Introduction: Subcutaneous fat necrosis of the newborn (SCFN) is a rare acute hypodermatitis characterized by skin lesions in the form of infiltrated, hard plaques and subcutaneous nodules, with a purplish-red color, occurring between the first and sixth week of life. SCFN is generally a benign condition that spontaneously regresses without sequelae, but it can be complicated by severe hypercalcemia. Methodology: This is a retrospective case report of neonatal subcutaneous fat necrosis complicated with severe hypercalcemia and nephrocalcinosis. Results: This is a case of a female newborn with a family history of a hypothyroid mother on Levothyrox, born to non-consanguineous parents and from a well-monitored pregnancy. The newborn was delivered by cesarean section at 39 weeks gestation due to severe preeclampsia. She was admitted to the Neonatal Intensive Care Unit at 1 hour of life for the management of grade 1 perinatal asphyxia and immediate neonatal respiratory distress related to transient respiratory distress. Hospitalization was complicated by a healthcare-associated infection, requiring intravenous antibiotics for ten days, with a good clinical and biological response. On the 20th day of life, she developed skin lesions in the form of indurated purplish-red nodules on the back and on both arms. A SCFN was suspected. A calcium level test was conducted, which returned a result of 3 mmol/L. The rest of the phosphocalcic assessment was normal, with early signs of nephrocalcinosis observed on renal ultrasound. The diagnosis of SCFN complicated by nephrocalcinosis associated with severe hypercalcemia was made, and the condition improved with intravenous hydration and corticosteroid therapy. Conclusion: SCFN is a rare and generally benign hypodermatitis in newborns with an etiology that is still poorly understood. Despite its benign nature, SCFN can be complicated by hypercalcemia, which can sometimes be life-threatening. Therefore, it is important to conduct a thorough skin examination of newborns, especially those with risk factors, to detect and correct any potential hypercalcemia.Keywords: subcutaneous fat necrosis, newborn, hypercalcemia, nephrocalcinosis
Procedia PDF Downloads 581113 Computer-Integrated Surgery of the Human Brain, New Possibilities
Authors: Ugo Galvanetto, Pirto G. Pavan, Mirco Zaccariotto
Abstract:
The discipline of Computer-integrated surgery (CIS) will provide equipment able to improve the efficiency of healthcare systems and, which is more important, clinical results. Surgeons and machines will cooperate in new ways that will extend surgeons’ ability to train, plan and carry out surgery. Patient specific CIS of the brain requires several steps: 1 - Fast generation of brain models. Based on image recognition of MR images and equipped with artificial intelligence, image recognition techniques should differentiate among all brain tissues and segment them. After that, automatic mesh generation should create the mathematical model of the brain in which the various tissues (white matter, grey matter, cerebrospinal fluid …) are clearly located in the correct positions. 2 – Reliable and fast simulation of the surgical process. Computational mechanics will be the crucial aspect of the entire procedure. New algorithms will be used to simulate the mechanical behaviour of cutting through cerebral tissues. 3 – Real time provision of visual and haptic feedback A sophisticated human-machine interface based on ergonomics and psychology will provide the feedback to the surgeon. The present work will address in particular point 2. Modelling the cutting of soft tissue in a structure as complex as the human brain is an extremely challenging problem in computational mechanics. The finite element method (FEM), that accurately represents complex geometries and accounts for material and geometrical nonlinearities, is the most used computational tool to simulate the mechanical response of soft tissues. However, the main drawback of FEM lies in the mechanics theory on which it is based, classical continuum Mechanics, which assumes matter is a continuum with no discontinuity. FEM must resort to complex tools such as pre-defined cohesive zones, external phase-field variables, and demanding remeshing techniques to include discontinuities. However, all approaches to equip FEM computational methods with the capability to describe material separation, such as interface elements with cohesive zone models, X-FEM, element erosion, phase-field, have some drawbacks that make them unsuitable for surgery simulation. Interface elements require a-priori knowledge of crack paths. The use of XFEM in 3D is cumbersome. Element erosion does not conserve mass. The Phase Field approach adopts a diffusive crack model instead of describing true tissue separation typical of surgical procedures. Modelling discontinuities, so difficult when using computational approaches based on classical continuum Mechanics, is instead easy for novel computational methods based on Peridynamics (PD). PD is a non-local theory of mechanics formulated with no use of spatial derivatives. Its governing equations are valid at points or surfaces of discontinuity, and it is, therefore especially suited to describe crack propagation and fragmentation problems. Moreover, PD does not require any criterium to decide the direction of crack propagation or the conditions for crack branching or coalescence; in the PD-based computational methods, cracks develop spontaneously in the way which is the most convenient from an energy point of view. Therefore, in PD computational methods, crack propagation in 3D is as easy as it is in 2D, with a remarkable advantage with respect to all other computational techniques.Keywords: computational mechanics, peridynamics, finite element, biomechanics
Procedia PDF Downloads 801112 Using Arts in ESL Classroom
Authors: Nazia Shehzad
Abstract:
Language and art can supplement and correlate each other. Through the ages art has been a means of visual expression used to convey a wide series of incarnated ideas. Art can take the perceiver into different times and into different worlds. It can also be used to introduce different levels of vocabulary to the learners of a second language. Learning a second language for most students is a very difficult and strenuous experience. They are not only trying to accommodate to a new language but are also trying to adjust to themselves and a new environment. They are anxious about almost everything, but they are especially self-conscious about their performance in the classroom. By relocating the focus from the student to an object, everyone participates, thus waiving a certain degree of self-consciousness. The experience, a student has with art in the classroom has to be gratifying for both the student and the teacher. If the atmosphere in the classroom is too grave it will not serve any useful purpose. Art is an excellent way to teach English and encourage collaboration and interaction between students of all ages. As making art involves many different processes, it is wonderful for classification and following/giving instructions. It is also an effective way to achieve and implement language of characterization and comparison and vocabulary acquirement for the elements of design (shape, size, color, texture, tone etc.) is so much more entertaining if done in a practical and hands-on way. Expressing ideas and feelings through art is also of immeasurable value where students are at the beginning stages of English language acquisition and for many of my Saudi students it was a form of therapy. It is also a way to respect, search, examine and share the cultural traditions of different cultures, and of the students themselves. Art not only provides a field for ideas to keep aimless, meandering minds of students' busy but is also a productive tool to analyze English language in a new order. As an ESL teacher, using art is a highly compelling way to bridge the gap between student and teacher. It’s difficult to keep students concentrated, especially when they speak a different language. To get students to actually learn and explore something in your foreign language lesson, artwork is your best friend. Many teachers feel that through amalgamation of the arts into their academic lessons students are able to learn more profoundly because they use diverse ways of thinking and problem solving. Teachers observe that drawing often retains students who might otherwise be dispassionate and can help students move ahead simple recall when they are asked to make connections and come up with an exclusive interpretation through an artwork or drawing. Students use observation skills when they are drawing, and this can help to persuade students who might otherwise remain silent or need more time to process information.Keywords: amalgamation of arts, expressing ideas and feelings through arts, effective way to achieve and implement language, language and art can supplement and correlate each other
Procedia PDF Downloads 359