Search results for: deep layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4458

Search results for: deep layer

1398 Web Page Design Optimisation Based on Segment Analytics

Authors: Varsha V. Rohini, P. R. Shreya, B. Renukadevi

Abstract:

In the web analytics the information delivery and the web usage is optimized and the analysis of data is done. The analytics is the measurement, collection and analysis of webpage data. Page statistics and user metrics are the important factor in most of the web analytics tool. This is the limitation of the existing tools. It does not provide design inputs for the optimization of information. This paper aims at providing an extension for the scope of web analytics to provide analysis and statistics of each segment of a webpage. The number of click count is calculated and the concentration of links in a web page is obtained. Its user metrics are used to help in proper design of the displayed content in a webpage by Vision Based Page Segmentation (VIPS) algorithm. When the algorithm is applied on the web page it divides the entire web page into the visual block tree. The visual block tree generated will further divide the web page into visual blocks or segments which help us to understand the usage of each segment in a page and its content. The dynamic web pages and deep web pages are used to extend the scope of web page segment analytics. Space optimization concept is used with the help of the output obtained from the Vision Based Page Segmentation (VIPS) algorithm. This technique provides us the visibility of the user interaction with the WebPages and helps us to place the important links in the appropriate segments of the webpage and effectively manage space in a page and the concentration of links.

Keywords: analytics, design optimization, visual block trees, vision based technology

Procedia PDF Downloads 266
1397 Microstructure and Corrosion Properties of Pulsed Current Gas Metal Arc Welded Narrow Groove and Ultra-Narrow Groove of 304 LN Austenitic Stainless Steel

Authors: Nikki A. Barla, P. K. Ghosh, Sourav Das

Abstract:

Two different groove sizes 13.6 mm (narrow groove) and 7.5 mm (ultra-narrow groove) of 304 LN austenitic stainless steel (ASS) plate was welded using pulse gas metal arc welding (P-GMAW). These grooves were welded using multi-pass single seam per layer (MSPPL) deposition technique with full assurance of groove wall fusion. During bead on plate deposition process, the thermal cycle was recorded using strain buster (temperature measuring device). Both the groove has heat affected Zone (HAZ) width of 1-2 mm. After welding, the microstructure studies was done which revealed that there was higher sensitization (Chromium carbide formation in grain boundary) in the HAZ of 13.6 mm groove weldment as compared to the HAZ of 7.5 mm weldment. Electrochemical potentiokinetic reactivation test (EPR) was done in 0.5 N H₂SO₄ + 1 M KSCN solution to study the degree of sensitization (DOS) and it was observed that 7.5 mm groove HAZ has lower DOS. Mass deposition in the 13.6 mm weld is higher than 7.5mm groove weld, which naturally induces higher residual stress in 13.6 mm weld. Comparison between microstructural studies and corrosion test summarized that the residual stress affects the sensitization property of welded ASS.

Keywords: austenitic stainless steel (ASS), electrochemical potentiokinetic reactivation test (EPR), microstructure, pulse gas metal arc welding (P-GMAW), sensitization

Procedia PDF Downloads 163
1396 Parvi̇z Jabrail's Novel 'in Foreign Language': Delimitation of Postmodernism with Modernism

Authors: Nargiz Ismayilova

Abstract:

The issue of modernism and the concept of postmodernism has been the focus of world researchers for many years, and there are very few researchers who have come to a common denominator about this term. During the independence period, the expansion of the relations of Azerbaijani literature with the world has led to the spread of many currents and tendencies formed in the West to the literary environment in our country. In this context, the works created in our environment are distinguished by their extreme richness in terms of subject matter and diversity in terms of genre. As an interesting example of contemporary postmodern prose in Azerbaijan, Parviz Jabrayil's novel "In a Foreign Language" pays attention with its more different plotline. The disagreement exists among the critics about the novel. Some are looking for high artistry in work; others are satisfied with the elements of postmodernism in work. Delimitation of the border between modernism and postmodernism can serve to carry out a deep scientific study of the novel. The novel depicts the world in the author's consciousness against the background of water shortage (thirst) in the Old City (Icharishahar). The author deconstructs today's Ichari Shahar mould. Along with modernism, elements of postmodernism occupy a large place in the work. When we look at the general tendencies of postmodernist art, we see that science and individuality are questioned, criticizing the sharp boundaries of modernism and the negativity of these restrictions, and modernism offers alternatives to artistic production by identifying its negatives and shortcomings in the areas of artistic freedom. The novel is extremely interesting in this point of view.

Keywords: concept of postmodernism, modernism, delimitation, political postmodernism, modern postmodern prose, Azerbaijani literature, novel, comparison, world literature, analysis

Procedia PDF Downloads 138
1395 The Flavonoids for a Plant Grows in the Arid and Semi-Arid Zone of the Northern Sahara of Algeria - Atriplex halimus L.

Authors: O. Smara, H. Dendougui, B. Legseir

Abstract:

Atriplex halimus L. is particularly well adapted to arid and salt-affected areas. In this species, salinity resistance is often attributed to the presence of vesiculated hairs covering leaf surface and containing a large amount of salt. Atriplex halimus L. (Chenopodiaceae) is a perennial shrub native to the Mediterranean basin with excellent tolerance to drought and salinity. The species is present in semiarid to subhumid areas of the north Mediterranean and in arid zones from North Africa and the eastern Mediterranean. The main aim of this study was to identify a medicinal plant used in the Ouargla (Est-southern Algeria) for the treatment of several human pathologies. This plant is an important source for livestock in nitrogenous matter, it is an effective and relatively inexpensive tool in the fight against erosion and desertification and rehabilitation of degraded lands. Phytochemical investigation is applied to the majority of extracts of the powder of the aerial parts of Atriplex halimus L. Different chromatographic methods after liquid-liquid extraction are used; it is the thin layer chromatography (TLC) and paper using multiple systems and chemical revelations. This study followed by an evaluation by the phenol assay the Folin-Ciocalteu method, using gallic acid as a reference for phenols and quercetin for flavonols. Some polar extracts showed an interesting result better than the less polar extracts.

Keywords: Atriples halimus L., chenopodiaceae, flavonoids, phenols

Procedia PDF Downloads 304
1394 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image

Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa

Abstract:

A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.

Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever

Procedia PDF Downloads 120
1393 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm

Authors: Wilayat Ali, Li Sheng, Waleed Ahmed

Abstract:

The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.

Keywords: SLAM, ROS, navigation, localization and mapping, gazebo, Rviz, Turtlebot2, slam algorithms, 2d indoor environment, cartographer

Procedia PDF Downloads 145
1392 Tomato-Weed Classification by RetinaNet One-Step Neural Network

Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri

Abstract:

The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.

Keywords: deep learning, object detection, cnn, tomato, weeds

Procedia PDF Downloads 103
1391 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 275
1390 An Automated Procedure for Estimating the Glomerular Filtration Rate and Determining the Normality or Abnormality of the Kidney Stages Using an Artificial Neural Network

Authors: Hossain A., Chowdhury S. I.

Abstract:

Introduction: The use of a gamma camera is a standard procedure in nuclear medicine facilities or hospitals to diagnose chronic kidney disease (CKD), but the gamma camera does not precisely stage the disease. The authors sought to determine whether they could use an artificial neural network to determine whether CKD was in normal or abnormal stages based on GFR values (ANN). Method: The 250 kidney patients (Training 188, Testing 62) who underwent an ultrasonography test to diagnose a renal test in our nuclear medical center were scanned using a gamma camera. Before the scanning procedure, the patients received an injection of ⁹⁹ᵐTc-DTPA. The gamma camera computes the pre- and post-syringe radioactive counts after the injection has been pushed into the patient's vein. The artificial neural network uses the softmax function with cross-entropy loss to determine whether CKD is normal or abnormal based on the GFR value in the output layer. Results: The proposed ANN model had a 99.20 % accuracy according to K-fold cross-validation. The sensitivity and specificity were 99.10 and 99.20 %, respectively. AUC was 0.994. Conclusion: The proposed model can distinguish between normal and abnormal stages of CKD by using an artificial neural network. The gamma camera could be upgraded to diagnose normal or abnormal stages of CKD with an appropriate GFR value following the clinical application of the proposed model.

Keywords: artificial neural network, glomerular filtration rate, stages of the kidney, gamma camera

Procedia PDF Downloads 103
1389 Prediction of Oil Recovery Factor Using Artificial Neural Network

Authors: O. P. Oladipo, O. A. Falode

Abstract:

The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.

Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger

Procedia PDF Downloads 441
1388 Through Seligman’s Lenses: Creating a Culture of Well-Being in Higher-Education

Authors: Neeru Deep, Kimberly McAlister

Abstract:

Mental health issues have been increasing worldwide for many decades, but the COVID-19 pandemic has brought mental health issues into the spotlight. Within higher education, promoting the well-being of students has dramatically increased in focus. The Northwestern State University of Louisiana opened the Center for Positivity, Well-being, and Hope using the action research process of reflecting, planning, acting, and observing. The study’s purpose is two-fold: First, it highlights how to create a collaborative team to reflect, plan, and act to develop a well-being culture in higher education institutions. Second, it investigates the efficacy of the center through Seligman’s lenses. The researchers shared their experience in the first three phases of the action research process and then applied an identical concurrent mixed methods design. A purposive sample evaluated the efficacy of the center through Seligman’s lenses. The researcher administered PERMA-Profiler Measure, the PERMA-Profiler Measure overview, the CoPWH Evaluation I, and the CoPWH Evaluation II questionnaires to collect qualitative and quantitative data. The thematic analysis for qualitative and descriptive statistics for quantitative data concluded that the center creates a well-being culture and promotes well-being in college students. In conclusion, this action research shares the successful implementation of the cyclic process of research in promoting a well-being culture in higher education with the implications for promoting a well-being culture in various educational settings, workplaces, and communities.

Keywords: action research, mixed methods research design, Seligman, well-being.

Procedia PDF Downloads 130
1387 Mathematical Modelling of Slag Formation in an Entrained-Flow Gasifier

Authors: Girts Zageris, Vadims Geza, Andris Jakovics

Abstract:

Gasification processes are of great interest due to their generation of renewable energy in the form of syngas from biodegradable waste. It is, therefore, important to study the factors that play a role in the efficiency of gasification and the longevity of the machines in which gasification takes place. This study focuses on the latter, aiming to optimize an entrained-flow gasifier by reducing slag formation on its walls to reduce maintenance costs. A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification into account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, the effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and possible solutions for decreasing a number of undesirable deposits are proposed. Additionally, an estimate of the impact of different factors such as temperature, gas properties and gas content, and different forces acting on the particles undergoing gasification is given.

Keywords: biomass particles, gasification, slag formation, turbulence k-ε modelling

Procedia PDF Downloads 286
1386 Voice Liveness Detection Using Kolmogorov Arnold Networks

Authors: Arth J. Shah, Madhu R. Kamble

Abstract:

Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.

Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection

Procedia PDF Downloads 41
1385 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions

Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia

Abstract:

This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.

Keywords: low-pressure turbine cascade, large-Eddy simulation (LES), RANS turbulence models, unsteady flow measurements, flow separation

Procedia PDF Downloads 305
1384 Development of GIS-Based Geotechnical Guidance Maps for Prediction of Soil Bearing Capacity

Authors: Q. Toufeeq, R. Kauser, U. R. Jamil, N. Sohaib

Abstract:

Foundation design of a structure needs soil investigation to avoid failures due to settlements. This soil investigation is expensive and time-consuming. Developments of new residential societies involve huge leveling of large sites that is accompanied by heavy land filling. Poor practices of land fill for deep depths cause differential settlements and consolidations of underneath soil that sometimes result in the collapse of structures. The extent of filling remains unknown to the individual developer unless soil investigation is carried out. Soil investigation cannot be performed on each available site due to involved costs. However, fair estimate of bearing capacity can be made if such tests are already done in the surrounding areas. The geotechnical guidance maps can provide a fair assessment of soil properties. Previously, GIS-based approaches have been used to develop maps using extrapolation and interpolations techniques for bearing capacities, underground recharge, soil classification, geological hazards, landslide hazards, socio-economic, and soil liquefaction mapping. Standard penetration test (SPT) data of surrounding sites were already available. Google Earth is used for digitization of collected data. Few points were considered for data calibration and validation. Resultant Geographic information system (GIS)-based guidance maps are helpful to anticipate the bearing capacity in the real estate industry.

Keywords: bearing capacity, soil classification, geographical information system, inverse distance weighted, radial basis function

Procedia PDF Downloads 135
1383 Wetting Treatement: Comparative Overview: Case of Polypropylene Top Sheet Layer on Disposable Baby Diaper

Authors: Tilouche Rahma, Sayeb Soumaya, Ben Hassen Mohamed

Abstract:

The wettability of materials is a very important aspect of surface science, it presents a key factor providing the best characteristic of product, especially in hygienic field. Hydrophobic polypropylene is used as nonwoven topsheet in disposable diaper, for its interesting properties (toughness, lightness...) by comparing with traditional product previously used. SURFACTANTs are widely used to reduce contact angle (water contact angles larger than 90° on smooth surfaces) and to change wetting properties. In the present work, we study ways to obtain hydrophilic polypropylene surface, by the deposition of a variety of surfactant on surfaces of varying morphology. We used two different methods for surface wetting: Spraying method and the coating method. The concentration of the wetting agent, the type of non-woven fabric and the parameters in the method for controlling, hugely affect the quality of treatment. Therefore need that the treatment is effective in terms of contact angle without affecting the mechanical properties of the nonwoven. For the assessment of the quality of treatment, two methods are used: The measurement of the contact angle and the strike trough time. Also, with subjective evaluation by Hedonic test (which involves the consumer preference (naive panel: group of moms). Finally, we selected the better treated topsheet referring to the assessment results.

Keywords: SURFACTANT, topsheet polypropylene, hydrophilic, hydrophobic

Procedia PDF Downloads 545
1382 Some Factors Affecting Reproductive Traits in Nigerian Indigenous Chickens under Intensive Management System

Authors: J. Aliyu, A. O. Raji, A. A. Ibrahim

Abstract:

The study was carried out to assess the fertility, early and late embryonic mortalities as well as hatchability by strain, season and hen’s weight in Nigerian indigenous chickens reared on deep litter. Four strains (normal feathered, naked neck, frizzle and dwarf) of hens maintained at a mating ratio of 1 cock to 4 hens, fed breeders mash and water ad libitum were used in a three year experiment. The data generated were subjected to analysis of variance using the SAS package and the means, where significant, were separated using the least significant difference (LSD). There were significant effects (P < 0.05) of strain on all the traits studied. Fertility was generally high (84.29 %) in all the strains. Early embryonic mortality was significantly lowest (P < 0.01) in naked neck which had the highest late embryonic mortality (P < 0.001). Hatchability was significantly highest (P < 0.01) in normal feathered (80.23 %) and slightly depressed in frizzle (74.95 %) and dwarf (72.27 %) while naked neck had the lowest (60.80 %). Season of the year had significant effects on early embryonic mortality. Dry hot season significantly (P < 0.05) depressed fertility while early embryonic mortality was depressed in the wet season (15.33 %). Early and late embryonic mortalities significantly increased (P < 0.05) with increasing weight of hen. Dwarf, frizzle and normal feathered hens could be used to improve hatchability as well as reduce early and late embryonic mortalities in Nigerian indigenous chickens.

Keywords: chicken, fertility, hatchability, indigenous, strain

Procedia PDF Downloads 417
1381 Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley

Authors: Bal Deep Sharma, Suresh Ray Yadav

Abstract:

Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide.

Keywords: soil stabilization technique, soft soil treatment, sodium hydroxide, unconfined compressive strength

Procedia PDF Downloads 80
1380 Preliminary Design of an Aerodynamic Protection for the Scramjet Engine Inlet of the Brazilian Technological Demonstrator Scramjet 14-X S

Authors: Gustavo J. Costa, Felipe J. Costa, Bruno L. Coelho, Ronaldo L. Cardoso, Rafael O. Santos, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro

Abstract:

The Prof. Henry T. Nagamatsu Aerothermodynamics and Hipersonics Laboratory, of the Institute for Advanced Studies (IEAv) conducts research and development (R&D) of the Technological Demonstrator scramjet 14-X S, aiming atmospheric flight at 30 km altitude with the speed correspondent to Mach number 7, using scramjet technology providing hypersonic propulsion system based on supersonic combustion. Hypersonic aerospace vehicles with air-breathing supersonic propulsion system face extremal environments for super/hypersonic flights in terms of thermal and aerodynamic loads. Thus, it is necessary to use aerodynamic protection at the scramjet engine inlet to face the thermal and aerodynamic loads without compromising the efficiency of scramjet engine, taking into account: i) inlet design (boundary layer, oblique shockwave and reflected oblique shockwave); ii) wall temperature of the cowl and of the compression ramp; iii) supersonic flow into the combustion chamber. The aerodynamic protection of the scramjet engine inlet will act to prevent the engine unstart and match the predictions made by theoretical-analytical, numerical analysis and experimental research, during the atmospheric flight of the Technological Demonstrator scramjet 14-X S.

Keywords: 14-X, hypersonic, scramjet, supersonic combustion

Procedia PDF Downloads 425
1379 Challenges in Translating Malay Idiomatic Expressions: A Study

Authors: Nor Ruba’Yah Binti Abd Rahim, Norsyahidah Binti Jaafar

Abstract:

Translating Malay idiomatic expressions into other languages presents unique challenges due to the deep cultural nuances and linguistic intricacies embedded within these expressions. This study examined these challenges through a two-pronged methodology: a comparative analysis using survey questionnaires and a quiz administered to 50 semester 6 students who are taking Translation 1 course, and in-depth interviews with their lecturers. The survey aimed to capture students’ experiences and difficulties in translating selected Malay idioms into English, highlighting common errors and misunderstandings. Complementing this, interviews with lecturers provided expert insights into the nuances of these expressions and effective translation strategies. The findings revealed that literal translations often fail to convey the intended meanings, underscoring the importance of cultural competence and contextual awareness. The study also identified key factors that contribute to successful translations, such as the translator’s familiarity with both source and target cultures and their ability to adapt expressions creatively. This research contributed to the field of translation studies by offering practical recommendations for improving the translation of idiomatic expressions, thereby enhancing cross-cultural communication. The insights gained from this study are valuable for translators, educators, and students, emphasizing the need for a nuanced approach that respects the cultural richness of the source language while ensuring clarity in the target language.

Keywords: idiomatic expressions, cultural competence, translation strategies, cross-cultural communication, students’ difficulties

Procedia PDF Downloads 14
1378 A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile

Authors: Hala Alshamlan, Ghada Badr, Yousef Alohali

Abstract:

Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile.

Keywords: gene selection, feature selection, cancer classification, microarray, gene expression profile

Procedia PDF Downloads 454
1377 The Effect of Soil Reinforcement on Pullout Behaviour of Flat Under-Reamer Anchor Pile Placed in Sand

Authors: V. K. Arora, Amit Rastogi

Abstract:

To understand the anchor pile behaviour and to predict the capacity of piles under uplift loading are important concerns in foundation analysis. Experimental model tests have been conducted on single anchor pile embedded in cohesionless soil and subjected to pure uplift loading. A gravel-filled geogrid layer was located around the enlarged pile base. The experimental tests were conducted on straight-shafted vertical steel piles with an outer diameter of 20 mm in a steel soil tank. The tested piles have embedment depth-to-diameter ratios (L/D) of 2, 3, and 4. The sand bed is prepared at three different values of density of 1.67, 1.59, and 1.50gm/cc. Single piles embedded in sandy soil were tested and the results are presented and analysed in this paper. The influences of pile embedment ratio, reinforcement, relative density of soil on the uplift capacity of piles were investigated. The study revealed that the behaviour of single piles under uplift loading depends mainly on both the pile embedment depth-to-diameter ratio and the soil density. It is believed that the experimental results presented in this study would be beneficial to the professional understanding of the soil–pile-uplift interaction problem.

Keywords: flat under-reamer anchor pile, geogrid, pullout reinforcement, soil reinforcement

Procedia PDF Downloads 470
1376 Fatty Acid Composition of Muscle Lipids of Cyprinus carpio L. Living in Different Dam Lake, Turkey

Authors: O. B. Citil, V. Sariyel, M. Akoz

Abstract:

In this study, total fatty acid composition of muscle lipids of Cyprinus carpio L. living in Suğla Dam Lake, Altinapa Dam Lake, Eğirdir Lake and Burdur Lake were determined using GC. During this study, for the summer season of July was taken from each region of the land and they were stored in deep-freeze set to -20 degrees until the analysis date. At the end of the analyses, 30 different fatty acids were found in the composition of Cyprinus carpio L. which lives in different lakes. Cyprinus carpio Suğla Dam Lake of polyunsaturated fatty acids (PUFAs), were higher than other lakes. Cyprinus carpio L. was the highest in the major SFA palmitic acid. Polyunsaturated fatty acids (PUFA) of carp, the most abundant fish species in all lakes, were found to be higher than those of saturated fatty acids (SFA) in all lakes. Palmitic acid was the major SFA in all lakes. Oleic acid was identified as the major MUFA. Docosahexaenoic acid (DHA) was the most abundant in all lakes. ω3 fatty acid composition was higher than the percentage of the percentage ω6 fatty acids in all lake. ω3/ω6 rates of Cyprinus carpio L. Suğla Dam Lake, Altinapa Dam Lake, Eğirdir Lake and Burdur Lake, 2.12, 1.19, 2.15, 2.87, and 2.82, respectively. Docosahexaenoic acid (DHA) was the major PUFA in Eğirdir and Burdur lakes, whereas linoleic acid (LA) was the major PUFA in Altinapa and Suğla Dam Lakes. It was shown that the fatty acid composition in the muscle of carp was significantly influenced by different lakes.

Keywords: Cyprinus carpio L., fatty acid, composition, gas chromatography

Procedia PDF Downloads 570
1375 Evaluation of Geotechnical Parameters at Nubian Habitations in Kurkur Area, Aswan, Egypt

Authors: R. E. Fat-Helbary, A. A. Abdel-latief, M. S. Arfa, Alaa Mostafa

Abstract:

The Egyptian Government proposed a general plan, aiming at constructing new settlements for Nubian in south Aswan in different places around Nasser Lake, one of these settlements in Kurkur area. The Nubian habitations in Wadi Kurkur are located around 30 km southwest of Aswan City. This area are affecting by near distance earthquakes from Kalabsha faults system. The shallow seismic refraction technique was conducted at the study area, to evaluate the soil and rock material quality and geotechnical parameters, in addition to the detection of the subsurface ground model under the study area. The P and S-wave velocities were calculated. The surface layer has P-wave, velocity ranges from 900 m/sec to 1625 m/sec and S-wave velocity ranges from 650 m/sec to 1400 m/sec. On the other hand the bedrock has P-wave velocity ranges from 1300 m/sec to 1980 m/sec and S-wave velocity ranges from 1050 m/sec to1725 m/sec. Measuring Vp and Vs velocities together with bulk density are calculated and used to extract the mechanical properties and geotechnical parameters of the foundation material at the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land use planning and for earthquakes resistant structure design.

Keywords: shallow seismic refraction technique, Kurkur area, p and s-wave velocities, geotechnical parameters, bulk density, Kalabsha faults

Procedia PDF Downloads 427
1374 On the convergence of the Mixed Integer Randomized Pattern Search Algorithm

Authors: Ebert Brea

Abstract:

We propose a novel direct search algorithm for identifying at least a local minimum of mixed integer nonlinear unconstrained optimization problems. The Mixed Integer Randomized Pattern Search Algorithm (MIRPSA), so-called by the author, is based on a randomized pattern search, which is modified by the MIRPSA for finding at least a local minimum of our problem. The MIRPSA has two main operations over the randomized pattern search: moving operation and shrinking operation. Each operation is carried out by the algorithm when a set of conditions is held. The convergence properties of the MIRPSA is analyzed using a Markov chain approach, which is represented by an infinite countable set of state space λ, where each state d(q) is defined by a measure of the qth randomized pattern search Hq, for all q in N. According to the algorithm, when a moving operation is carried out on the qth randomized pattern search Hq, the MIRPSA holds its state. Meanwhile, if the MIRPSA carries out a shrinking operation over the qth randomized pattern search Hq, the algorithm will visit the next state, this is, a shrinking operation at the qth state causes a changing of the qth state into (q+1)th state. It is worthwhile pointing out that the MIRPSA never goes back to any visited states because the MIRPSA only visits any qth by shrinking operations. In this article, we describe the MIRPSA for mixed integer nonlinear unconstrained optimization problems for doing a deep study of its convergence properties using Markov chain viewpoint. We herein include a low dimension case for showing more details of the MIRPSA, when the algorithm is used for identifying the minimum of a mixed integer quadratic function. Besides, numerical examples are also shown in order to measure the performance of the MIRPSA.

Keywords: direct search, mixed integer optimization, random search, convergence, Markov chain

Procedia PDF Downloads 470
1373 Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils

Authors: A. Rifa’i, Y. Takeshita, M. Komatsu

Abstract:

The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system has ever built to avoid such a problem, but puddles still didn’t stop appearing after rain. Permeability parameter needs to be determined by using more simple procedure to find exact method of solution. The instrument modelling were proposed according to the development of field permeability testing instrument. This experiment used proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow. The procedure were carried out from unsaturated until saturated soil condition. Volumetric water content (θ) were being monitored by soil moisture measurement device. The results were relationship between k and θ which drawn by numerical approach Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr= 68 %) until 9.98 x 10-4 cm/sec (Sr= 82 %). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve.

Keywords: constant discharge method, in situ permeability test, sandy soil, unsaturated conditions

Procedia PDF Downloads 384
1372 Data Mining Approach: Classification Model Evaluation

Authors: Lubabatu Sada Sodangi

Abstract:

The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.

Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset

Procedia PDF Downloads 378
1371 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
1370 Long Standing Orbital Floor Fracture Repair: Case Report

Authors: Hisham A. Hashem, Sameh Galal, Bassem M. Moeshed

Abstract:

A 36 years old male patient presented to our unit with a history of motor-car accident from 7 months complaining of disfigurement and double vision. On examination and investigations, there was an orbital floor fracture in the left eye with inferior rectus muscle entrapment causing diplopia, dystopia and enophthalmos. Under general anesthesia, a sub-ciliary incision was performed, and the orbital floor fracture was repaired with a double layer Medpor sheet (30x50x15) with removing and freeing fibrosis that was present and freeing of the inferior rectus muscle. Remarkable improvement of the dystopia was noticed, however, there was a residual diplopia in upgaze and enophthalmos. He was then referred to a strabismologist, which upon examination found left hypotropia of 8 ΔD corrected by 8 ΔD base up prism and positive forced duction test on elevation and pseudoptosis. Under local anesthesia, a limbal incision approach with hangback 4mm recession of inferior rectus muscle was performed after identifying an inferior rectus muscle structure. Improvement was noted shortly postoperative with correction of both diplopia and pseudoptosis. Follow up after 1, 4 and 8 months was done showing a stable condition. Delayed surgery in cases of orbital floor fracture may still hold good results provided proper assessment of the case with management of each sign separately.

Keywords: diplopia, dystopia, late surgery, orbital floor fracture

Procedia PDF Downloads 227
1369 Reconstructing the Trace of Mesozoic Subduction and Its Implication on Stratigraphy Correlation between Deep Marine Sediment and Granite: Case Study of Garba Complex, South Sumatera

Authors: Fadlan Atmaja Nursiwan, Ugi Kurnia Gusti

Abstract:

Garba Hill, located in Tekana Village, South Sumatera Province is comprised to South Sumatra Basin and classified as back arc basin. This area is entered as an active margin of Sundaland which experiences subduction several times since Mesozoic to recent time. The traces of Mesozoic subduction in the southern part of Sumatra island are exposed in Garba Hill area. The aim of this investigation is to study the tectonic changes in the first phase in Mesozoic era at the active margin of Sundaland which causes the rocks assemblage in Garba hill consist of continental and oceanic plate rocks which the correlation between those rocks show indistinct relation. This investigation is conducted by field observation in Tekana village and Lubar Village, Muara Dua, South Sumatra along with laboratory analysis included fossil and geochemistry analysis of radiolarian chert, petrography analysis of granite and basalt, and structural modelling. Fossil and geochemistry analysis of radiolarian chert and geochemistry of granite rocks shown the relation between the two rocks and Mesozoic subduction of Woyla terrane on western margin of Sundaland. Petrography analysis from granite and basalt depict the tectonic affinity of rocks. Moreover, structural analysis showed the changes of lineation direction from N-S to WNW-ESE.

Keywords: granite, mesozoic, radiolarian, subduction traces

Procedia PDF Downloads 338