Search results for: non-asbestos organic (NAO) friction materials
6413 Temperature Susceptibility for Optimal Biogas Production
Authors: Ujjal Chattaraj, Pbharat Saikumar, Thinley Dorji
Abstract:
Earth is going to be a planet where no further life can sustain if people continue to pollute the environment. We need energy and fuels everyday for heating and lighting purposes in our life. It’s high time we know this problem and take measures at-least to reduce pollution and take alternative measures for everyday livelihood. Biogas is one of them. It is very essential to define and control the parameters for optimization of biogas production. Biogas plants can be made of different size, but it is very vital to make a biogas which will be cost effective, with greater efficiency (more production) and biogas plants that will sustain for a longer period of time for usage. In this research, experiments were carried out only on cow dung and Chicken manure depending on the substrates people out there (Bhutan) used. The experiment was done within 25 days and was tested for different temperatures and found out which produce more amount. Moreover, it was also statistically tested for their dependency and non-dependency which gave clear idea more on their production.Keywords: digester, mesophilic temperature, organic manure, statistical analysis, thermophilic temperature, t-test
Procedia PDF Downloads 2026412 Fabrication and Characterization of Ceramic Matrix Composite
Authors: Yahya Asanoglu, Celaletdin Ergun
Abstract:
Ceramic-matrix composites (CMC) have significant prominence in various engineering applications because of their heat resistance associated with an ability to withstand the brittle type of catastrophic failure. In this study, specific raw materials have been chosen for the purpose of having suitable CMC material for high-temperature dielectric applications. CMC material will be manufactured through the polymer infiltration and pyrolysis (PIP) method. During the manufacturing process, vacuum infiltration and autoclave will be applied so as to decrease porosity and obtain higher mechanical properties, although this advantage leads to a decrease in the electrical performance of the material. Time and temperature adjustment in pyrolysis parameters provide a significant difference in the properties of the resulting material. The mechanical and thermal properties will be investigated in addition to the measurement of dielectric constant and tangent loss values within the spectrum of Ku-band (12 to 18 GHz). Also, XRD, TGA/PTA analyses will be employed to prove the transition of precursor to ceramic phases and to detect critical transition temperatures. Additionally, SEM analysis on the fracture surfaces will be performed to see failure mechanism whether there is fiber pull-out, crack deflection and others which lead to ductility and toughness in the material. In this research, the cost-effectiveness and applicability of the PIP method will be proven in the manufacture of CMC materials while optimization of pyrolysis time, temperature and cycle for specific materials is detected by experiment. Also, several resins will be shown to be a potential raw material for CMC radome and antenna applications. This research will be distinguished from previous related papers due to the fact that in this research, the combination of different precursors and fabrics will be experimented with to specify the unique cons and pros of each combination. In this way, this is an experimental sum of previous works with unique PIP parameters and a guide to the manufacture of CMC radome and antenna.Keywords: CMC, PIP, precursor, quartz
Procedia PDF Downloads 1606411 Vibration Measurements of Single-Lap Cantilevered SPR Beams
Authors: Xiaocong He
Abstract:
Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams.Keywords: self-piercing riveting, dynamic response, experimental measurement, frequency response functions
Procedia PDF Downloads 4296410 Use of Locomotor Activity of Rainbow Trout Juveniles in Identifying Sublethal Concentrations of Landfill Leachate
Authors: Tomas Makaras, Gintaras Svecevičius
Abstract:
Landfill waste is a common problem as it has an economic and environmental impact even if it is closed. Landfill waste contains a high density of various persistent compounds such as heavy metals, organic and inorganic materials. As persistent compounds are slowly-degradable or even non-degradable in the environment, they often produce sublethal or even lethal effects on aquatic organisms. The aims of the present study were to estimate sublethal effects of the Kairiai landfill (WGS: 55°55‘46.74“, 23°23‘28.4“) leachate on the locomotor activity of rainbow trout Oncorhynchus mykiss juveniles using the original system package developed in our laboratory for automated monitoring, recording and analysis of aquatic organisms’ activity, and to determine patterns of fish behavioral response to sublethal effects of leachate. Four different concentrations of leachate were chosen: 0.125; 0.25; 0.5 and 1.0 mL/L (0.0025; 0.005; 0.01 and 0.002 as part of 96-hour LC50, respectively). Locomotor activity was measured after 5, 10 and 30 minutes of exposure during 1-minute test-periods of each fish (7 fish per treatment). The threshold-effect-concentration amounted to 0.18 mL/L (0.0036 parts of 96-hour LC50). This concentration was found to be even 2.8-fold lower than the concentration generally assumed to be “safe” for fish. At higher concentrations, the landfill leachate solution elicited behavioral response of test fish to sublethal levels of pollutants. The ability of the rainbow trout to detect and avoid contaminants occurred after 5 minutes of exposure. The intensity of locomotor activity reached a peak within 10 minutes, evidently decreasing after 30 minutes. This could be explained by the physiological and biochemical adaptation of fish to altered environmental conditions. It has been established that the locomotor activity of juvenile trout depends on leachate concentration and exposure duration. Modeling of these parameters showed that the activity of juveniles increased at higher leachate concentrations, but slightly decreased with the increasing exposure duration. Experiment results confirm that the behavior of rainbow trout juveniles is a sensitive and rapid biomarker that can be used in combination with the system for fish behavior monitoring, registration and analysis to determine sublethal concentrations of pollutants in ambient water. Further research should be focused on software improvement aimed to include more parameters of aquatic organisms’ behavior and to investigate the most rapid and appropriate behavioral responses in different species. In practice, this study could be the basis for the development and creation of biological early-warning systems (BEWS).Keywords: fish behavior biomarker, landfill leachate, locomotor activity, rainbow trout juveniles, sublethal effects
Procedia PDF Downloads 2716409 Enhanced Phytoremediation Using Endophytic Microbes
Authors: Raymond Oriebe Anyasi, Harrison Atagana
Abstract:
The use of a plant in the detoxification of several toxin is been known to be enhanced by various microbial endophytes which have been reported to be contained in plants growing in any contaminated soil. Plants in their natural state are mostly colonized by endophytes which in the process forms symbiotic associations with the host plants. These benefits that the endophytes offer to the plants include amongst others to: Enhance plants growth through the production of various phytohormones; increase in the resistance of environmental stresses; produce important bioactive metabolites; help in the fixing of nitrogen in the plants organelles; help in the metal translocation and accumulation in plants; assist in the production of enzymes involves the degradation of organic contaminants. Therefore recognizing these natural processes of the microbes will enable the understanding of the effective mechanism for enhanced phytoremediation. The aim of this study was to survey the progressiveness in the study involving endophyte-assisted phytoremediation of contaminants; highlighting various pollutants, the plants used, the endophytes studied as well as the type of interaction between the plants and the microbes so as to proffer a better future prospect for the technology.Keywords: phytoremediation, endophytes, microbes, pollution, environmental management, plants
Procedia PDF Downloads 3466408 Effects of the Type of Soil on the Efficiency of a Bioremediation Dispositive by Using Bacterium Hydrocarbonoclastes
Authors: Amel Bouderhem, Aminata Ould El Hadj Khelil, Amina N. Djrarbaoui, Aroussi Aroussi
Abstract:
The present work aims to find the influence of the nature of the soil on the effectiveness of the biodegradation of hydrocarbons by a mixture of bacterial strains hydrocarbonoclastes. Processes of bioaugmentation and biostimulation trial are applied to samples of soils polluted voluntarily by the crude oil. For the evaluation of the biodegradation of hydrocarbons, the bacterial load, the pH and organic carbon total are followed in the different experimental batches. He bacterial load of the sandy soil varies among the witnesses of 45,2 .108 CFU/ml at the beginning of the experimentation to 214,07.108 CFU/ml at the end of the experiment. Of the soil silty-clay varies between 103,31 .108 CFU/ml and 614,86.108 CFU/ml . It was found a strong increase in the bacterial biomass during the processing of all samples. This increase is more important in the samples of sand bioaugmente or biomass increased from 63.16 .108 CFU/ml to 309.68 .108 CFU/ml than in soil samples silty clay- bioaugmente whose content in bacteria evolved of 73,01 .108 CFU/ml to 631.80 . 108CFU/mlKeywords: pollution, hydrocarbons, bioremediation, bacteria hydrocarbonoclastes, ground, texture
Procedia PDF Downloads 4766407 Utilization of Fishbone for the Removal of Nickel Ions from Aqueous Media
Authors: Bukunola A.Oguntade, Abdul- Azeez A. Oderinde
Abstract:
Fishbone is a type of waste generated from food and food processing industries. Fishbone wastes are usually treated as the source of organic matter for the by-production. It is a rich source of hydroxyapatite (HAP). In this study, the adsorption behavior of fishbone was examined in a batch system as an economically viable adsorbent for the removal of Ni⁺² ions from aqueous solution. The powdered fishbone was characterized using Fourier Transform Infrared (FT-IR) spectrophotometer and Scanning Electron microscope (SEM). The study investigated the influence of adsorbent dosage, solution pH, contact time, and initial metal concentration on the removal of Nickel (II) ions at room temperature. The batch kinetics study showed that the optimum adsorption of Ni(II) was 98% at pH 7, metal ion concentration of 30 mg/L. The results obtained from the experimental work showed that fishbone can be used as an adsorbent for the removal of Ni(II) ions from aqueous solution.Keywords: adsorption, aqueous media, fishbone, kinetic study
Procedia PDF Downloads 1316406 Visible-Light Induced Photocatalytic Degradation of Dye Molecules over ZnWO4-Bi2WO6 Composite
Authors: Sudarat Issarapanacheewin, Katcharin Wetchakun, Sukon Phanichphant, Wiyong Kangwansupamonkon, Natda Wetchakun
Abstract:
The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) in the presence of ZnWO4-Bi2WO6 composite under visible light irradiation (λ ≥ 400 nm) were studied in this research. The structural and photophysical properties of ZnWO4-Bi2WO6 composite on the photocatalytic degradation process were investigated. The as-prepared ZnWO4-Bi2WO6 composite photocatalyst exhibits wide absorption in the visible-light region and display superior visible-light-driven photocatalytic activities in degradation of MB and RhB. The enhanced photocatalytic activity was attributed to electron-hole separation with the appropriate band potential and the physicochemical properties of ZnWO4 and Bi2WO6. The main active species for the degradation of organic dyes were investigated to explain the enhancement of photocatalytic performance of ZnWO4-Bi2WO6 composite. The possible photocatalytic degradation pathway of aqueous MB and RhB dyes and charge transfer of ZnWO4-Bi2WO6 composite was proposed.Keywords: composite, dyes, photocatalytic activity, ZnWO4-Bi2WO6
Procedia PDF Downloads 3026405 A Cheap Mesoporous Silica from Fly Ash as an Adsorbent for Sulfate in Water
Authors: Ximena Castillo, Jaime Pizarro
Abstract:
This research describes the development of a very cheap mesoporous silica material similar to hexagonal mesoporous silica (HMS) and using a silicate extract as precursor. This precursor is obtained from cheap fly ash by an easy calcination process at 850 °C and a green extraction with water. The obtained mesoporous fly ash material had a surface area of 282 m2 g-1 and a pore size of 5.7 nm. It was functionalized with ethylene diamino moieties via the well-known SAMMS method, followed by a DRIFT analysis that clearly showed the successful functionalization. An excellent adsorbent was obtained for the adsorption of sulfate anions by the solid’s modification with copper forming a copper-ethylenediamine complex. The adsorption of sulfates was studied in a batch system ( experimental conditions: pH=8.0; 5 min). The kinetics data were adjusted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model. The maximum sulfate adsorption capacity of this very cheap fly ash based adsorbent was 146.1 mg g-1, 3 times greater than the values reported in literature and commercial adsorbent materials.Keywords: fly ash, mesoporous materials, SAMMS, sulfate
Procedia PDF Downloads 1776404 Liquid Waste Management in Cluster Development
Authors: Abheyjit Singh, Kulwant Singh
Abstract:
There is a gradual depletion of the water table in the earth's crust, and it is required to converse and reduce the scarcity of water. This is only done by rainwater harvesting, recycling of water and by judicially consumption/utilization of water and adopting unique treatment measures. Domestic waste is generated in residential areas, commercial settings, and institutions. Waste, in general, is unwanted, undesirable, and nevertheless an inevitable and inherent product of social, economic, and cultural life. In a cluster, a need-based system is formed where the project is designed for systematic analysis, collection of sewage from the cluster, treating it and then recycling it for multifarious work. The liquid waste may consist of Sanitary sewage/ Domestic waste, Industrial waste, Storm waste, or Mixed Waste. The sewage contains both suspended and dissolved particles, and the total amount of organic material is related to the strength of the sewage. The untreated domestic sanitary sewage has a BOD (Biochemical Oxygen Demand) of 200 mg/l. TSS (Total Suspended Solids) about 240 mg/l. Industrial Waste may have BOD and TSS values much higher than those of sanitary sewage. Another type of impurities of wastewater is plant nutrients, especially when there are compounds of nitrogen N phosphorus P in the sewage; raw sanitary contains approx. 35 mg/l Nitrogen and 10 mg/l of Phosphorus. Finally, the pathogen in the waste is expected to be proportional to the concentration of facial coliform bacteria. The coliform concentration in raw sanitary sewage is roughly 1 billion per liter. The system of sewage disposal technique has been universally applied to all conditions, which are the nature of soil formation, Availability of land, Quantity of Sewage to be disposed of, The degree of treatment and the relative cost of disposal technique. The adopted Thappar Model (India) has the following designed parameters consisting of a Screen Chamber, a Digestion Tank, a Skimming Tank, a Stabilization Tank, an Oxidation Pond and a Water Storage Pond. The screening Chamber is used to remove plastic and other solids, The Digestion Tank is designed as an anaerobic tank having a retention period of 8 hours, The Skimming Tank has an outlet that is kept 1 meter below the surface anaerobic condition at the bottom and also help in organic solid remover, Stabilization Tank is designed as primary settling tank, Oxidation Pond is a facultative pond having a depth of 1.5 meter, Storage Pond is designed as per the requirement. The cost of the Thappar model is Rs. 185 Lakh per 3,000 to 4,000 population, and the Area required is 1.5 Acre. The complete structure will linning as per the requirement. The annual maintenance will be Rs. 5 lakh per year. The project is useful for water conservation, silage water for irrigation, decrease of BOD and there will be no longer damage to community assets and economic loss to the farmer community by inundation. There will be a healthy and clean environment in the community.Keywords: collection, treatment, utilization, economic
Procedia PDF Downloads 766403 Experimental Study on Strength Development of Low Cement Concrete Using Mix Design for Both Binary and Ternary Mixes
Authors: Mulubrhan Berihu, Supratic Gupta, Zena Gebriel
Abstract:
Due to the design versatility, availability, and cost efficiency, concrete is continuing to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes and the use of these industrial waste products has technical, economical and environmental benefits besides the reduction of CO2 emission from cement production. The study aims to document the effect on strength property of concrete due to use of low cement by maximizing supplementary cementitious materials like fly ash or marble powder. Based on the different mix proportion of pozzolana and marble powder a range of mix design was formulated. The first part of the project is to study the strength of low cement concrete using fly ash replacement experimentally. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa and the experimental results indicates that strength is a function of w/b. In the second part a new set of mix design has been carried out with fly ash and marble powder to study the strength of both binary and ternary mixes. In this experimental study, three groups of mix design (c+FA, c+FA+m and c+m), four sets of mixes for each group were taken up. Experimental results show that c+FA has maintained the best strength and impermeability whereas c+m obtained less compressive strength, poorer permeability and split tensile strength. c+FA shows a big difference in gaining of compressive strength from 7 days to 28 days compression strength compared to others and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases the strength decreases significantly. At the same time higher permeability has been seen in the specimens which were tested for three hours than one hour.Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs
Procedia PDF Downloads 2096402 Protective Coating Layers via Phosphazene Compounds for Stabilizing Silicon Anode Materials
Authors: Adjmal Ghaur, Christoph Peschel, Iris Dienwiebel, Lukas Haneke, Leilei Du , Laurin Profanter, Tobias Placke, Martin Winter
Abstract:
In recent years, lithium-ion batteries (LIBs)are widely used in electric vehicles (EVs) and mobile energy storage devices (ESDs), which has led to higher requirements for energy density. To fulfill these requirements, tremendous attention has been paid to design advanced LIBs with various siliconactive materials as alternative negative electrodes to replace graphite (372 mAh g⁻¹)due to their high theoretical gravimetric capacity (4200mAh g⁻¹). However, silicon as potential anode material suffers from huge volume changes during charging and discharging and has poor electronicconductivity which negatively impacts the long-term performance and preventshigh silicon contents from practical application. Additionally, an unstable crystalline silicon structure tends to pulverization during the (de)lithiation process. To compensate for the volume changes, alleviate pulverization, and maintain high electronicconductivity, silicon-doped graphite composites with protecting coating layers are a promising approach. In this context, phosphazene compounds are investigated concerning their silicon protecting properties in silicon-doped graphite composites. In detail, electrochemical performance measurements in pouch full-cells(NCM523||SiOx/C), supressing gas formation properties, and post-mortem analyzes were carried out to characterize phosphazene compounds as additive materials. The introduction of the dual-additive approach in state-of-the-art electrolytes leads to synergistic effects between FEC and phosphazene compounds which accelerate the durability of silicon particles and results in enhanced electrochemical performance.Keywords: silicon, phosphazene, solid electrolyte interphase, electrolyte, gasmeasurements
Procedia PDF Downloads 1666401 Application of Life Cycle Assessment “LCA” Approach for a Sustainable Building Design under Specific Climate Conditions
Authors: Djeffal Asma, Zemmouri Noureddine
Abstract:
In order for building designer to be able to balance environmental concerns with other performance requirements, they need clear and concise information. For certain decisions during the design process, qualitative guidance, such as design checklists or guidelines information may not be sufficient for evaluating the environmental benefits between different building materials, products and designs. In this case, quantitative information, such as that generated through a life cycle assessment, provides the most value. LCA provides a systematic approach to evaluating the environmental impacts of a product or system over its entire life. In the case of buildings life cycle includes the extraction of raw materials, manufacturing, transporting and installing building components or products, operating and maintaining the building. By integrating LCA into building design process, designers can evaluate the life cycle impacts of building design, materials, components and systems and choose the combinations that reduce the building life cycle environmental impact. This article attempts to give an overview of the integration of LCA methodology in the context of building design, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. A multiple case study was conducted in order to assess the benefits of the LCA as a decision making aid tool during the first stages of the building design under specific climate conditions of the North East region of Algeria. It is clear that the LCA methodology can help to assess and reduce the impact of a building design and components on the environment even if the process implementation is rather long and complicated and lacks of global approach including human factors. It is also demonstrated that using LCA as a multi objective optimization of building process will certainly facilitates the improvement in design and decision making for both new design and retrofit projects.Keywords: life cycle assessment, buildings, sustainability, elementary schools, environmental impacts
Procedia PDF Downloads 5466400 A Hybrid Multi-Pole Fe₇₈Si₁₃B₉+FeSi₃ Soft Magnetic Core for Application in the Stators of the Low-Power Permanent Magnet Brushless Direct Current Motors
Authors: P. Zackiewicz, M. Hreczka, R. Kolano, A. Kolano-Burian
Abstract:
New types of materials applied as the stators in the Permanent Magnet Brushless Direct Current motors used in the heart supporting pumps are presented. The main focus of this work is the research on the fabrication of a hybrid nine-pole soft magnetic core consisting of a soft magnetic carrier ring with rectangular notches, made from the FeSi3 strip, and nine soft magnetic poles. This soft magnetic core is made in three stages: (a) preparation of the carrier rings from soft magnetic material with the lowest possible power losses and suitable stiffness, (b) preparation of trapezoidal soft magnetic poles from Metglas 2605 SA1 type ribbons, and (c) making durable connection between the poles and the carrier ring, capable of withstanding a four-times greater tearing force than that present during normal operation of the motor pump. All magnetic properties measurements were made using Remacomp C-1200 (Magnet Physik, Germany) and 450 Gaussometer (Lake Shore, USA) and the electrical characteristics were measured using laboratory generator DF1723009TC (NDN, Poland). Specific measurement techniques used to determine properties of the hybrid cores were presented. Obtained results allow developing the fabrication technology with an account of the intended application of these cores in the stators of the low-power PMBLDC motors used in implanted heart operation supporting pumps. The proposed measurement methodology is appropriate for assessing the quality of the stators.Keywords: amorphous materials, heart supporting pump, PMBLDC motor, soft magnetic materials
Procedia PDF Downloads 2136399 Garnet-based Bilayer Hybrid Solid Electrolyte for High-Voltage Cathode Material Modified with Composite Interface Enabler on Lithium-Metal Batteries
Authors: Kumlachew Zelalem Walle, Chun-Chen Yang
Abstract:
Solid-state lithium metal batteries (SSLMBs) are considered promising candidates for next-generation energy storage devices due to their superior energy density and excellent safety. However, recent findings have shown that the formation of lithium (Li) dendrites in SSLMBs still exhibits a terrible growth ability, which makes the development of SSLMBs have to face the challenges posed by the Li dendrite problem. In this work, an inorganic/organic mixture coating material (g-C3N4/ZIF-8/PVDF) was used to modify the surface of lithium metal anode (LMA). Then the modified LMA (denoted as g-C₃N₄@Li) was assembled with lithium nafion (LiNf) coated commercial NCM811 (LiNf@NCM811) using a bilayer hybrid solid electrolyte (Bi-HSE) that incorporated 20 wt.% (vs. polymer) LiNf coated Li6.05Ga0.25La3Zr2O11.8F0.2 ([email protected]) filler faced to the positive electrode and the other layer with 80 wt.% (vs. polymer) filler content faced to the g-C₃N₄@Li. The garnet-type Li6.05Ga0.25La3Zr2O11.8F0.2 (LG0.25LZOF) solid electrolyte was prepared via co-precipitation reaction process from Taylor flow reactor and modified using lithium nafion (LiNf), a Li-ion conducting polymer. The Bi-HSE exhibited high ionic conductivity of 6.8 10–4 S cm–1 at room temperature, and a wide electrochemical window (0–5.0 V vs. Li/Li+). The coin cell was charged between 2.8 to 4.5 V at 0.2C and delivered an initial specific discharge capacity of 194.3 mAh g–1 and after 100 cycles it maintained 81.8% of its initial capacity at room temperature. The presence of a nano-sheet g-C3N4/ZIF-8/PVDF as a composite coating material on the LMA surface suppress the dendrite growth and enhance the compatibility as well as the interfacial contact between anode/electrolyte membrane. The g-C3N4@Li symmetrical cells incorporating this hybrid electrolyte possessed excellent interfacial stability over 1000 h at 0.1 mA cm–2 and a high critical current density (1 mA cm–2). Moreover, the in-situ formation of Li3N on the solid electrolyte interface (SEI) layer as depicted from the XPS result also improves the ionic conductivity and interface contact during the charge/discharge process. Therefore, these novel multi-layered fabrication strategies of hybrid/composite solid electrolyte membranes and modification of the LMA surface using mixed coating materials have potential applications in the preparation of highly safe high-voltage cathodes for SSLMBs.Keywords: high-voltage cathodes, hybrid solid electrolytes, garnet, graphitic-carbon nitride (g-C3N4), ZIF-8 MOF
Procedia PDF Downloads 686398 Potency of Some Dietary Acidifiers on Productive Performance and Controlling Salmonella enteritidis in Broilers
Authors: Mohamed M. Zaki, Maha M. Hady
Abstract:
Salmonella spp. have been categorized as the world’s biggest threats to human health and poultry products are mostly incriminated sources. In Egypt, it was found that S. enteritidis and S. typhimurium are the most prevalent ones in poultry farms. It is recommended to eliminate salmonella from living bird by competing for salmonella contamination in feed in order to establish a healthy gut. The Feed acidifiers are the group of feed additives containing low-molecular-weight organic acids and/ or their salts which act as performance promoters by lowering the pH in the gut, optimizes digestion and inhibit bacterial growth. The inclusion of organic acid in pure form nonetheless effective in feed, yet, it is difficult to handle in feed mills as it is corrosive and produce more losses during pelleting process. The current study aimed at to evaluate the impact of incorporation of sodium diformate (SDF) and a commercial acidifier, CA (a mixture of butyric and propionic acids and their ammonium salts) at 0.4% dietary levels on broilers performance and the control S. enteritidis infection. Two hundreds and seventy unsexed cobb chickens were allotted in one of three treatments (90/ group) which were, the control (no acidifier, C- &C+), the 0.4% SDF (SDF- & SDF +) and the 0.4% CA (CA- & CA +) dietary levels for 35 days. Before the allocation of the groups, ten extra birds and a diet sample were bacteriologically examined to ensure negative contamination with salmonella. The birds were raised on deep-litter separated pens and had free access to feed and water all the time. The experimentally formulated diets were kept at 40C. After 24h access to the different dietary treatments, all the birds in the positive groups (n=15/ replicate) were inoculated intra-crop with 0.2 ml of 24 h broth culture of S. entertidis containing 1X 107 organisms while the negative-treated groups were inoculated with the same amount of the negative broth and second inoculation was done at 22 d of age. Colocal swabs were collected individually from all birds 2 h pre-inoculation to assure the absence of salmonella, then 1, 3, 5, 7, 21 days post-inoculation to recover salmonella. Performance parameter (body weight gain and feed efficiency) were calculated. Mortalities were recorded and reisolation of the salmonella was adopted to ensure it was the inoculated ones. The results revealed that the dietary acidification with sodium diformate significantly improved broilers performance and tends to produce heavier birds as compared to the negative control and CA groups. Moreover, the dietary inclusion of both acidifiers at level of 0.4% was able to eliminate mortalities completely at the relevant inoculation time. Regarding the shedding of S. enteritidius in positive groups, the SDF treatment resulted in significant (p<0.05) cessation of the shedding at 3 days post-inoculation compared to 7 days post-inoculation for the CA-group. In conclusion, sodium diformate at 0.4% dietary level in broiler diets has a valuable effect not only on broilers performance but also by eliminating S. enteritidis the main source of salmonella contamination in poultry farms which is feed.Keywords: acidifier, broilers, Salmonalla spp, sodium diformate
Procedia PDF Downloads 2856397 Synthesis and Functionalization of MnFe₂O₄ Nano−Hollow Spheres for Optical and Catalytic Properties
Authors: Indranil Chakraborty, Kalyan Mandal
Abstract:
Herein, we synthesize MnFe₂O₄ nano−hollow spheres (NHSs) of average diameter 100 nm through a facile template free solvothermal process and carry out a time dependent morphological study to investigate their process of core excavation. Further, a surface engineering of as−synthesized MnFe₂O₄ NHSs has been executed with organic disodium tartrate dihydrate ligand and interestingly, the surface modified MnFe₂O₄ NHSs are found to capable of emerging multicolor fluorescence starting from blue, green to red. The magnetic measurements through vibrating sample magnetometer demonstrate that room temperature superparamagnetic nature of MnFe₂O₄ NHSs remains unaltered after surface modification. Moreover, functionalized MnFe₂O₄ NHSs are found to exhibit excellent reusable photocatalytic efficiency in the degradation of cationic dye, methylene blue with rate constant of 2.64×10−2 min.Keywords: nano hollow sphere, tartrate modification, multiple fluorescence, catalytic property
Procedia PDF Downloads 1866396 Biocarbon for High-Performance Supercapacitors Derived from the Wastewater Treatment of Sewage Sludge
Authors: Santhosh Ravichandran, F. J. Rodríguez-Varela
Abstract:
In this study, a biocarbon (BC) was made from sewage sludge from the water treatment plant (PTAR) in Saltillo, Coahuila, Mexico. The sludge was carbonized in water and then chemically activated by pyrolysis. The biocarbon was evaluated physicochemically using XRD, SEM-EDS, and FESEM. A broad (002) peak attributable to graphitic structures indicates that the material is amorphous. The resultant biocarbon has a high specific surface area (412 m2 g-1), a large pore volume (0.39 cm3 g-1), interconnected hierarchical porosity, and outstanding electrochemical performance. It is appropriate for high-performance supercapacitor electrode materials due to its high specific capacitance of 358 F g-1, great rate capability, and outstanding cycling stability (around 87% capacitance retention after 10,000 cycles, even at a high current density of 19 A g-1). In an aqueous solution, the constructed BC/BC symmetric supercapacitor exhibits increased super capacitor behavior with a high energy density of 29.5 Whkg-1. The concept provides an efficient method for producing high-performance electrode materials for supercapacitors from conventional water treatment biomass wastes.Keywords: supercapacitors, carbon, material science, batteries
Procedia PDF Downloads 846395 Non-Invasive Techniques of Analysis of Painting in Forensic Fields
Authors: Radka Sefcu, Vaclava Antuskova, Ivana Turkova
Abstract:
A growing market with modern artworks of a high price leads to the creation and selling of artwork counterfeits. Material analysis is an important part of the process of assessment of authenticity. Knowledge of materials and techniques used by original authors is also necessary. The contribution presents possibilities of non-invasive methods of structural analysis in research on paintings. It was proved that unambiguous identification of many art materials is feasible without sampling. The combination of Raman spectroscopy with FTIR-external reflection enabled the identification of pigments and binders on selected artworks of prominent Czech painters from the first half of the 20th century – Josef Čapek, Emil Filla, Václav Špála and Jan Zrzavý. Raman spectroscopy confirmed the presence of a wide range of white pigments - lead white, zinc white, titanium white, barium white and also Freeman's white as a special white pigment of painting. Good results were obtained for red, blue and most of the yellow areas. Identification of green pigments was often impossible due to strong fluorescence. Oil was confirmed as a binding medium on most of the analyzed artworks via FTIR - external reflection. Collected data present the valuable background for the determination of art materials characteristic for each painter (his palette) and its development over time. Obtained results will further serve as comparative material for the authentication of artworks. This work has been financially supported by the project of the Ministry of the Interior of the Czech Republic: The Development of a Strategic Cluster for Effective Instrumental Technological Methods of Forensic Authentication of Modern Artworks (VJ01010004).Keywords: non-invasive analysis, Raman spectroscopy, FTIR-external reflection, forgeries
Procedia PDF Downloads 1726394 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran
Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad
Abstract:
Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azarbijan province, NW Iran. Toward this, two hundred twenty-two gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r= -0.26), surface area (r= 0.71), the area of rainfed lands (r= 0.23), and the area of rainfed tilled along the slope (r= 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the Universal Soil Loss Equation (USLE). It seems the estimated soil erodibility can’t describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.Keywords: agricultural area, gully properties, soil structure, USLE
Procedia PDF Downloads 776393 Ecological Study of Habitat Conditions and Distribution of Cistanche tubulosa (Rare Plant Species) in Pakpattan District, Pakistan
Authors: Shumaila Shakoor
Abstract:
C. tubulosa is a rare parasitic plant. It is found to be endangered and it acquires nutrition by penetrating roots deep in host roots. It has momentous potential to fulfill local and national health needs. This specie became endangered due to its parasitic mode of life and lack of awareness. Investigation of distribution and habitat conditions of C. tubulosa from District Pakpattan is the objective of this study. To explore its habitat conditions and community ecology phytosociological survey of C. tubulosa in different habitats i.e roadsides and graveyards was carried out. It was found that C. tubulosa occurs successfully in different habitats like graveyards and roadsides with specific neighboring species. Soil analysis was carried out by taking soil samples from seven sites. Soil was analyzed for pH, EC, soil texture, OM, N %age, Ca, Mg, P and K, which shows that soil of C. tubulosa is rich in all these nutrients.Keywords: organic matter, potassium, phosphorus, magnesium
Procedia PDF Downloads 1966392 Enhancement of Lignin Bio-Degradation through Homogenization with Dimethyl Sulfoxide
Authors: Ivana Brzonova, Asina Fnu, Alena Kubatova, Evguenii Kozliak, Yun Ji
Abstract:
Bio-decomposition of lignin by Basidiomycetes in the presence of dimethyl sulfoxide (DMSO) was investigated. The addition of 3-5 vol% DMSO to lignin aqueous media significantly increased the lignin solubility based on UV absorbance. After being dissolved in DMSO, the thermal evolution profile also changed significantly, yielding more high-MW organic carbon at the expense of recalcitrant elemental carbon. Medical fungi C. versicolor, G. lucidum and P. pulmonarius, were observed to grow on the lignin in media containing up to 15 vol. % DMSO. Further detailed product characterization by chromatographic methods corroborated these observations, as more low-MW phenolic products were observed with DMSO as a co-solvent. These results may be explained by the high solubility of lignin in DMSO; thus, the addition of DMSO to the medium increases the lignin availability for microorganisms. Some of these low-MW phenolic products host a big potential to be used in medicine. No significant inhibition of enzymatic activity (laccase, MnP, LiP) was observed by the addition of up to 3 vol% DMSO.Keywords: basidiomycetes, bio-degradation, dimethyl sulfoxide, lignin
Procedia PDF Downloads 4136391 Using Biopolymer Materials to Enhance Sandy Soil Behavior
Authors: Mohamed Ayeldeen, Abdelazim Negm
Abstract:
Nowadays, strength characteristics of soils have more importance due to increasing building loads. In some projects, geotechnical properties of the soils are be improved using man-made materials varying from cement-based to chemical-based. These materials have proven successful in improving the engineering properties of the soil such as shear strength, compressibility, permeability, bearing capacity etc.. However, the use of these artificial injection formulas often modifies the pH level of soil, contaminates soil and groundwater. This is attributed to their toxic and hazardous characteristics. Recently, an environmentally friendly soil treatment method or Biological Treatment Method (BTM) was to bond particles of loose sandy soils. This research paper presents the preliminary results of using biopolymers for strengthening cohesionless soil. Xanthan gum was identified for further study over a range of concentrations varying from 0.25% to 2.00%. Xanthan gum is a polysaccharide secreted by the bacterium Xanthomonas campestris, used as a food additive and it is a nontoxic material. A series of direct shear, unconfined compressive strength, and permeability tests were carried out to investigate the behavior of sandy soil treated with Xanthan gum with different concentration ratios and at different curing times. Laser microscopy imaging was also conducted to study the microstructure of the treated sand. Experimental results demonstrated the compatibility of Xanthan gum to improve the geotechnical properties of sandy soil. Depending on the biopolymer concentration, it was observed that the biopolymers effectively increased the cohesion intercept and stiffness of the treated sand and reduced the permeability of sand. The microscopy imaging indicates that the cross-links of the biopolymers through and over the soil particles increase with the increase of the biopolymer concentration.Keywords: biopolymer, direct shear, permeability, sand, shear strength, Xanthan gum
Procedia PDF Downloads 2776390 Improvement of Sandy Clay Soils with the Addition of Rice Husk Ash and Expanded Polystyrene Beads
Authors: Alvaro Quino, Roger Trejo, Gary Duran, Jordy Viso
Abstract:
This article presents a study on the lightening and improvement of properties of soil extracted in the province of Talara in the department of Piura -Peru, to be used in filling in the construction of embankments for roads. This soft soil has a high percentage of elastic settlement and consolidation settlement. Currently, there are different methods that seek to mitigate the impact of this problem, which have achieved favorable results. As a contribution to these investigations, we propose the use of two lightening materials to be used in the filling of embankments; these materials are expanded polystyrene beads (EPS) and rice husk ash (RHA). Favorable results were obtained, such as a reduction of 14.34% of the volumetric weight, so the settlement will be reduced. In addition, it is observed that as the RHA dosage increases, the shear resistance increases. In this article, soil mechanics tests were performed to determine the effectiveness of this method in lightening and improving properties for the soil under study.Keywords: sandy clay soils, rice husk ash, expanded polystyrene, soft soils
Procedia PDF Downloads 1726389 Preparation of Polyethylene/Cashewnut Flour/ Gum Arabic Polymer Blends Through Melt-blending and Determination of Their Biodegradation by Composting Method for Possible Reduction of Polyethylene-based Wastes from the Environment
Authors: Abubakar Umar Birnin-yauri
Abstract:
Plastic wastes arising from Polyethylene (PE)-based materials are increasingly becoming environmental problem, this is owed to the fact that these PE waste materials will only decompose over hundreds, or even thousands of years, during which they cause serious environmental problems. In this research, Polymer blends prepared from PE, Cashewnut flour (CNF) and Gum Arabic (GA) were studied in order to assay their biodegradation potentials via composting method. Different sample formulations were made i.e., X1= (70% PE, 25% CNF and 5% GA, X2= (70% PE, 20% CNF and 10% GA), X3= (70% PE, 15% CNF and 15% GA), X4 = (70% PE, 10% CNF and 20% GA) and X5 = (70% PE, 5% CNF and 25% GA) respectively. The results obtained showed that X1 recorded weight loss of 9.89% of its original weight after the first 20 days and 37.45% after 100 day, and X2 lost 12.67 % after the first 20 days and 42.56% after 100day, sample X5 experienced the greatest weight lost in the two methods adopted which are 52.9% and 57.89%. Instrumental analysis such as Fourier Transform Infrared Spectroscopy, Thermogravimetric analysis and Scanning electron microscopy were performed on the polymer blends before and after biodegradation. The study revealed that the biodegradation of the polymer blends is influenced by the contents of both the CNF and GA added into the blends.Keywords: polyethylene, cashewnut, gum Arabic, biodegradation, blend, environment
Procedia PDF Downloads 726388 The Effect of the Deposition Parameters on the Microstructural and Optical Properties of Mn-Doped GeTe Chalcogenide Materials
Authors: Adam Abdalla Elbashir Adam, Xiaomin Cheng, Xiang Shui Miao
Abstract:
In this work, the effect of the magnetron sputtering system parameters on the optical properties of the Mn doped GeTe were investigated. The optical properties of the Ge1-xMnxTe thin films with different thicknesses are determined by analyzing the transmittance and reflectance data. The energy band gaps of the amorphous Mn-doped GeTe thin films with different thicknesses were calculated. The obtained results demonstrated that the energy band gap values of the amorphous films are quite different and they are dependent on the films thicknesses. The extinction coefficients of amorphous Mn-doped GeTe thin films as function of wavelength for different thicknesses were measured. The results showed that the extinction coefficients of all films are varying inversely with their optical transmission. Moreover, the results emphasis that, not only the microstructure, electrical and magnetic properties of Mn doped GeTe thin films vary with the films thicknesses but also the optical properties differ with the film thickness.Keywords: phase change magnetic materials, transmittance, absorbance, extinction coefficients
Procedia PDF Downloads 4046387 Orthogonal Metal Cutting Simulation of Steel AISI 1045 via Smoothed Particle Hydrodynamic Method
Authors: Seyed Hamed Hashemi Sohi, Gerald Jo Denoga
Abstract:
Machining or metal cutting is one of the most widely used production processes in industry. The quality of the process and the resulting machined product depends on parameters like tool geometry, material, and cutting conditions. However, the relationships of these parameters to the cutting process are often based mostly on empirical knowledge. In this study, computer modeling and simulation using LS-DYNA software and a Smoothed Particle Hydrodynamic (SPH) methodology, was performed on the orthogonal metal cutting process to analyze three-dimensional deformation of AISI 1045 medium carbon steel during machining. The simulation was performed using the following constitutive models: the Power Law model, the Johnson-Cook model, and the Zerilli-Armstrong models (Z-A). The outcomes were compared against the simulated results obtained by Cenk Kiliçaslan using the Finite Element Method (FEM) and the empirical results of Jaspers and Filice. The analysis shows that the SPH method combined with the Zerilli-Armstrong constitutive model is a viable alternative to simulating the metal cutting process. The tangential force was overestimated by 7%, and the normal force was underestimated by 16% when compared with empirical values. The simulation values for flow stress versus strain at various temperatures were also validated against empirical values. The SPH method using the Z-A model has also proven to be robust against issues of time-scaling. Experimental work was also done to investigate the effects of friction, rake angle and tool tip radius on the simulation.Keywords: metal cutting, smoothed particle hydrodynamics, constitutive models, experimental, cutting forces analyses
Procedia PDF Downloads 2616386 Polymer Spiral Film Gas-Liquid Heat Exchanger for Waste Heat Recovery in Exhaust Gases
Authors: S. R. Parthiban, C. Elajchet Senni
Abstract:
Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger.Keywords: spiral heat exchanger, polymer based materials, fouling factor, heat load
Procedia PDF Downloads 3686385 Effect of Si/Al Ratio on SSZ-13 Crystallization and Its Methanol-To-Olefins Catalytic Properties
Authors: Zhiqiang Xu, Hongfang Ma, Haitao Zhang, Weixin Qian, Weiyong Ying
Abstract:
SSZ-13 materials with different Si/Al ratio were prepared by varying the composition of aluminosilicate precursor solutions upon hydrothermal treatment at 150 °C. The Si/Al ratio of the initial system was systematically changed from 12.5 to infinity in order to study the limits of Al composition in precursor solutions for constructing CHA structure. The intermediates and final products were investigated by complementary techniques such as XRD, HRTEM, FESEM, and chemical analysis. NH3-TPD was used to study the Brønsted acidity of SSZ-13 samples with different Si/Al ratios. The effect of the Si/Al ratio on the precursor species, ultimate crystal size, morphology and yield was investigated. The results revealed that Al species determine the nucleation rate and the number of nuclei, which is tied to the morphology and yield of SSZ-13. The size of SSZ-13 increased and the yield decreased as the Si/Al ratio was improved. Varying Si/Al ratio of the initial system is a facile, commercially viable method of tailoring SSZ-13 crystal size and morphology. Furthermore, SSZ-13 materials with different Si/Al ratio were tested as catalysts for the methanol to olefins (MTO) reaction at 350 °C. SSZ-13 with the Si/Al ratio of 35 shows the best MTO catalytic performance.Keywords: crystallization, MTO, Si/Al ratio, SSZ-13
Procedia PDF Downloads 2946384 The Conservation of the Botanical Collar of Tutankhamun
Authors: Safwat Mohamed Sayed Ali, Hussein Kamal
Abstract:
This paper discusses the conservation procedures of the botanical collar of King Tutankhamun. It dates back to the new Kingdom. This collar was kept in a box but found in bad condition. Many parts of the collar were separated. The collar suffered from dryness and dust, so it needed to be cleaned mechanically and recollected together. Japanese paper was used to collect the separated parts of the collar on a linen thread. The linen thread was dyed with organic dye to match the color of the plant material. The guidance in collecting the different parts of the plant collar is the original photograph captured at the discovery of the tomb. Also, the optical microscope was used in collecting fractured parts. The weak parts of the collar were treated with a suitable consolidation material. Klucel G dissolved in Ethyl Alcohol 0.5% was used in the treatment and gave convenient results. Some investigations were executed in order to identify the plant types used in making the botanical collar. Scanning Electron microscope and optical microscope were used in plant identification.Keywords: sustainable, consolidation, plant, investigation
Procedia PDF Downloads 81