Search results for: soil classification
2011 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump
Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison
Abstract:
Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.Keywords: centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm
Procedia PDF Downloads 4102010 Solving Ill-Posed Initial Value Problems for Switched Differential Equations
Authors: Eugene Stepanov, Arcady Ponosov
Abstract:
To model gene regulatory networks one uses ordinary differential equations with switching nonlinearities, where the initial value problem is known to be well-posed if the trajectories cross the discontinuities transversally. Otherwise, the initial value problem is usually ill-posed, which lead to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid dynamical systems, rather than switched ones, to regularize the problem. 'Hybridization' of the switched system means that one attaches a dynamic discrete component ('automaton'), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness of the initial value problem making it well-posed. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. Several examples are provided in the presentation, which support the suggested analysis. The method can also be of interest in other applied fields, where differential equations contain switchings, e.g. in neural field models.Keywords: hybrid dynamical systems, ill-posed problems, singular perturbation analysis, switching nonlinearities
Procedia PDF Downloads 1842009 Fuzzy Sentiment Analysis of Customer Product Reviews
Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad
Abstract:
As a result of the growth of the web, people are able to express their views and opinions. They can now post reviews of products at merchant sites and express their views on almost anything in internet forums, discussion groups, and blogs. Therefore, the number of product reviews has grown rapidly. The large numbers of reviews make it difficult for manufacturers or businesses to automatically classify them into different semantic orientations (positive, negative, and neutral). For sentiment classification, most existing methods utilize a list of opinion words whereas this paper proposes a fuzzy approach for evaluating sentiments expressed in customer product reviews, to predict the strength levels (e.g. very weak, weak, moderate, strong and very strong) of customer product reviews by combinations of adjective, adverb and verb. The proposed fuzzy approach has been tested on eight benchmark datasets and obtained 74% accuracy, which leads to help the organization with a more clear understanding of customer's behavior in support of business planning process.Keywords: fuzzy logic, customer product review, sentiment analysis
Procedia PDF Downloads 3632008 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment
Authors: Elena Puica
Abstract:
This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM
Procedia PDF Downloads 1162007 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: ensembles, false positives, feature selection, one side class algorithm
Procedia PDF Downloads 2922006 Ant and Spider Diversity in a Rural Landscape of the Vhembe Biosphere, South Africa
Authors: Evans V. Mauda, Stefan H. Foord, Thinandavha C. Munyai
Abstract:
The greatest threat to biodiversity is a loss of habitat through landscape fragmentation and attrition. Land use changes are therefore among the most immediate drivers of species diversity. Urbanization and agriculture are the main drivers of habitat loss and transformation in the Savanna biomes of South Africa. Agricultural expansion and the intensification in particular, take place at the expense of biodiversity and will probably be the primary driver of biodiversity loss in this century. Arthropods show measurable behavioural responses to changing land mosaics at the smallest scale and heterogeneous environments are therefore predicted to support more complex and diverse biological assemblages. Ants are premier soil turners, channelers of energy and dominate insect fauna, while spiders are a mega-diverse group that can regulate other invertebrate populations. This study aims to quantify the response of these two taxa in a rural-urban mosaic of a rapidly developing communal area. The study took place in and around two villages in the north-eastern corner of South Africa. Two replicates for each of the dominant land use categories, viz. urban settlements, dryland cultivation and cattle rangelands, were set out in each of the villages and sampled during the dry and wet seasons for a total of 2 villages × 3 land use categories × 2 seasons = 24 assemblages. Local scale variables measured included vertical and horizontal habitat structure as well as structural and chemical composition of the soil. Ant richness was not affected by land use but local scale variables such as vertical vegetation structure (+) and leaf litter cover (+), although vegetation complexity at lower levels was negatively associated with ant richness. However, ant richness was largely shaped by regional and temporal processes invoking the importance of dispersal and historical processes. Spider species richness was mostly affected by land use and local conditions highlighting their landscape elements. Spider richness did not vary much between villages and across seasons and seems to be less dependent on context or history. There was a considerable amount of variation in spider richness that was not explained and this could be related to factors which were not measured in this study such as temperature and competition. For both ant and spider assemblages the constrained ordination explained 18 % of variation in these taxa. Three environmental variables (leaf litter cover, active carbon and rock cover) were important in explaining ant assemblage structure, while two (sand and leaf litter cover) were important for spider assemblage structure. This study highlights the importance of disturbance (land use activities) and leaf litter with the associated effects on ant and spider assemblages across the study area.Keywords: ants, assemblages, biosphere, diversity, land use, spiders, urbanization
Procedia PDF Downloads 2672005 Assisting Dating of Greek Papyri Images with Deep Learning
Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou
Abstract:
Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.Keywords: image classification, papyri images, dating
Procedia PDF Downloads 782004 Behavioral Finance in Hundred Keywords
Authors: Ramon Hernán, Maria Teresa Corzo
Abstract:
This study examines the impact and contribution of the main journals in the discipline of behavioral finance to determine the state of the art of the discipline and the growth lines and concepts studied to date. This is a unique and novel study given that a review of the discipline has not been carried out through the keywords of the articles that allows visualizing through this component of the research, which are the main topics of discussion and the relationships that arise between the concepts discussed. To carry out this study, 3,876 articles have been taken as a reference, which includes 15,859 keywords from the main journals responsible for the growth of the discipline.; Journal of Behavioral Finance, Review of Behavioral Finance, Journal of Behavioral and Experimental Economics, Journal of Behavioral and Experimental Economics and Review of Behavioral Finance. The results indicate which are the topics most covered in the discipline throughout the period from 2000 to 2020, how these concepts have been dealt with on a recurring basis along with others throughout the aforementioned period and how the different concepts have been grouped based on the keywords established by the authors for the classification of their articles with a network diagram to complete the analysis.Keywords: behavioral finance, keywords, co-words, top journals, data visualization
Procedia PDF Downloads 1912003 Cochliobolus sativus: An Important Pathogen of Cereal Crops
Authors: Awet Araya
Abstract:
Cochliobolus sativus ((anamorphic stage: Bipolaris sorokiniana (synonyms: Helminthosporium sorokinianum, Drechslera sorokiniana, and Helminthosporium sativum)) is an important pathogen of cereal crops. Many other grass species are also hosts for this fungus. Yield losses have been reported from many regions, especially where barley and wheat are commercially cultivated. The fungus has a worldwide distribution. The pathogen causes root rot, seedling blight, spot blotch, head blight, and black point. Environmental conditions affect disease development. Most of the time, fungus survives as mycelia and conidia. Pseudothecium of the fungus is not commonly encountered and probably not important in the epidemiology of the disease. The fungus can be in seed, soil, or in plant parts. Crop rotation, proper fertilization, reducing other stress factors, fungicide treatments, and resistant cultivars may be used for the control of the disease.Keywords: Cochliobolus sativus, barley, cultivars, root rot
Procedia PDF Downloads 2302002 Understanding Mudrocks and Their Shear Strength Deterioration Associated with Inundation
Authors: Haslinda Nahazanan, Afshin Asadi, Zainuddin Md. Yusoff, Nik Nor Syahariati Nik Daud
Abstract:
Mudrocks is considered as a problematic material due to their unexpected behaviour specifically when they are contacting with water or being exposed to the atmosphere. Many instability problems of cutting slopes were found lying on high slaking mudrocks. It has become one of the major concerns to geotechnical engineer as mudrocks cover up to 50% of sedimentary rocks in the geologic records. Mudrocks display properties between soils and rocks which can be very hard to understand. Therefore, this paper aims to review the definition, mineralogy, geo-chemistry, classification and engineering properties of mudrocks. As water has become one of the major factors that will rapidly change the behaviour of mudrocks, a review on the shear strength of mudrocks in Derbyshire has been made using a fully automated hydraulic stress path testing system under three states: dry, short-term inundated and long-term inundated. It can be seen that the strength of mudrocks has deteriorated as it condition changed from dry to short-term inundated and finally to long-term inundated.Keywords: mudrocks, sedimentary rocks, inundation, shear strength
Procedia PDF Downloads 2352001 Dynamics of Hybrid Language in Urban and Rural Uttar Pradesh India
Authors: Divya Pande
Abstract:
The dynamics of culture expresses itself in language. Even after India got independence in 1947 English subtly crept in the language of the masses with a silent and powerful flow towards the vernacular. The culture contact resulted in learning and emergence of a new language across the Hindi speaking belt of Northern and Central India. The hybrid words thus formed displaced the original word and got contextualized and absorbed in the language of the common masses. The research paper explores the interesting new vocabulary used extensively in the urban and rural districts of the state of Uttar- Pradesh which is the most populous state of India. The paper adopts a two way classification- formal and contextual for the analysis of the hybrid vocabulary of the linguistic items where one element is necessarily from the English language and the other from the Hindi. The new vocabulary represents languages of the wider world cutting across the geographical and the cultural barriers. The paper also broadly points out to the Hinglish commonly used in the state.Keywords: assimilation, culture contact, Hinglish, hybrid words
Procedia PDF Downloads 4012000 Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain
Authors: Juliza Hidayati, Sawarni Hasibuan
Abstract:
PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%.Keywords: palm oil, value chain, value added, supply chain
Procedia PDF Downloads 3711999 The Investigation of the Active Constituents, Danshen for Angiogenesis
Authors: Liang Zhou, Xiaojing Zhu, Yin Lu
Abstract:
Danshen can induce the angiogenesis in advanced ischemic heart disease while inhibiting the angiogenesis in cancer. Additionally, Danshen mainly contains two groups of ingredients: the hydrophilic phenolic acids (danshensu, caffeic acid and salvianolic acid B), and the lipophilic tanshinones (dihydrotanshinone I, tanshinone II A, and cryptotanshinone). The lipophilic tanshinones reduced the VEGF- and bFGF-induced proliferation of HUVECs in dose-dependent manner, but cannot perform in others. Conversely, caffeic acid and salvianolic acid B had the opposite effect. Danshensu inhibited the VEGF- and bFGF-induced migration of HUVECs, and others were not. Most of them interrupted the forming capillary-like structures of HUVECs, except the danshensu and caffeic acid. Oppositely, caffeic acid enhanced the ability of forming capillary-like structures of HUVECs. Ultimately, the lipophilic tanshinones, danshensu and salvianolic acid B inhibited the angiogenesis, whereas the caffeic acid induced the angiogenesis. These data provide useful information for the classification of ingredients of Danshen for angiogenesis.Keywords: angiogenesis, Danshen, HUVECs, ingredients
Procedia PDF Downloads 3961998 Effect of Edta in the Phytoextraction of Copper by Terminalia catappa (Talisay) Linnaeus
Authors: Ian Marc G. Cabugsa, Zarine M. Hermita
Abstract:
Phytoextraction capability of T. catappa in contaminated soils was done in the improvised greenhouse. The plant samples were planted to the soil which contained different concentrations of copper. Chelating agent EDTA was added to observe the uptake and translocation of copper in the plant samples. Results showed a significant increase of copper accumulation with the addition of EDTA at 250 and 1250 mgˑkg-1 concentration of copper in the contaminated soils (p<0.05). While translocation of copper was observed in all treatments, translocation of copper is not significantly enhanced by the addition of EDTA (p>0.05). Uptake and translocation were not directly affected the presence of EDTA. Furthermore, this study suggests that the T. catappa is not a hyperaccumulator of copper, and there is no relationship observed between the length of the plant and the copper uptake in all treatments.Keywords: chelating agent EDTA, hyperaccumulator, phytoextraction, phytoremediation, terminalia catappa
Procedia PDF Downloads 3841997 TransDrift: Modeling Word-Embedding Drift Using Transformer
Authors: Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, Srikanta Bedathur
Abstract:
In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However, as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of the transformer, our model accurately learns the dynamics of the embedding drift and predicts future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods.Keywords: NLP applications, transformers, Word2vec, drift, word embeddings
Procedia PDF Downloads 911996 A Network-Theorical Perspective on Music Analysis
Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria
Abstract:
The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.Keywords: computational musicology, mathematical music modelling, music analysis, style classification
Procedia PDF Downloads 1031995 Effect of Plastic Fines on Liquefaction Resistance of Sandy Soil Using Resonant Column Test
Authors: S. A. Naeini, M. Ghorbani Tochaee
Abstract:
The aim of this study is to assess the influence of plastic fines content on sand-clay mixtures on maximum shear modulus and liquefaction resistance using a series of resonant column tests. A high plasticity clay called bentonite was added to 161 Firoozkooh sand at the percentages of 10, 15, 20, 25, 30 and 35 by dry weight. The resonant column tests were performed on the remolded specimens at constant confining pressure of 100 KPa and then the values of Gmax and liquefaction resistance were investigated. The maximum shear modulus and cyclic resistance ratio (CRR) are examined in terms of fines content. Based on the results, the maximum shear modulus and liquefaction resistance tend to decrease within the increment of fine contents.Keywords: Gmax, liquefaction, plastic fines, resonant column, sand-clay mixtures, bentonite
Procedia PDF Downloads 1461994 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine
Procedia PDF Downloads 2941993 District Selection for Geotechnical Settlement Suitability Using GIS and Multi Criteria Decision Analysis: A Case Study in Denizli, Turkey
Authors: Erdal Akyol, Mutlu Alkan
Abstract:
Multi criteria decision analysis (MDCA) covers both data and experience. It is very common to solve the problems with many parameters and uncertainties. GIS supported solutions improve and speed up the decision process. Weighted grading as a MDCA method is employed for solving the geotechnical problems. In this study, geotechnical parameters namely soil type; SPT (N) blow number, shear wave velocity (Vs) and depth of underground water level (DUWL) have been engaged in MDCA and GIS. In terms of geotechnical aspects, the settlement suitability of the municipal area was analyzed by the method. MDCA results were compatible with the geotechnical observations and experience. The method can be employed in geotechnical oriented microzoning studies if the criteria are well evaluated.Keywords: GIS, spatial analysis, multi criteria decision analysis, geotechnics
Procedia PDF Downloads 4591992 Correlation between the Sowing Date and Yield of Maize on Chernozem Soil, in Connection with the Leaf Area Index and Photosynthesis
Authors: Enikő Bene
Abstract:
Our sowing date experiment took place in the Demonstration Garden of Institution of Plant Sciences, Agricultural Center of University of Debrecen, in 2012-2014. The thesis contains data of test year 2014. Our purpose, besides several other examinations, was to observe how sowing date influences leaf area index and activity of photosynthesis of maize hybrids, and how those factors affect fruiting. In the experiment we monitored the change of the leaf area index and the photosynthesis of hybrids with four different growing seasons. The results obtained confirm that not only the environmental and agricultural factors in the growing season have effect on the yield, but also other factors like the leaf area index and the photosynthesis are determinative parameters, and all those factors together, modifying effects of each other, develop average yieldsKeywords: sowing date, hybrid, leaf area index, photosynthetic capacity
Procedia PDF Downloads 3341991 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 801990 Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake
Authors: Peng Li, Er-xiang Song
Abstract:
Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion.Keywords: asynchronous input, longitudinal seismic response, tunnel structure, numerical simulation, traveling wave effect
Procedia PDF Downloads 4371989 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 4661988 Automated Detection of Women Dehumanization in English Text
Authors: Maha Wiss, Wael Khreich
Abstract:
Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.Keywords: gender bias, machine learning, NLP, women dehumanization
Procedia PDF Downloads 801987 Comparative Germination Studies in Mature Seeds of Haloxylon Salicornicum
Authors: Laila Almulla
Abstract:
As native plants are better adapted to the local environment, can endure long spells of drought, withstand high soil salinity levels and provide a more natural effect to landscape projects, their use in landscape projects are gaining popularity. Standardization of seed germination methods and raising the hardened plants of selected native plants for their use in landscape projects will both conserve natural resources and produce sustainable greenery. In the present study, Haloxylon salicornicum, a perennial herb with a potential use for urban greenery was selected for seed germination tests as there is an urgent need to mass multiply them for their large-scale use. Among the nine treatments tried with different concentrations of gibberelic acid (GA3) and dry heat, the seeds responded with treatments when the wings were removed. The control as well as 250 GA3 treatments produced the maximum germination of 86%.Keywords: dormancy, gibberelic acid, germination trays , vigor index
Procedia PDF Downloads 4001986 Measure Determination and Zoning of Oil Pollution (TPH) on Costal Sediments of Bandar Abbas (Hormoz Strait)
Authors: Maryam Ehsanpour, Majid Afkhami
Abstract:
This study investigated the presence of hydrocarbon pollution in industrial waste water sediments found in west coast of Bandar Abass (northern part of Hormoz strait). Therefore, six transects from west of the city were selected. Each transect consists of three stations intervals 100, 600 and 1100 meter from the low tide were sampled in both the summer and winter season (July and January 2009). Physical and chemical parameters of water, concentration of total petroleum hydrocarbons (TPH) and soil tissue deposition were evaluated according to standard procedures of MOOPAM. Average results of dissolved oxygen were 6.42 mg/l, temperature 26.31°C, pH 8.55, EC 54.47 ms/cm and salinity 35.98 g/l respectively. Results indicate that minimum, maximum and average concentration of total petroleum hydrocarbons (TPH) in sediments were, 60.18, 751.83, and 229.21 µg/kg respectively which are less than comparable studies in other parts of Persian Gulf.Keywords: oil pollution, Bandar Abbas, costal sediments, TPH
Procedia PDF Downloads 7181985 Credit Risk Evaluation Using Genetic Programming
Authors: Ines Gasmi, Salima Smiti, Makram Soui, Khaled Ghedira
Abstract:
Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models.Keywords: credit risk assessment, rule generation, genetic programming, feature selection
Procedia PDF Downloads 3531984 Study of Pathogenicity and Characterization of Fusarium oxysporum f.sp. albedinis by Isozymes Systemes
Authors: Abouamama Sidaoui, Noureddine Karkachi, Mebrouk Kihal
Abstract:
The characteristics of Fusarium oxysporium f.sp. albedinis (Foa) isolates were investigated using electrophoretic studies of isozymes systems (esterase and phosphatase). All the (F.o.a) isolates were pathogenic to the date palm seedlings cultivar Deglet Nour, but they did not induce any disease symptoms on control plants. Fusarium sp. isolated from soil did not show aggression against these seedlings. The isoenzymes profiles revealed polymorphic bands. The data were subjected to analysis with the JMP method. The isolates were delineated into two main groups A and B which were divided into sub-groups. 19 isolates create the group A, and four isolates (E1, E2, E3 and M15A) formed the group B. Analysis of isozyme banding patterns was found to be a reliable marker technology, efficient, and effective tools to find the genetic variability among isolates isolated in different geographical areas.Keywords: genetic diversity, Fusarium oxysporium f. sp. albedinis, isozyme analysis, pathogenicity
Procedia PDF Downloads 2191983 Experiment on Artificial Recharge of Groundwater Implemented Project: Effect on the Infiltration Velocity by Vegetation Mulch
Authors: Cheh-Shyh Ting, Jiin-Liang Lin
Abstract:
This study was conducted at the Wanglung Farm in Pingtung County to test the groundwater seepage influences on the implemented project for artificial groundwater recharge. The study was divided into three phases. The first phase, conducted on natural groundwater that was recharged through the local climate and growing conditions, observed the natural form of vegetation species. The original plants were flooded, and after 60 days it was observed that of the original plants only Goosegrass (Eleusine indica) and Black heart (Polygonum lapathifolium Linn.) remained. Direct infiltration tests were carried out, and calculations for the effect of vegetation on infiltration velocity of the recharge pool were noted. The second phase was an indoor test. Bahia grass and wild amaranth were selected as vegetation roots. After growth, the distribution of different grassroots was observed in order to facilitate a comparison permeability coefficient calculated by the amount of penetration and to explore the relationship between density and the efficiency to groundwater recharge. The third phase was the root tomography analysis, further observation of the development of plant roots using computed tomography technology. Computed Tomography, also known as (CT), is a diagnostic imaging examination, normally used in the medical field. In the first phase of the feasibility study, most non-aquatic plants wilted and died within seven days. In seven days, the remaining plants were used for experimental infiltration analysis. Results showed that in eight hours of infiltration test, Eleusine indica stems averaged 0.466 m/day and wild amaranth averaged 0.014 m/day. The second phase of the experiment was conducted on the remains of the plant a week in it had died and rotted, and the infiltration experiment was performed under these conditions. The results showed eight hours in end of the infiltration test, Eleusine indica stems averaged 0.033 m/day, and wild amaranth averaged 0.098 m/day. Non-aquatic plants died within two weeks, and their rotted remains clogged the pores of bottom soil particles, causing obstruction of recharge pool infiltration. Experiment results showed that eight hours in the test the average infiltration velocity for Eleusine indica stems was 0.0229 m/day and wild amaranth averaged 0.0117 m/day. Since the rotted roots of the plants blocked the pores of the soil in the recharge pool, which resulted in the obstruction of the artificial infiltration pond and showed an immediate impact on recharge efficiency. In order to observe the development of plant roots, the third phase used computed tomography imaging. Iodine developer was injected into the Black heart, allowing its cross-sectional images to be shown on CT and to be used to observe root development.Keywords: artificial recharge of groundwater, computed tomography, infiltration velocity, vegetation root system
Procedia PDF Downloads 3101982 Vector-Based Analysis in Cognitive Linguistics
Authors: Chuluundorj Begz
Abstract:
This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space
Procedia PDF Downloads 519