Search results for: savings algorithm
979 Application of Global Predictive Real Time Control Strategy to Improve Flooding Prevention Performance of Urban Stormwater Basins
Authors: Shadab Shishegar, Sophie Duchesne, Genevieve Pelletier
Abstract:
Sustainability as one of the key elements of Smart cities, can be realized by employing Real Time Control Strategies for city’s infrastructures. Nowadays Stormwater management systems play an important role in mitigating the impacts of urbanization on natural hydrological cycle. These systems can be managed in such a way that they meet the smart cities standards. In fact, there is a huge potential for sustainable management of urban stormwater and also its adaptability to global challenges like climate change. Hence, a dynamically managed system that can adapt itself to instability of the environmental conditions is desirable. A Global Predictive Real Time Control approach is proposed in this paper to optimize the performance of stormwater management basins in terms of flooding prevention. To do so, a mathematical optimization model is developed then solved using Genetic Algorithm (GA). Results show an improved performance at system-level for the stormwater basins in comparison to static strategy.Keywords: environmental sustainability, optimization, real time control, storm water management
Procedia PDF Downloads 177978 Actual Fracture Length Determination Using a Technique for Shale Fracturing Data Analysis in Real Time
Authors: M. Wigwe, M. Y Soloman, E. Pirayesh, R. Eghorieta, N. Stegent
Abstract:
The moving reference point (MRP) technique has been used in the analyses of the first three stages of two fracturing jobs. The results obtained verify the proposition that a hydraulic fracture in shale grows in spurts rather than in a continuous pattern as originally interpreted by Nolte-Smith technique. Rather than a continuous Mode I fracture that is followed by Mode II, III or IV fractures, these fracture modes could alternate throughout the pumping period. It is also shown that the Nolte-Smith time parameter plot can be very helpful in identifying the presence of natural fractures that have been intersected by the hydraulic fracture. In addition, with the aid of a fracture length-time plot generated from any fracture simulation that matches the data, the distance from the wellbore to the natural fractures, which also translates to the actual fracture length for the stage, can be determined. An algorithm for this technique is developed. This procedure was used for the first 9 minutes of the simulated frac job data. It was observed that after 7mins, the actual fracture length is about 150ft, instead of 250ft predicted by the simulator output. This difference gets larger as the analysis proceeds.Keywords: shale, fracturing, reservoir, simulation, frac-length, moving-reference-point
Procedia PDF Downloads 753977 Rationalized Haar Transforms Approach to Design of Observer for Control Systems with Unknown Inputs
Authors: Joon-Hoon Park
Abstract:
The fundamental concept of observability is important in both theoretical and practical points of modern control systems. In modern control theory, a control system has criteria for determining the design solution exists for the system parameters and design objectives. The idea of observability relates to the condition of observing or estimating the state variables from the output variables that is generally measurable. To design closed-loop control system, the practical problems of implementing the feedback of the state variables must be considered and implementing state feedback control problem has been existed in this case. All the state variables are not available, so it is requisite to design and implement an observer that will estimate the state variables form the output parameters. However sometimes unknown inputs are presented in control systems as practical cases. This paper presents a design method and algorithm for observer of control system with unknown input parameters based on Rationalized Haar transform. The proposed method is more advantageous than the other numerical method.Keywords: orthogonal functions, rationalized Haar transforms, control system observer, algebraic method
Procedia PDF Downloads 370976 System Identification in Presence of Outliers
Authors: Chao Yu, Qing-Guo Wang, Dan Zhang
Abstract:
The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising
Procedia PDF Downloads 307975 Topology Optimization of the Interior Structures of Beams under Various Load and Support Conditions with Solid Isotropic Material with Penalization Method
Authors: Omer Oral, Y. Emre Yilmaz
Abstract:
Topology optimization is an approach that optimizes material distribution within a given design space for a certain load and boundary conditions by providing performance goals. It uses various restrictions such as boundary conditions, set of loads, and constraints to maximize the performance of the system. It is different than size and shape optimization methods, but it reserves some features of both methods. In this study, interior structures of the parts were optimized by using SIMP (Solid Isotropic Material with Penalization) method. The volume of the part was preassigned parameter and minimum deflection was the objective function. The basic idea behind the theory was considered, and different methods were discussed. Rhinoceros 3D design tool was used with Grasshopper and TopOpt plugins to create and optimize parts. A Grasshopper algorithm was designed and tested for different beams, set of arbitrary located forces and support types such as pinned, fixed, etc. Finally, 2.5D shapes were obtained and verified by observing the changes in density function.Keywords: Grasshopper, lattice structure, microstructures, Rhinoceros, solid isotropic material with penalization method, TopOpt, topology optimization
Procedia PDF Downloads 136974 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer
Procedia PDF Downloads 262973 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography
Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz
Abstract:
Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology
Procedia PDF Downloads 220972 Attendance Management System Implementation Using Face Recognition
Authors: Zainab S. Abdullahi, Zakariyya H. Abdullahi, Sahnun Dahiru
Abstract:
Student attendance in schools is a very important aspect in school management record. In recent years, security systems have become one of the most demanding systems in school. Every institute have its own method of taking attendance, many schools in Nigeria use the old fashion way of taking attendance. That is writing the students name and registration number in a paper and submitting it to the lecturer at the end of the lecture which is time-consuming and insecure, because some students can write for their friends without the lecturer’s knowledge. In this paper, we propose a system that takes attendance using face recognition. There are many automatic methods available for this purpose i.e. biometric attendance, but they all waste time, because the students have to follow a queue to put their thumbs on a scanner which is time-consuming. This attendance is recorded by using a camera attached in front of the class room and capturing the student images, detect the faces in the image and compare the detected faces with database and mark the attendance. The principle component analysis was used to recognize the faces detected with a high accuracy rate. The paper reviews the related work in the field of attendance system, then describe the system architecture, software algorithm and result.Keywords: attendance system, face detection, face recognition, PCA
Procedia PDF Downloads 364971 Evaluation and Fault Classification for Healthcare Robot during Sit-To-Stand Performance through Center of Pressure
Authors: Tianyi Wang, Hieyong Jeong, An Guo, Yuko Ohno
Abstract:
Healthcare robot for assisting sit-to-stand (STS) performance had aroused numerous research interests. To author’s best knowledge, knowledge about how evaluating healthcare robot is still unknown. Robot should be labeled as fault if users feel demanding during STS when they are assisted by robot. In this research, we aim to propose a method to evaluate sit-to-stand assist robot through center of pressure (CoP), then classify different STS performance. Experiments were executed five times with ten healthy subjects under four conditions: two self-performed STSs with chair heights of 62 cm and 43 cm, and two robot-assisted STSs with chair heights of 43 cm and robot end-effect speed of 2 s and 5 s. CoP was measured using a Wii Balance Board (WBB). Bayesian classification was utilized to classify STS performance. The results showed that faults occurred when decreased the chair height and slowed robot assist speed. Proposed method for fault classification showed high probability of classifying fault classes form others. It was concluded that faults for STS assist robot could be detected by inspecting center of pressure and be classified through proposed classification algorithm.Keywords: center of pressure, fault classification, healthcare robot, sit-to-stand movement
Procedia PDF Downloads 196970 Bayesian Using Markov Chain Monte Carlo and Lindley's Approximation Based on Type-I Censored Data
Authors: Al Omari Moahmmed Ahmed
Abstract:
These papers describe the Bayesian Estimator using Markov Chain Monte Carlo and Lindley’s approximation and the maximum likelihood estimation of the Weibull distribution with Type-I censored data. The maximum likelihood method can’t estimate the shape parameter in closed forms, although it can be solved by numerical methods. Moreover, the Bayesian estimates of the parameters, the survival and hazard functions cannot be solved analytically. Hence Markov Chain Monte Carlo method and Lindley’s approximation are used, where the full conditional distribution for the parameters of Weibull distribution are obtained via Gibbs sampling and Metropolis-Hastings algorithm (HM) followed by estimate the survival and hazard functions. The methods are compared to Maximum Likelihood counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to determine the better method in scale and shape parameters, the survival and hazard functions.Keywords: weibull distribution, bayesian method, markov chain mote carlo, survival and hazard functions
Procedia PDF Downloads 479969 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 203968 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 86967 Design of Geochemical Maps of Industrial City Using Gradient Boosting and Geographic Information System
Authors: Ruslan Safarov, Zhanat Shomanova, Yuri Nossenko, Zhandos Mussayev, Ayana Baltabek
Abstract:
Geochemical maps of distribution of polluting elements V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Pb on the territory of the Pavlodar city (Kazakhstan), which is an industrial hub were designed. The samples of soil were taken from 100 locations. Elemental analysis has been performed using XRF. The obtained data was used for training of the computational model with gradient boosting algorithm. The optimal parameters of model as well as the loss function were selected. The computational model was used for prediction of polluting elements concentration for 1000 evenly distributed points. Based on predicted data geochemical maps were created. Additionally, the total pollution index Zc was calculated for every from 1000 point. The spatial distribution of the Zc index was visualized using GIS (QGIS). It was calculated that the maximum coverage area of the territory of the Pavlodar city belongs to the moderately hazardous category (89.7%). The visualization of the obtained data allowed us to conclude that the main source of contamination goes from the industrial zones where the strategic metallurgical and refining plants are placed.Keywords: Pavlodar, geochemical map, gradient boosting, CatBoost, QGIS, spatial distribution, heavy metals
Procedia PDF Downloads 82966 The Co-Simulation Interface SystemC/Matlab Applied in JPEG and SDR Application
Authors: Walid Hassairi, Moncef Bousselmi, Mohamed Abid
Abstract:
Functional verification is a major part of today’s system design task. Several approaches are available for verification on a high abstraction level, where designs are often modeled using MATLAB/Simulink. However, different approaches are a barrier to a unified verification flow. In this paper, we propose a co-simulation interface between SystemC and MATLAB and Simulink to enable functional verification of multi-abstraction levels designs. The resulting verification flow is tested on JPEG compression algorithm. The required synchronization of both simulation environments, as well as data type conversion is solved using the proposed co-simulation flow. We divided into two encoder jpeg parts. First implemented in SystemC which is the DCT is representing the HW part. Second, consisted of quantization and entropy encoding which is implemented in Matlab is the SW part. For communication and synchronization between these two parts we use S-Function and engine in Simulink matlab. With this research premise, this study introduces a new implementation of a Hardware SystemC of DCT. We compare the result of our simulation compared to SW / SW. We observe a reduction in simulation time you have 88.15% in JPEG and the design efficiency of the supply design is 90% in SDR.Keywords: hardware/software, co-design, co-simulation, systemc, matlab, s-function, communication, synchronization
Procedia PDF Downloads 405965 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms
Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli
Abstract:
Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning
Procedia PDF Downloads 73964 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks
Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun
Abstract:
Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic
Procedia PDF Downloads 527963 Analysis of Three-Dimensional Longitudinal Rolls Induced by Double Diffusive Poiseuille-Rayleigh-Benard Flows in Rectangular Channels
Authors: O. Rahli, N. Mimouni, R. Bennacer, K. Bouhadef
Abstract:
This numerical study investigates the travelling wave’s appearance and the behavior of Poiseuille-Rayleigh-Benard (PRB) flow induced in 3D thermosolutale mixed convection (TSMC) in horizontal rectangular channels. The governing equations are discretized by using a control volume method with third order Quick scheme in approximating the advection terms. Simpler algorithm is used to handle coupling between the momentum and continuity equations. To avoid the excessively high computer time, full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For a broad range of dimensionless controlling parameters, the contribution of this work is to analyzing the flow regimes of the steady longitudinal thermoconvective rolls (noted R//) for both thermal and mass transfer (TSMC). The transition from the opposed volume forces to cooperating ones, considerably affects the birth and the development of the longitudinal rolls. The heat and mass transfers distribution are also examined.Keywords: heat and mass transfer, mixed convection, poiseuille-rayleigh-benard flow, rectangular duct
Procedia PDF Downloads 298962 A Brave New World of Privacy: Empirical Insights into the Metaverse’s Personalization Dynamics
Authors: Cheng Xu
Abstract:
As the metaverse emerges as a dynamic virtual simulacrum of reality, its implications on user privacy have become a focal point of interest. While previous discussions have ventured into metaverse privacy dynamics, a glaring empirical gap persists, especially concerning the effects of personalization in the context of news recommendation services. This study stands at the forefront of addressing this void, meticulously examining how users' privacy concerns shift within the metaverse's personalization context. Through a pre-registered randomized controlled experiment, participants engaged in a personalization task across both the metaverse and traditional online platforms. Upon completion of this task, a comprehensive news recommendation service provider offers personalized news recommendations to the users. Our empirical findings reveal that the metaverse inherently amplifies privacy concerns compared to traditional settings. However, these concerns are notably mitigated when users have a say in shaping the algorithms that drive these recommendations. This pioneering research not only fills a significant knowledge gap but also offers crucial insights for metaverse developers and policymakers, emphasizing the nuanced role of user input in shaping algorithm-driven privacy perceptions.Keywords: metaverse, privacy concerns, personalization, digital interaction, algorithmic recommendations
Procedia PDF Downloads 117961 A Particle Swarm Optimal Control Method for DC Motor by Considering Energy Consumption
Authors: Yingjie Zhang, Ming Li, Ying Zhang, Jing Zhang, Zuolei Hu
Abstract:
In the actual start-up process of DC motors, the DC drive system often faces a conflict between energy consumption and acceleration performance. To resolve the conflict, this paper proposes a comprehensive performance index that energy consumption index is added on the basis of classical control performance index in the DC motor starting process. Taking the comprehensive performance index as the cost function, particle swarm optimization algorithm is designed to optimize the comprehensive performance. Then it conducts simulations on the optimization of the comprehensive performance of the DC motor on condition that the weight coefficient of the energy consumption index should be properly designed. The simulation results show that as the weight of energy consumption increased, the energy efficiency was significantly improved at the expense of a slight sacrifice of fastness indicators with the comprehensive performance index method. The energy efficiency was increased from 63.18% to 68.48% and the response time reduced from 0.2875s to 0.1736s simultaneously compared with traditional proportion integrals differential controller in energy saving.Keywords: comprehensive performance index, energy consumption, acceleration performance, particle swarm optimal control
Procedia PDF Downloads 163960 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study
Authors: Si Mon Kueh, Tom J. Kazmierski
Abstract:
There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)
Procedia PDF Downloads 321959 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.Keywords: cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method
Procedia PDF Downloads 200958 Non-Invasive Imaging of Tissue Using Near Infrared Radiations
Authors: Ashwani Kumar Aggarwal
Abstract:
NIR Light is non-ionizing and can pass easily through living tissues such as breast without any harmful effects. Therefore, use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. This blurred reconstructed image has been enhanced using a digital filter which is optimal in mean square sense.Keywords: least-squares optimization, filtering, tomography, laser interaction, light scattering
Procedia PDF Downloads 316957 Periodical System of Isotopes
Authors: Andriy Magula
Abstract:
With the help of a special algorithm being the principle of multilevel periodicity, the periodic change of properties at the nuclear level of chemical elements was discovered and the variant for the periodic system of isotopes was presented. The periodic change in the properties of isotopes, as well as the vertical symmetry of subgroups, was checked for consistency in accordance with the following ten types of experimental data: mass ratio of fission fragments; quadrupole moment values; magnetic moment; lifetime of radioactive isotopes; neutron scattering; thermal neutron radiative capture cross-sections (n, γ); α-particle yield cross-sections (n, α); isotope abundance on Earth, in the Solar system and other stellar systems; features of ore formation and stellar evolution. For all ten cases, the correspondences for the proposed periodic structure of the nucleus were obtained. The system was formed in the usual 2D table, similar to the periodic system of elements, and the mass series of isotopes was divided into 8 periods and 4 types of ‘nuclear’ orbitals: sn, dn, pn, fn. The origin of ‘magic’ numbers as a set of filled charge shells of the nucleus was explained. Due to the isotope system, the periodic structure is shown at a new level of the universe, and the prospects of its practical use are opened up.Keywords: periodic system, isotope, period, subgroup, “nuclear” orbital, nuclear reaction
Procedia PDF Downloads 17956 Fuzzy Multi-Objective Approach for Emergency Location Transportation Problem
Authors: Bidzina Matsaberidze, Anna Sikharulidze, Gia Sirbiladze, Bezhan Ghvaberidze
Abstract:
In the modern world emergency management decision support systems are actively used by state organizations, which are interested in extreme and abnormal processes and provide optimal and safe management of supply needed for the civil and military facilities in geographical areas, affected by disasters, earthquakes, fires and other accidents, weapons of mass destruction, terrorist attacks, etc. Obviously, these kinds of extreme events cause significant losses and damages to the infrastructure. In such cases, usage of intelligent support technologies is very important for quick and optimal location-transportation of emergency service in order to avoid new losses caused by these events. Timely servicing from emergency service centers to the affected disaster regions (response phase) is a key task of the emergency management system. Scientific research of this field takes the important place in decision-making problems. Our goal was to create an expert knowledge-based intelligent support system, which will serve as an assistant tool to provide optimal solutions for the above-mentioned problem. The inputs to the mathematical model of the system are objective data, as well as expert evaluations. The outputs of the system are solutions for Fuzzy Multi-Objective Emergency Location-Transportation Problem (FMOELTP) for disasters’ regions. The development and testing of the Intelligent Support System were done on the example of an experimental disaster region (for some geographical zone of Georgia) which was generated using a simulation modeling. Four objectives are considered in our model. The first objective is to minimize an expectation of total transportation duration of needed products. The second objective is to minimize the total selection unreliability index of opened humanitarian aid distribution centers (HADCs). The third objective minimizes the number of agents needed to operate the opened HADCs. The fourth objective minimizes the non-covered demand for all demand points. Possibility chance constraints and objective constraints were constructed based on objective-subjective data. The FMOELTP was constructed in a static and fuzzy environment since the decisions to be made are taken immediately after the disaster (during few hours) with the information available at that moment. It is assumed that the requests for products are estimated by homeland security organizations, or their experts, based upon their experience and their evaluation of the disaster’s seriousness. Estimated transportation times are considered to take into account routing access difficulty of the region and the infrastructure conditions. We propose an epsilon-constraint method for finding the exact solutions for the problem. It is proved that this approach generates the exact Pareto front of the multi-objective location-transportation problem addressed. Sometimes for large dimensions of the problem, the exact method requires long computing times. Thus, we propose an approximate method that imposes a number of stopping criteria on the exact method. For large dimensions of the FMOELTP the Estimation of Distribution Algorithm’s (EDA) approach is developed.Keywords: epsilon-constraint method, estimation of distribution algorithm, fuzzy multi-objective combinatorial programming problem, fuzzy multi-objective emergency location/transportation problem
Procedia PDF Downloads 321955 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance
Authors: Emad Alenany, M. Adel El-Baz
Abstract:
In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.Keywords: queueing network, discrete-event simulation, health applications, SPT
Procedia PDF Downloads 187954 Method of False Alarm Rate Control for Cyclic Redundancy Check-Aided List Decoding of Polar Codes
Authors: Dmitry Dikarev, Ajit Nimbalker, Alexei Davydov
Abstract:
Polar coding is a novel example of error correcting codes, which can achieve Shannon limit at block length N→∞ with log-linear complexity. Active research is being carried to adopt this theoretical concept for using in practical applications such as 5th generation wireless communication systems. Cyclic redundancy check (CRC) error detection code is broadly used in conjunction with successive cancellation list (SCL) decoding algorithm to improve finite-length polar code performance. However, there are two issues: increase of code block payload overhead by CRC bits and decrease of CRC error-detection capability. This paper proposes a method to control CRC overhead and false alarm rate of polar decoding. As shown in the computer simulations results, the proposed method provides the ability to use any set of CRC polynomials with any list size while maintaining the desired level of false alarm rate. This level of flexibility allows using polar codes in 5G New Radio standard.Keywords: 5G New Radio, channel coding, cyclic redundancy check, list decoding, polar codes
Procedia PDF Downloads 238953 Empowering Women Entrepreneurs in Rural India through Developing Online Communities of Purpose Using Social Technologies
Authors: Jayanta Basak, Somprakash Bandyopadhyay, Parama Bhaumik, Siuli Roy
Abstract:
To solve the life and livelihood related problems of socially and economically backward rural women in India, several Women Self-Help Groups (WSHG) are formed in Indian villages. WSHGs are micro-communities (with 10-to 15 members) within a village community. WSHGs have been conceived not just to promote savings and provide credit, but also to act as a vehicle of change through the creation of women micro-entrepreneurs at the village level. However, in spite of huge investment and volume of people involved in the whole process, the success is still limited. Most of these entrepreneurial activities happen in small household workspaces where sales are limited to the inconsistent and unpredictable local markets. As a result, these entrepreneurs are perennially trapped in the vicious cycle of low risk taking ability, low investment capacity, low productivity, weak market linkages and low revenue. Market separation including customer-producer separation is one of the key problems in this domain. Researchers suggest that there are four types of market separation: (i) spatial, (ii) financial, (iii) temporal, and (iv) informational, which in turn impacts the nature of markets and marketing. In this context, a large group of intermediaries (the 'middleman') plays important role in effectively reducing the factors that separate markets by utilizing the resource of rural entrepreneurs, their products and thus, accelerate market development. The rural entrepreneurs are heavily dependent on these middlemen for marketing of their products and these middlemen exploit rural entrepreneurs by creating a huge informational separation between the rural producers and end-consumers in the market and thus hiding the profit margins. The objective of this study is to develop a transparent, online communities of purpose among rural and urban entrepreneurs using internet and web 2.0 technologies in order to decrease market separation and improve mutual awareness of available and potential products and market demands. Communities of purpose are groups of people who have an ability to influence, can share knowledge and learn from others, and be committed to achieving a common purpose. In this study, a cluster of SHG women located in a village 'Kandi' of West Bengal, India has been studied closely for six months. These women are primarily engaged in producing garments, soft toys, fabric painting on clothes, etc. These women were equipped with internet-enabled smart-phones where they can use chat applications in local language and common social networking websites like Facebook, Instagram, etc. A few handicraft experts and micro-entrepreneurs from the city (the 'seed') were included in their mobile messaging app group that enables the creation of a 'community of purpose' in order to share thoughts and ideas on product designs, market trends, and practices, and thus decrease the rural-urban market separation. After six months of regular group interaction in mobile messaging app among these rural-urban community members, it is observed that SHG women are empowered now to share their product images, design ideas, showcase, and promote their products in global marketplace using some common social networking websites through which they can also enhance and augment their community of purpose.Keywords: communities of purpose, market separation, self-help group, social technologies
Procedia PDF Downloads 255952 Hate Speech Detection Using Machine Learning: A Survey
Authors: Edemealem Desalegn Kingawa, Kafte Tasew Timkete, Mekashaw Girmaw Abebe, Terefe Feyisa, Abiyot Bitew Mihretie, Senait Teklemarkos Haile
Abstract:
Currently, hate speech is a growing challenge for society, individuals, policymakers, and researchers, as social media platforms make it easy to anonymously create and grow online friends and followers and provide an online forum for debate about specific issues of community life, culture, politics, and others. Despite this, research on identifying and detecting hate speech is not satisfactory performance, and this is why future research on this issue is constantly called for. This paper provides a systematic review of the literature in this field, with a focus on approaches like word embedding techniques, machine learning, deep learning technologies, hate speech terminology, and other state-of-the-art technologies with challenges. In this paper, we have made a systematic review of the last six years of literature from Research Gate and Google Scholar. Furthermore, limitations, along with algorithm selection and use challenges, data collection, and cleaning challenges, and future research directions, are discussed in detail.Keywords: Amharic hate speech, deep learning approach, hate speech detection review, Afaan Oromo hate speech detection
Procedia PDF Downloads 177951 Study on Errors in Estimating the 3D Gaze Point for Different Pupil Sizes Using Eye Vergences
Authors: M. Pomianek, M. Piszczek, M. Maciejewski
Abstract:
The binocular eye tracking technology is increasingly being used in industry, entertainment and marketing analysis. In the case of virtual reality, eye tracking systems are already the basis for user interaction with the environment. In such systems, the high accuracy of determining the user's eye fixation point is very important due to the specificity of the virtual reality head-mounted display (HMD). Often, however, there are unknown errors occurring in the used eye tracking technology, as well as those resulting from the positioning of the devices in relation to the user's eyes. However, can the virtual environment itself influence estimation errors? The paper presents mathematical analyses and empirical studies of the determination of the fixation point and errors resulting from the change in the size of the pupil in response to the intensity of the displayed scene. The article contains both static laboratory tests as well as on the real user. Based on the research results, optimization solutions were proposed that would reduce the errors of gaze estimation errors. Studies show that errors in estimating the fixation point of vision can be minimized both by improving the pupil positioning algorithm in the video image and by using more precise methods to calibrate the eye tracking system in three-dimensional space.Keywords: eye tracking, fixation point, pupil size, virtual reality
Procedia PDF Downloads 132950 A Real Time Ultra-Wideband Location System for Smart Healthcare
Authors: Mingyang Sun, Guozheng Yan, Dasheng Liu, Lei Yang
Abstract:
Driven by the demand of intelligent monitoring in rehabilitation centers or hospitals, a high accuracy real-time location system based on UWB (ultra-wideband) technology was proposed. The system measures precise location of a specific person, traces his movement and visualizes his trajectory on the screen for doctors or administrators. Therefore, doctors could view the position of the patient at any time and find them immediately and exactly when something emergent happens. In our design process, different algorithms were discussed, and their errors were analyzed. In addition, we discussed about a , simple but effective way of correcting the antenna delay error, which turned out to be effective. By choosing the best algorithm and correcting errors with corresponding methods, the system attained a good accuracy. Experiments indicated that the ranging error of the system is lower than 7 cm, the locating error is lower than 20 cm, and the refresh rate exceeds 5 times per second. In future works, by embedding the system in wearable IoT (Internet of Things) devices, it could provide not only physical parameters, but also the activity status of the patient, which would help doctors a lot in performing healthcare.Keywords: intelligent monitoring, ultra-wideband technology, real-time location, IoT devices, smart healthcare
Procedia PDF Downloads 140