Search results for: neural progentor cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4933

Search results for: neural progentor cells

1873 The Impact of Milk Transport on Its Quality

Authors: Urszula Malaga-Toboła, Marek Gugała, Rafał Kornas, Robert Rusinek, Marek Gancarz

Abstract:

The work focused on presenting the elements that determine the quality of fresh milk in the context of the quality of its transport. The quality of the raw material depends on the quality of transport. Milk transport involves many activities in which, apart from the temperature and sterility of the means of transport, it is important not to expose the raw material to shocks. Recently, there have been changes in the milk supply chain, thus affecting the logistics processes between its links. Based on the conducted research and analyses, it was found that the condition of the road surface on which milk is transported affects its quality. For the T1 milk transport route- gravel roads of very poor and poor quality, the lowest number of bacteria and the highest number of somatic cells, fat content, and temperature of the transported milk were obtained. A well-organized integrated transport system is a real need for most companies today. The analysis showed significant differences in the quality of milk delivered to the dairy.

Keywords: fresh milk, transport, milk quality, dairy

Procedia PDF Downloads 81
1872 Potential Biosorption of Rhodococcus erythropolis, an Isolated Strain from Sossego Copper Mine, Brazil

Authors: Marcela dos P. G. Baltazar, Louise H. Gracioso, Luciana J. Gimenes, Bruno Karolski, Ingrid Avanzi, Elen A. Perpetuo

Abstract:

In this work, bacterial strains were isolated from environmental samples from a copper mine and three of them presented potential for bioremediation of copper. All the strains were identified by mass spectrometry (MALDI-TOF-Biotyper) and grown in three diferent media supplemented with 100 ppm of copper chloride in flasks of 500mL and it was incubated at 28 °C and 180 rpm. Periodically, samples were taken and monitored for cellular growth and copper biosorption by spectrophotometer UV-Vis (600 nm) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), respectively. At the end of exponential phase of cellular growth, the biomass was utilized to construct a correlation curve between absorbance and dry mass of the cells. Among the three isolates with potential for biorremediation, 1 strain exhibit capacity the most for bioremediation of effluents contaminated by copper being identified as Rhodococcus erythropolis.

Keywords: bioprocess, bioremediation, biosorption, copper

Procedia PDF Downloads 388
1871 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification

Authors: Bharatendra Rai

Abstract:

The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.

Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences

Procedia PDF Downloads 129
1870 Statistical Analysis of Natural Images after Applying ICA and ISA

Authors: Peyman Sheikholharam Mashhadi

Abstract:

Difficulties in analyzing real world images in classical image processing and machine vision framework have motivated researchers towards considering the biology-based vision. It is a common belief that mammalian visual cortex has been adapted to the statistics of the real world images through the evolution process. There are two well-known successful models of mammalian visual cortical cells: Independent Component Analysis (ICA) and Independent Subspace Analysis (ISA). In this paper, we statistically analyze the dependencies which remain in the components after applying these models to the natural images. Also, we investigate the response of feature detectors to gratings with various parameters in order to find optimal parameters of the feature detectors. Finally, the selectiveness of feature detectors to phase, in both models is considered.

Keywords: statistics, independent component analysis, independent subspace analysis, phase, natural images

Procedia PDF Downloads 339
1869 Mechanisms of O-1602 Induced Endothelium-Independent Vasorelaxation of Rat Small Mesenteric Artery

Authors: Yousuf Al Suleimani, Ahmed Al Mahruqi

Abstract:

A typical cannabinoid O-1602 induces vasorelaxation and activates the orphan G protein-coupled receptor GPR55 in human endothelial cells. The aim of this study is to characterize the mechanisms of endothelium-independent relaxation of O-1602 in the rat small mesenteric artery using wire myograph. In endothelium-denuded vessels, O-1602 partially produced concentration-dependent vasorelaxation. In vessels depleted of intracellular Ca2+ (by EGTA and methoxamine), CaCl2 produced concentration-dependent contraction. Preincubation with O-1602 (at 10 µM and 30 µM) abolished the contractile responses (P<0.01). The putative antagonist at novel “endothelial anandamide receptor” O-1918 (10 µM) significantly reversed the inhibitory effect of O-1602 on CaCl2-induced vasoconstriction. It is likely that the mechanism of endothelium-independent vasorelaxation to O-1602 is mediated by interfering with Ca2+ entry via an O-1918-sensitive pathway.

Keywords: O-1602, endothelium, vasorelaxation, calcium

Procedia PDF Downloads 359
1868 Controlled Synthesis of Pt₃Sn-SnOx/C Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Dorottya Guban, Irina Borbath, Istvan Bakos, Peter Nemeth, Andras Tompos

Abstract:

One of the greatest challenges of the implementation of polymer electrolyte membrane fuel cells (PEMFCs) is to find active and durable electrocatalysts. The cell performance is always limited by the oxygen reduction reaction (ORR) on the cathode since it is at least 6 orders of magnitude slower than the hydrogen oxidation on the anode. Therefore high loading of Pt is required. Catalyst corrosion is also more significant on the cathode, especially in case of mobile applications, where rapid changes of loading have to be tolerated. Pt-Sn bulk alloys and SnO2-decorated Pt3Sn nanostructures are among the most studied bimetallic systems for fuel cell applications. Exclusive formation of supported Sn-Pt alloy phases with different Pt/Sn ratios can be achieved by using controlled surface reactions (CSRs) between hydrogen adsorbed on Pt sites and tetraethyl tin. In this contribution our results for commercial and a home-made 20 wt.% Pt/C catalysts modified by tin anchoring via CSRs are presented. The parent Pt/C catalysts were synthesized by modified NaBH4-assisted ethylene-glycol reduction method using ethanol as a solvent, which resulted either in dispersed and highly stable Pt nanoparticles or evenly distributed raspberry-like agglomerates according to the chosen synthesis parameters. The 20 wt.% Pt/C catalysts prepared that way showed improved electrocatalytic performance in the ORR and stability in comparison to the commercial 20 wt.% Pt/C catalysts. Then, in order to obtain Sn-Pt/C catalysts with Pt/Sn= 3 ratio, the Pt/C catalysts were modified with tetraethyl tin (SnEt4) using three and five consecutive tin anchoring periods. According to in situ XPS studies in case of catalysts with highly dispersed Pt nanoparticles, pre-treatment in hydrogen even at 170°C resulted in complete reduction of the ionic tin to Sn0. No evidence of the presence of SnO2 phase was found by means of the XRD and EDS analysis. These results demonstrate that the method of CSRs is a powerful tool to create Pt-Sn bimetallic nanoparticles exclusively, without tin deposition onto the carbon support. On the contrary, the XPS results revealed that the tin-modified catalysts with raspberry-like Pt agglomerates always contained a fraction of non-reducible tin oxide. At the same time, they showed increased activity and long-term stability in the ORR than Pt/C, which was assigned to the presence of SnO2 in close proximity/contact with Pt-Sn alloy phase. It has been demonstrated that the content and dispersion of the fcc Pt3Sn phase within the electrocatalysts can be controlled by tuning the reaction conditions of CSRs. The bimetallic catalysts displayed an outstanding performance in the ORR. The preparation of a highly dispersed 20Pt/C catalyst permits to decrease the Pt content without relevant decline in the electrocatalytic performance of the catalysts.

Keywords: anode catalyst, cathode catalyst, controlled surface reactions, oxygen reduction reaction, PtSn/C electrocatalyst

Procedia PDF Downloads 235
1867 Email Phishing Detection Using Natural Language Processing and Convolutional Neural Network

Authors: M. Hilani, B. Nassih

Abstract:

Phishing is one of the oldest and best known scams on the Internet. It can be defined as any type of telecommunications fraud that uses social engineering tricks to obtain confidential data from its victims. It’s a cybercrime aimed at stealing your sensitive information. Phishing is generally done via private email, so scammers impersonate large companies or other trusted entities to encourage victims to voluntarily provide information such as login credentials or, worse yet, credit card numbers. The COVID-19 theme is used by cybercriminals in multiple malicious campaigns like phishing. In this environment, messaging filtering solutions have become essential to protect devices that will now be used outside of the secure perimeter. Despite constantly updating methods to avoid these cyberattacks, the end result is currently insufficient. Many researchers are looking for optimal solutions to filter phishing emails, but we still need good results. In this work, we concentrated on solving the problem of detecting phishing emails using the different steps of NLP preprocessing, and we proposed and trained a model using one-dimensional CNN. Our study results show that our model obtained an accuracy of 99.99%, which demonstrates how well our model is working.

Keywords: phishing, e-mail, NLP preprocessing, CNN, e-mail filtering

Procedia PDF Downloads 126
1866 The Facilitators and Barriers to the Implementation of Educational Neuroscience: Teachers’ Perspectives

Authors: S. Kawther, C. Marshall

Abstract:

Educational neuroscience has the intention of transforming research findings of the underpinning neural processes of learning to educational practices. A main criticism of the field, hitherto, is that less focus has been put on studying the in-progress practical application of these findings. Therefore, this study aims to gain a better understanding of teachers’ perceptions of the practical application and utilization of brain knowledge. This was approached by investigating the answer to 'What are the facilitators and barriers for bringing research from neuroscience to bear on education?'. Following a qualitative design, semi-structured interviews were conducted with 12 teachers who had a proficient course in educational neuroscience. Thematic analysis was performed on the transcribed data applying Braun & Clark’s steps. Findings emerged with four main themes: time, knowledge, teacher’s involvement, and system. These themes revealed that some effective brain-based practices are being engaged in by the teachers. However, the lack of guidance and challenges regarding this implementation were also found. This study discusses findings in light of the development of educational neuroscience implementation.

Keywords: brain-based, educational neuroscience, neuroeducation, neuroscience-informed

Procedia PDF Downloads 168
1865 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition

Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie

Abstract:

In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.

Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks

Procedia PDF Downloads 112
1864 Metal-Based Anticancer Agents: In vitro DNA Binding, Cleavage and Cytotoxicity

Authors: Mala Nath, Nagamani Kompelli, Partha Roy, Snehasish Das

Abstract:

Two new metal-based anticancer chemotherapeutic agents, [(Ph2Sn)2(HGuO)2(phen)Cl2] 1 and [(Ph3Sn)(HGuO)(phen)]- Cl.CH3OH.H2O 2, were designed, prepared and characterized by analytical and spectral (IR, ESI-Mass, 1H, 13C and 119Sn NMR) techniques. The proposed geometry of Sn(IV) in 1 and 2 is distorted octahedral and distorted trigonal-bipyramidal, respectively. Both 1 and 2 exhibit potential cytotoxicity in vitro against MCF-7, HepG-2 and DU-145 cell lines. The intrinsic binding constant (Kb) values of 1 (2.33 × 105 M-1) and 2 (2.46 × 105 M-1) evaluated from UV-Visible absorption studies suggest non-classical electrostatic mode of interaction via phosphate backbone of DNA double helix. The Stern-Volmer quenching constant (Ksv) of 1 (9.74 × 105 M-1) and 2 (2.9 × 106 M-1) determined by fluorescence studies suggests the groove binding and intercalation mode for 1 and 2, respectively. Effective cleavage of pBR322 DNA is induced by 1. Their interaction with DNA of cancer cells may account for potency.

Keywords: anticancer agents, DNA binding studies, NMR spectroscopy, organotin

Procedia PDF Downloads 257
1863 Biophysical Analysis of the Interaction of Polymeric Nanoparticles with Biomimetic Models of the Lung Surfactant

Authors: Weiam Daear, Patrick Lai, Elmar Prenner

Abstract:

The human body offers many avenues that could be used for drug delivery. The pulmonary route, which is delivered through the lungs, presents many advantages that have sparked interested in the field. These advantages include; 1) direct access to the lungs and the large surface area it provides, and 2) close proximity to the blood circulation. The air-blood barrier of the alveoli is about 500 nm thick. The air-blood barrier consist of a monolayer of lipids and few proteins called the lung surfactant and cells. This monolayer consists of ~90% lipids and ~10% proteins that are produced by the alveolar epithelial cells. The two major lipid classes constitutes of various saturation and chain length of phosphatidylcholine (PC) and phosphatidylglycerol (PG) representing 80% of total lipid component. The major role of the lung surfactant monolayer is to reduce surface tension experienced during breathing cycles in order to prevent lung collapse. In terms of the pulmonary drug delivery route, drugs pass through various parts of the respiratory system before reaching the alveoli. It is at this location that the lung surfactant functions as the air-blood barrier for drugs. As the field of nanomedicine advances, the use of nanoparticles (NPs) as drug delivery vehicles is becoming very important. This is due to the advantages NPs provide with their large surface area and potential specific targeting. Therefore, studying the interaction of NPs with lung surfactant and whether they affect its stability becomes very essential. The aim of this research is to develop a biomimetic model of the human lung surfactant followed by a biophysical analysis of the interaction of polymeric NPs. This biomimetic model will function as a fast initial mode of testing for whether NPs affect the stability of the human lung surfactant. The model developed thus far is an 8-component lipid system that contains major PC and PG lipids. Recently, a custom made 16:0/16:1 PC and PG lipids were added to the model system. In the human lung surfactant, these lipids constitute 16% of the total lipid component. According to the author’s knowledge, there is not much monolayer data on the biophysical analysis of the 16:0/16:1 lipids, therefore more analysis will be discussed here. Biophysical techniques such as the Langmuir Trough is used for stability measurements which monitors changes to a monolayer's surface pressure upon NP interaction. Furthermore, Brewster Angle Microscopy (BAM) employed to visualize changes to the lateral domain organization. Results show preferential interactions of NPs with different lipid groups that is also dependent on the monolayer fluidity. Furthermore, results show that the film stability upon compression is unaffected, but there are significant changes in the lateral domain organization of the lung surfactant upon NP addition. This research is significant in the field of pulmonary drug delivery. It is shown that NPs within a certain size range are safe for the pulmonary route, but little is known about the mode of interaction of those polymeric NPs. Moreover, this work will provide additional information about the nanotoxicology of NPs tested.

Keywords: Brewster angle microscopy, lipids, lung surfactant, nanoparticles

Procedia PDF Downloads 180
1862 Processes for Valorization of Valuable Products from Kerf Slurry Waste

Authors: Nadjib Drouiche, Abdenour Lami, Salaheddine Aoudj, Tarik Ouslimane

Abstract:

Although solar cells manufacturing is a conservative industry, economics drivers continue to encourage innovation, feedstock savings and cost reduction. Kerf slurry waste is a complex product containing both valuable substances as well as contaminants. The valuable substances are: i) high purity silicon, ii) polyethylene glycol, and iii) silicon carbide. The contaminants mainly include metal fragments and organics. Therefore, recycling of the kerf slurry waste is an important subject not only from the treatment of waste but also from the recovery of valuable products. The present paper relates to processes for the recovery of valuable products from the kerf slurry waste in which they are contained, such products comprising nanoparticles, polyethylene glycol, high purity silicon, and silicon carbide.

Keywords: photovoltaic cell, Kerf slurry waste, recycling, silicon carbide

Procedia PDF Downloads 331
1861 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 73
1860 Hydroxyapatite Nanorods as Novel Fillers for Improving the Properties of PBSu

Authors: M. Nerantzaki, I. Koliakou, D. Bikiaris

Abstract:

This study evaluates the hypothesis that the incorporation of fibrous hydroxyapatite nanoparticles (nHA) with high crystallinity and high aspect ratio, synthesized by hydrothermal method, into Poly(butylene succinate) (PBSu), improves the bioactivity of the aliphatic polyester and affects new bone growth inhibiting resorption and enhancing bone formation. Hydroxyapatite nanorods were synthesized using a simple hydrothermal procedure. First, the HPO42- -containing solution was added drop-wise into the Ca2+-containing solution, while the molar ratio of Ca/P was adjusted at 1.67. The HA precursor was then treated hydrothermally at 200°C for 72 h. The resulting powder was characterized using XRD, FT-IR, TEM, and EDXA. Afterwards, PBSu nanocomposites containing 2.5wt% (nHA) were prepared by in situ polymerization technique for the first time and were examined as potential scaffolds for bone engineering applications. For comparison purposes composites containing either 2.5wt% micro-Bioglass (mBG) or 2.5wt% mBG-nHA were prepared and studied, too. The composite scaffolds were characterized using SEM, FTIR, and XRD. Mechanical testing (Instron 3344) and Contact Angle measurements were also carried out. Enzymatic degradation was studied in an aqueous solution containing a mixture of R. Oryzae and P. Cepacia lipases at 37°C and pH=7.2. In vitro biomineralization test was performed by immersing all samples in simulated body fluid (SBF) for 21 days. Biocompatibility was assessed using rat Adipose Stem Cells (rASCs), genetically modified by nucleofection with DNA encoding SB100x transposase and pT2-Venus-neo transposon expression plasmids in order to attain fluorescence images. Cell proliferation and viability of cells on the scaffolds were evaluated using fluoresce microscopy and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) assay. Finally, osteogenic differentiation was assessed by staining rASCs with alizarine red using cetylpyridinium chloride (CPC) method. TEM image of the fibrous HAp nanoparticles, synthesized in the present study clearly showed the fibrous morphology of the synthesized powder. The addition of nHA decreased significantly the contact angle of the samples, indicating that the materials become more hydrophilic and hence they absorb more water and subsequently degrade more rapidly. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. Metabolic activity of rASCs on all PBSu composites was high and increased from day 1 of culture to day 14. On day 28 metabolic activity of rASCs cultured on samples enriched with bioceramics was significantly decreased due to possible differentiation of rASCs to osteoblasts. Staining rASCs with alizarin red after 28 days in culture confirmed our initial hypothesis as the presence of calcium was detected, suggesting osteogenic differentiation of rACS on PBSu/nHAp/mBG 2.5% and PBSu/mBG 2.5% composite scaffolds.

Keywords: biomaterials, hydroxyapatite nanorods, poly(butylene succinate), scaffolds

Procedia PDF Downloads 308
1859 MicroRNA Expression Distinguishes Neutrophil Subtypes

Authors: R. I. You, C. L. Ho, M. S. Dai, H. M. Hung, S. F. Yen, C. S. Chen, T. Y. Chao

Abstract:

Neutrophils are the most abundant innate immune cells to against invading microorganisms. Numerous data shown neutrophils have plasticity in response to physiological and pathological conditions. Tumor-associated neutrophils (TAN) exist in distinct types of tumor and play an important role in cancer biology. Different transcriptomic profiles of neutrophils in tumor and non-tumor samples have been identified. Several miRNAs have been recognized as regulators of gene expression in neutrophil, which may have key roles in neutrophil activation. However, the miRNAs expression patterns in TAN are not well known. To address this question, magnetic bead isolated neutrophils from tumor-bearing mice were used in this study. We analyzed production of reactive oxygen species (ROS) by luminol-dependent chemiluminescence assay. The expression of miRNAs targeting NADPH oxidase, ROS generation and autophagy was explored using quantitative real-time polymerase chain reaction. Our data suggest that tumor environment influence neutrophil develop to differential states of activation via miRNAs regulation.

Keywords: tumor-associated neutrophil, miRNAs, neutrophil, ROS

Procedia PDF Downloads 470
1858 Aberrant Acetylation/Methylation of Homeobox (HOX) Family Genes in Cumulus Cells of Infertile Women with Polycystic Ovary Syndrome (PCOS)

Authors: P. Asiabi, M. Shahhoseini, R. Favaedi, F. Hassani, N. Nassiri, B. Movaghar, L. Karimian, P. Eftekhariyazdi

Abstract:

Introduction: Polycystic Ovary Syndrome is a common gynecologic disorder. Many factors including environment, metabolism, hormones and genetics are involved in etiopathogenesis of PCOS. Of genes that have altered expression in human reproductive system disorders are HOX family genes which act as transcription factors in regulation of cell proliferation, differentiation, adhesion and migration. Since recent evidences consider epigenetic factors as causative mechanisms of PCOS, evaluation of association between known epigenetic marks of acetylation/methylation of histone 3 (H3K9ac/me) with regulatory regions of these genes can represent better insight about PCOS. In the current study, cumulus cells (CCs) which have critical roles during folliculogenesis, oocyte maturation, ovulation and fertilization were aimed to monitor epigenetic alterations of HOX genes. Material and methods: CCs were collected from 20 PCOS patients and 20 fertile women (18-36 year) with male infertility problems referred to the Royan Institute to have ICSI under GnRH antagonist protocol. Informed consents were obtained from the participants. Thirty six hours after hCG injection, ovaries were punctured and cumulus oocyte complexes were dissected. Soluble chromatin were extracted from CCs and Chromatin Immune precipitation (ChIP) coupled with Real Time PCR was performed to quantify the epigenetic marks of histone H3K9 acetylation/methylation (H3K9ac/me) on regulatory regions of 15 members of HOX genes from A-D subfamily. Results: Obtained data showed significant increase of H3K9ac epigenetic mark on regulatory regions of HOXA1, HOXB2, HOXC4, HOXD1, HOXD3 and HOXD4 (P < 0.01) and HOXC5 (P < 0.05) and also significant decrease of H3K9ac into regulatory regions of HOXA2, HOXA4, HOXA5, HOXB1 and HOXB5 (P < 0.01) and HOXB3 (P<0.05) in PCOS patients vs. control group. On the other side, there was a significant decrease in incorporation of H3K9me level on regulatory region of HOXA2, HOXA3, HOXA4, HOXA5, HOXB3 and HOXC4 (P≤0.01) and HOXB5 (P < 0.05) in PCOS patients vs. control group. This epigenetic mark (H3K9me2) has significant increase on regulatory region of HOXB1, HOXB2, HOXC5, HOXD1, HOXD3 and HOXD4 (P ≤ 0.01) and HOXB4 (P < 0.05) in patients vs. control group. There were no significant changes in acetylation/methylation levels of H3K9 on regulatory regions of the other studied genes. Conclusion: Current study suggests that epigenetic alterations of HOX genes can be correlated with PCOS and consequently female infertility. This finding might offer additional definitions of PCOS, and eventually provides insight for novel treatments with epidrugs for this disease.

Keywords: epigenetic, HOX genes, PCOS, female infertility

Procedia PDF Downloads 319
1857 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 154
1856 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models

Authors: Chad Goldsworthy, B. Rajeswari Matam

Abstract:

The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.

Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation

Procedia PDF Downloads 191
1855 Drying and Transport Processes in Distributed Hydrological Modelling Based on Finite Volume Schemes (Iber Model)

Authors: Carlos Caro, Ernest Bladé, Pedro Acosta, Camilo Lesmes

Abstract:

The drying-wet process is one of the topics to be more careful in distributed hydrological modeling using finite volume schemes as a means of solving the equations of Saint Venant. In a hydrologic and hydraulic computer model, surface flow phenomena depend mainly on the different flow accumulation and subsequent runoff generation. These accumulations are generated by routing, cell by cell, from the heights of water, which begin to appear due to the rain at each instant of time. Determine when it is considered a dry cell and when considered wet to include in the full calculation is an issue that directly affects the quantification of direct runoff or generation of flow at the end of a zone of contribution by accumulations flow generated from cells or finite volume.

Keywords: hydrology, transport processes, hydrological modelling, finite volume schemes

Procedia PDF Downloads 386
1854 Epidemiological, Ecology, and Case Management of Plasmodium Knowlesi Malaria in Phang-Nga Province, Thailand

Authors: Surachart Koyadun

Abstract:

Introduction: Plasmodium knowlesi (P. knowlesi) malaria is a zoonotic disease that is classified as type 5 of human malaria. Commonly found in macaques (Macaca fascicularis) and (Macaca nemestrina), P. knowlesi is capable of resulting in both uncomplicated and severe malaria in humans. Situation of P. knowlesi malaria in Phang-Nga province for the past 3 years from 2020 – 2022 revealed no case report in 2020, however, a total of 14 cases had been reported in 2021 - 2022. This research aimed to 1) study the epidemiology of P. knowlesi, 2) examine the clinical manifestations of P. knowlesi patients, 3) analyze the ecology and entomology of P. knowlesi, and 4) analyze the diagnosis and treatment of P. knowlesi. Method: This research was a retrospective descriptive study/case report. The study was conducted in 14 patients with P. knowlesi malaria between 2021 and 2022 in 4 districts of Phang-Nga Province, Thailand including Thapput, Kapong, Takuapa and Khuraburi. Results: The study subjects of P. knowlesi malaria were all males. Most of them were working age groups as farmers and worked in forest or plantation areas. All had no history of blood transfusions. Most of the patients did not use mosquito nets and had a history of camping in the forest prior to the onset of fever. An analysis of all 14 sources of infection unveiled the area is home to macaques, and that area has detected Anopheles mosquito, which is the carrier of the disease. Majority of them got sick in the dry season of Thailand (December-April). The main symptoms brought to the hospital were fever, chills, headache, body aches. Laboratory findings on the first day of diagnosis were as follows: The white blood cell count was found within the normal range. In the proportion of white blood cells, eosinophils were found to be slightly higher than normal. Slight anemia was found on early examination. The platelet count was found to be below normal in all cases. Severely low platelet count (2,000 cells/mm3) was found in severe cases with multiple complications. No patient was found dead but 85.7% of complications were found, with acute renal failure being the most common. Patients with delayed diagnosis and treatment of malaria (inaccurate diagnosis or late access to the hospital) had the highest severity and complications than those who had seen the doctor since the first 3-4 days of illness or the screening of symptoms and risk history by the malaria clinic staff at vector-borne disease control unit. Conclusion and Recommendation: P. knowlesi malaria is an emerging infectious disease transmitted from animals to humans. There are challenges in epidemiology, entomology, ecology for effective surveillance, prevention and control. Early diagnosis and treatment would reduce complications and prevent death.

Keywords: malaria, plasmodium knowlesi, epidemiology, ecology, entomology, diagnosis, treatment

Procedia PDF Downloads 71
1853 Constitutive Androstane Receptor (CAR) Inhibitor CINPA1 as a Tool to Understand CAR Structure and Function

Authors: Milu T. Cherian, Sergio C. Chai, Morgan A. Casal, Taosheng Chen

Abstract:

This study aims to use CINPA1, a recently discovered small-molecule inhibitor of the xenobiotic receptor CAR (constitutive androstane receptor) for understanding the binding modes of CAR and to guide CAR-mediated gene expression profiling studies in human primary hepatocytes. CAR and PXR are xenobiotic sensors that respond to drugs and endobiotics by modulating the expression of metabolic genes that enhance detoxification and elimination. Elevated levels of drug metabolizing enzymes and efflux transporters resulting from CAR activation promote the elimination of chemotherapeutic agents leading to reduced therapeutic effectiveness. Multidrug resistance in tumors after chemotherapy could be associated with errant CAR activity, as shown in the case of neuroblastoma. CAR inhibitors used in combination with existing chemotherapeutics could be utilized to attenuate multidrug resistance and resensitize chemo-resistant cancer cells. CAR and PXR have many overlapping modulating ligands as well as many overlapping target genes which confounded attempts to understand and regulate receptor-specific activity. Through a directed screening approach we previously identified a new CAR inhibitor, CINPA1, which is novel in its ability to inhibit CAR function without activating PXR. The cellular mechanisms by which CINPA1 inhibits CAR function were also extensively examined along with its pharmacokinetic properties. CINPA1 binding was shown to change CAR-coregulator interactions as well as modify CAR recruitment at DNA response elements of regulated genes. CINPA1 was shown to be broken down in the liver to form two, mostly inactive, metabolites. The structure-activity differences of CINPA1 and its metabolites were used to guide computational modeling using the CAR-LBD structure. To rationalize how ligand binding may lead to different CAR pharmacology, an analysis of the docked poses of human CAR bound to CITCO (a CAR activator) vs. CINPA1 or the metabolites was conducted. From our modeling, strong hydrogen bonding of CINPA1 with N165 and H203 in the CAR-LBD was predicted. These residues were validated to be important for CINPA1 binding using single amino-acid CAR mutants in a CAR-mediated functional reporter assay. Also predicted were residues making key hydrophobic interactions with CINPA1 but not the inactive metabolites. Some of these hydrophobic amino acids were also identified and additionally, the differential coregulator interactions of these mutants were determined in mammalian two-hybrid systems. CINPA1 represents an excellent starting point for future optimization into highly relevant probe molecules to study the function of the CAR receptor in normal- and pathophysiology, and possible development of therapeutics (for e.g. use for resensitizing chemoresistant neuroblastoma cells).

Keywords: antagonist, chemoresistance, constitutive androstane receptor (CAR), multi-drug resistance, structure activity relationship (SAR), xenobiotic resistance

Procedia PDF Downloads 288
1852 Studying Relationship between Local Geometry of Decision Boundary with Network Complexity for Robustness Analysis with Adversarial Perturbations

Authors: Tushar K. Routh

Abstract:

If inputs are engineered in certain manners, they can influence deep neural networks’ (DNN) performances by facilitating misclassifications, a phenomenon well-known as adversarial attacks that question networks’ vulnerability. Recent studies have unfolded the relationship between vulnerability of such networks with their complexity. In this paper, the distinctive influence of additional convolutional layers at the decision boundaries of several DNN architectures was investigated. Here, to engineer inputs from widely known image datasets like MNIST, Fashion MNIST, and Cifar 10, we have exercised One Step Spectral Attack (OSSA) and Fast Gradient Method (FGM) techniques. The aftermaths of adding layers to the robustness of the architectures have been analyzed. For reasoning, separation width from linear class partitions and local geometry (curvature) near the decision boundary have been examined. The result reveals that model complexity has significant roles in adjusting relative distances from margins, as well as the local features of decision boundaries, which impact robustness.

Keywords: DNN robustness, decision boundary, local curvature, network complexity

Procedia PDF Downloads 75
1851 Generating 3D Anisotropic Centroidal Voronoi Tessellations

Authors: Alexandre Marin, Alexandra Bac, Laurent Astart

Abstract:

New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Elements Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular, polyhedral meshes have many advantages. One way to build such meshes consists of constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, e.g., elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: First, we introduce a new gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.

Keywords: anisotropic Voronoi diagrams, meshes for numerical simulations, optimisation, volumic polyhedral meshing

Procedia PDF Downloads 116
1850 Named Entity Recognition System for Tigrinya Language

Authors: Sham Kidane, Fitsum Gaim, Ibrahim Abdella, Sirak Asmerom, Yoel Ghebrihiwot, Simon Mulugeta, Natnael Ambassager

Abstract:

The lack of annotated datasets is a bottleneck to the progress of NLP in low-resourced languages. The work presented here consists of large-scale annotated datasets and models for the named entity recognition (NER) system for the Tigrinya language. Our manually constructed corpus comprises over 340K words tagged for NER, with over 118K of the tokens also having parts-of-speech (POS) tags, annotated with 12 distinct classes of entities, represented using several types of tagging schemes. We conducted extensive experiments covering convolutional neural networks and transformer models; the highest performance achieved is 88.8% weighted F1-score. These results are especially noteworthy given the unique challenges posed by Tigrinya’s distinct grammatical structure and complex word morphologies. The system can be an essential building block for the advancement of NLP systems in Tigrinya and other related low-resourced languages and serve as a bridge for cross-referencing against higher-resourced languages.

Keywords: Tigrinya NER corpus, TiBERT, TiRoBERTa, BiLSTM-CRF

Procedia PDF Downloads 131
1849 Self-Organizing Map Network for Wheeled Robot Movement Optimization

Authors: Boguslaw Schreyer

Abstract:

The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.

Keywords: slip control, SOM network, torque distribution, wheeled Robot

Procedia PDF Downloads 127
1848 Controlled Chemotherapy Strategy Applied to HIV Model

Authors: Shohel Ahmed, Md. Abdul Alim, Sumaiya Rahman

Abstract:

Optimal control can be helpful to test and compare different vaccination strategies of a certain disease. The mathematical model of HIV we consider here is a set of ordinary differential equations (ODEs) describing the interactions of CD4+T cells of the immune system with the human immunodeficiency virus (HIV). As an early treatment setting, we investigate an optimal chemotherapy strategy where control represents the percentage of effect the chemotherapy has on the system. The aim is to obtain a new optimal chemotherapeutic strategy where an isoperimetric constraint on the chemotherapy supply plays a crucial role. We outline the steps in formulating an optimal control problem, derive optimality conditions and demonstrate numerical results of an optimal control for the model. Numerical results illustrate how such a constraint alters the optimal vaccination schedule and its effect on cell-virus interactions.

Keywords: chemotherapy of HIV, optimal control involving ODEs, optimality conditions, Pontryagin’s maximum principle

Procedia PDF Downloads 330
1847 Numerical Simulation of Bio-Chemical Diffusion in Bone Scaffolds

Authors: Masoud Madadelahi, Amir Shamloo, Seyedeh Sara Salehi

Abstract:

Previously, some materials like solid metals and their alloys have been used as implants in human’s body. In order to amend fixation of these artificial hard human tissues, some porous structures have been introduced. In this way, tissues in vicinity of the porous structure can be attached more easily to the inserted implant. In particular, the porous bone scaffolds are useful since they can deliver important biomolecules like growth factors and proteins. This study focuses on the properties of the degradable porous hard tissues using a three-dimensional numerical Finite Element Method (FEM). The most important studied properties of these structures are diffusivity flux and concentration of different species like glucose, oxygen, and lactate. The process of cells migration into the scaffold is considered as a diffusion process, and related parameters are studied for different values of production/consumption rates.

Keywords: bone scaffolds, diffusivity, numerical simulation, tissue engineering

Procedia PDF Downloads 385
1846 Attenuation of Homocysteine-Induced Cyclooxygenase-2 Expression in Human Monocytes by Fulvic Acid

Authors: Shao-Ju Chien, Yi-Chien Wu, Ting-Ying Huang, Li-Tsen Li, You-Jin Chen, Cheng-Nan Chen

Abstract:

Homocysteine and pro-inflammatory mediators such as cyclooxygenase-2 (COX-2) have been linked to vascular dysfunction and risks of cardiovascular diseases. Fulvic acid (FA) is class of compounds of humic substances and possesses various pharmacological properties. However, the effect of FA on inflammatory responses of the monocytes remains unclear. We investigated the regulatory effect of FA on homocysteine-induced COX-2 expression in human monocytes. Peripheral blood monocytes and U937 cells were kept as controls or pre-treated with FA, and then stimulated with homocysteine. The results show that pretreating monocytes with FA inhibited the homocysteine-induced COX-2 expression in a dose-dependent manner. The inhibitor for nuclear factor-kB (NF-kB) attenuated homocysteine-induced COX-2 expression. Our findings provide a molecular mechanism by which FA inhibit homocysteine-induced COX-2 expression in monocytes, and a basis for using FA in pharmaceutical therapy against inflammation.

Keywords: homocysteine, monocytes, cyclooxygenase-2, fulvic acid, anti-inflammation

Procedia PDF Downloads 597
1845 Analysis of Formation Methods of Range Profiles for an X-Band Coastal Surveillance Radar

Authors: Nguyen Van Loi, Le Thanh Son, Tran Trung Kien

Abstract:

The paper deals with the problem of the formation of range profiles (RPs) for an X-band coastal surveillance radar. Two popular methods, the difference operator method, and the window-based method, are reviewed and analyzed via two tests with different datasets. The test results show that although the original window-based method achieves a better performance than the difference operator method, it has three main drawbacks that are the use of 3 or 4 peaks of an RP for creating the windows, the extension of the window size using the power sum of three adjacent cells in the left and the right sides of the windows and the same threshold applied for all types of vessels to finish the formation process of RPs. These drawbacks lead to inaccurate RPs due to the low signal-to-clutter ratio. Therefore, some suggestions are proposed to improve the original window-based method.

Keywords: range profile, difference operator method, window-based method, automatic target recognition

Procedia PDF Downloads 127
1844 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.

Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN

Procedia PDF Downloads 445