Search results for: melodic models
3751 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images
Authors: Shenlun Chen, Leonard Wee
Abstract:
Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.Keywords: colorectal cancer, differentiation, survival analysis, tumor grading
Procedia PDF Downloads 1343750 Foodborne Outbreak Calendar: Application of Time Series Analysis
Authors: Ryan B. Simpson, Margaret A. Waskow, Aishwarya Venkat, Elena N. Naumova
Abstract:
The Centers for Disease Control and Prevention (CDC) estimate that 31 known foodborne pathogens cause 9.4 million cases of these illnesses annually in US. Over 90% of these illnesses are associated with exposure to Campylobacter, Cryptosporidium, Cyclospora, Listeria, Salmonella, Shigella, Shiga-Toxin Producing E.Coli (STEC), Vibrio, and Yersinia. Contaminated products contain parasites typically causing an intestinal illness manifested by diarrhea, stomach cramping, nausea, weight loss, fatigue and may result in deaths in fragile populations. Since 1998, the National Outbreak Reporting System (NORS) has allowed for routine collection of suspected and laboratory-confirmed cases of food poisoning. While retrospective analyses have revealed common pathogen-specific seasonal patterns, little is known concerning the stability of those patterns over time and whether they can be used for preventative forecasting. The objective of this study is to construct a calendar of foodborne outbreaks of nine infections based on the peak timing of outbreak incidence in the US from 1996 to 2017. Reported cases were abstracted from FoodNet for Salmonella (135115), Campylobacter (121099), Shigella (48520), Cryptosporidium (21701), STEC (18022), Yersinia (3602), Vibrio (3000), Listeria (2543), and Cyclospora (758). Monthly counts were compiled for each agent, seasonal peak timing and peak intensity were estimated, and the stability of seasonal peaks and synchronization of infections was examined. Negative Binomial harmonic regression models with the delta-method were applied to derive confidence intervals for the peak timing for each year and overall study period estimates. Preliminary results indicate that five infections continue to lead as major causes of outbreaks, exhibiting steady upward trends with annual increases in cases ranging from 2.71% (95%CI: [2.38, 3.05]) in Campylobacter, 4.78% (95%CI: [4.14, 5.41]) in Salmonella, 7.09% (95%CI: [6.38, 7.82]) in E.Coli, 7.71% (95%CI: [6.94, 8.49]) in Cryptosporidium, and 8.67% (95%CI: [7.55, 9.80]) in Vibrio. Strong synchronization of summer outbreaks were observed, caused by Campylobacter, Vibrio, E.Coli and Salmonella, peaking at 7.57 ± 0.33, 7.84 ± 0.47, 7.85 ± 0.37, and 7.82 ± 0.14 calendar months, respectively, with the serial cross-correlation ranging 0.81-0.88 (p < 0.001). Over 21 years, Listeria and Cryptosporidium peaks (8.43 ± 0.77 and 8.52 ± 0.45 months, respectively) have a tendency to arrive 1-2 weeks earlier, while Vibrio peaks (7.8 ± 0.47) delay by 2-3 weeks. These findings will be incorporated in the forecast models to predict common paths of the spread, long-term trends, and the synchronization of outbreaks across etiological agents. The predictive modeling of foodborne outbreaks should consider long-term changes in seasonal timing, spatiotemporal trends, and sources of contamination.Keywords: foodborne outbreak, national outbreak reporting system, predictive modeling, seasonality
Procedia PDF Downloads 1283749 Estimation and Forecasting with a Quantile AR Model for Financial Returns
Authors: Yuzhi Cai
Abstract:
This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology.Keywords: combining forecasts, MCMC, quantile modelling, quantile forecasting, predictive density functions
Procedia PDF Downloads 3473748 Market-Power, Stability, and Risk-Taking: An Analysis Surrounding the Riba-Free Banking
Authors: Louati Salma, Louhichi Awatef, Boujelbene Younes
Abstract:
Analysis of the trade-off between competition and financial stability has been at the center of academic and policy debate for over two decades and especially since the 2007-2008 global financial crises. We use information on 10 OIC countries from 2005 to 2014 to investigate the influence of bank competition on individual bank stability and risk-taking. Alternatively, we explore whether the quality of prudential regulation may affect the nexus between competition and banking stability/risk-taking. We provide a particular attention to the Islamic banking system which principally involves with the Riba-free instruments as compared to the conventional interest-based system. We first run a dynamic panel regression (GMM), and then we apply a panel vector autoregressive (PVAR) methodology to compare both banking business models.Keywords: Lerner index, Islamic banks, non-performing loans, prudential regulations, z-score
Procedia PDF Downloads 2973747 Numerical Investigation the Effect of Adjustable Guide Vane for Improving the Airflow Rate in Axial Fans
Authors: Behzad Shahizare, N. Nik-Ghazali, Kannan M. Munisamy, Seyedsaeed Tabatabaeikia
Abstract:
The main objective of this study is to clarify the effect of the adjustable outlet guide vane (OGV) on the axial fan. Three-dimensional Numerical study was performed to analyze the effect of adjustable guide vane for improving the airflow rate in axial fans. Grid independence test was done between five different meshes in order to choose the reliable mesh. In flow analyses, Reynolds averaged Navier-Stokes (RANS) equations was solved using three types of turbulence models named k-ɛ, k-ω and k-ω SST. The aerodynamic performances of the fan and guide vane were evaluated. Numerical method was validated by comparing with experimental test according to AMECA 210 standard. Results showed that, by using the adjustable guide vane the airflow rate is increased around 3% to 6 %. The maximum enhancement of the airflow rate was achieved when pressure was 374pa.Keywords: axial fan, adjustable guide vane, CFD, turbo machinery
Procedia PDF Downloads 3383746 Improvement of Brige Weigh-In-Motion Technique Considering the Driving Conditions of Vehicles
Authors: Changgil Lee, Jooyoung Park, Seunghee Park
Abstract:
In this study, bridge weigh-in-motion (BWIM) system was simulated under various driving conditions of vehicles to improve the performance of the BWIM system. Two driving conditions were considered. One was the number of the axle of the vehicles. Since the vehicles have different number of axle according to the types of the vehicle, the vehicles were modeled considering the number of the axle. The other was the speed of the vehicles because the speed of the vehicles is not consistent on the bridge. To achieve the goal, the dynamic characteristics of a bridge such as modal parameters were considered in numerical simulation by analyzing precision models. Also, the driving vehicles were modeled as mass-spring-damping systems reflecting the axle information.Keywords: bridge weigh-in-motion (BWIM) system, driving conditions, precision analysis model, the number of axle, the speed of vehicle
Procedia PDF Downloads 4693745 Hypergraph Models of Metabolism
Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova
Abstract:
In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterize a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.Keywords: complexity, hypergraphs, reciprocity, metabolism
Procedia PDF Downloads 2973744 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax
Authors: Svitov David, Alyamkin Sergey
Abstract:
The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.Keywords: ArcFace, distillation, face recognition, margin-based softmax
Procedia PDF Downloads 1463743 A Resilience Process Model of Natural Gas Pipeline Systems
Authors: Zhaoming Yang, Qi Xiang, Qian He, Michael Havbro Faber, Enrico Zio, Huai Su, Jinjun Zhang
Abstract:
Resilience is one of the key factors for system safety assessment and optimization, and resilience studies of natural gas pipeline systems (NGPS), especially in terms of process descriptions, are still being explored. Based on the three main stages, which are function loss process, recovery process, and waiting process, the paper has built functions and models which are according to the practical characteristics of NGPS and mainly analyzes the characteristics of deterministic interruptions. The resilience of NGPS also considers the threshold of the system function or users' satisfaction. The outcomes, which quantify the resilience of NGPS in different evaluation views, can be combined with the max flow and shortest path methods, help with the optimization of extra gas supplies and gas routes as well as pipeline maintenance strategies, the quick analysis of disturbance effects and the improvement of NGPS resilience evaluation accuracy.Keywords: natural gas pipeline system, resilience, process modeling, deterministic disturbance
Procedia PDF Downloads 1263742 Investigation of Polar Atmospheric Response to the Intense Geo-Space Activities
Authors: Jayanta K. Behera, Ashwini K. Sinha
Abstract:
The study has pointed out the relationship of energetic particle precipitation (EPP) during high speed solar wind streams (HSS) to the ionization characteristics and subsequent NOx production in the polar atmosphere. Over the last few decades, it has been shown that production of NOx in the mesosphere region during the precipitation of charged particles (with energy range >30 KeV to 1 MeV) is directly related to the ozone loss in the polar middle atmosphere, extending from mesosphere to upper stratosphere. This study has dealt with the analysis of the interplanetary parameters such as interplanetary magnetic field (IMF), solar wind velocity (Vs), charged particle density (Ns), convection field enhancement (Ec) during such HSS events and their link to the rate of production of NOx in the mesosphere. Moreover, the analysis will be used to validate or, to modify the current ion-chemistry models which describe the ionization rate and NOx production in the polar atmosphere due to EPP.Keywords: energetic particle precipitation (EPP), NOx, ozone depletion, polar vortex
Procedia PDF Downloads 4593741 Evaluation of Progressive Collapse of Transmission Tower
Authors: Jeong-Hwan Choi, Hyo-Sang Park, Tae-Hyung Lee
Abstract:
The transmission tower is one of the crucial lifeline structures in a modern society, and it needs to be protected against extreme loading conditions. However, the transmission tower is a very complex structure and, therefore, it is very difficult to simulate the actual damage and the collapse behavior of the tower structure. In this study, the actual collapse behavior of the transmission tower due to lateral loading conditions such as wind load is evaluated through the computational simulation. For that, a progressive collapse procedure is applied to the simulation. In this procedure, after running the simulation, if a member of the tower structure fails, the failed member is removed and the simulation run again. The 154kV transmission tower is selected for this study. The simulation is performed by nonlinear static analysis procedure, namely pushover analysis, using OpenSEES, an earthquake simulation platform. Three-dimensional finite element models of those towers are developed.Keywords: transmission tower, OpenSEES, pushover, progressive collapse
Procedia PDF Downloads 3573740 Difference between Riding a Bicycle on a Sidewalk or in the Street by Usual Traveling Means
Authors: Ai Fujii, Kan Shimazaki
Abstract:
Bicycle users must ride on the street according the law in Japan, but in practice, many bicycle users ride on the sidewalk. Drivers generally feel that bicycles riding in the street are in the way. In contrast, pedestrians generally feel that bicycles riding on the sidewalk are in the way. That seems to make sense. What, then, is the difference between riding a bicycle on the sidewalk or in the street by usual traveling means. We made 3D computer graphics models of pedestrians, a car, and a bicycle at an intersection. The bicycle was positioned to choose between advancing to the sidewalk or the street after a few seconds. We then made a 2D stimulus picture by changing the point of view of the 3DCG model pictures. Attitudes were surveyed using this 2D stimulus picture, and we compared attitudes between three groups, people traveling by car, on foot, or by bicycle. Here we report the survey result.Keywords: bicycle, sidewalk, pedestrians, driver, intersection, safety
Procedia PDF Downloads 1803739 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement
Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti
Abstract:
Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing
Procedia PDF Downloads 1083738 Evaluating the Feasibility of Magnetic Induction to Cross an Air-Water Boundary
Authors: Mark Watson, J.-F. Bousquet, Adam Forget
Abstract:
A magnetic induction based underwater communication link is evaluated using an analytical model and a custom Finite-Difference Time-Domain (FDTD) simulation tool. The analytical model is based on the Sommerfeld integral, and a full-wave simulation tool evaluates Maxwell’s equations using the FDTD method in cylindrical coordinates. The analytical model and FDTD simulation tool are then compared and used to predict the system performance for various transmitter depths and optimum frequencies of operation. To this end, the system bandwidth, signal to noise ratio, and the magnitude of the induced voltage are used to estimate the expected channel capacity. The models show that in seawater, a relatively low-power and small coils may be capable of obtaining a throughput of 40 to 300 kbps, for the case where a transmitter is at depths of 1 to 3 m and a receiver is at a height of 1 m.Keywords: magnetic induction, FDTD, underwater communication, Sommerfeld
Procedia PDF Downloads 1253737 Quantification of Methane Emissions from Solid Waste in Oman Using IPCC Default Methodology
Authors: Wajeeha A. Qazi, Mohammed-Hasham Azam, Umais A. Mehmood, Ghithaa A. Al-Mufragi, Noor-Alhuda Alrawahi, Mohammed F. M. Abushammala
Abstract:
Municipal Solid Waste (MSW) disposed in landfill sites decompose under anaerobic conditions and produce gases which mainly contain carbon dioxide (CO₂) and methane (CH₄). Methane has the potential of causing global warming 25 times more than CO₂, and can potentially affect human life and environment. Thus, this research aims to determine MSW generation and the annual CH₄ emissions from the generated waste in Oman over the years 1971-2030. The estimation of total waste generation was performed using existing models, while the CH₄ emissions estimation was performed using the intergovernmental panel on climate change (IPCC) default method. It is found that total MSW generation in Oman might be reached 3,089 Gg in the year 2030, which approximately produced 85 Gg of CH₄ emissions in the year 2030.Keywords: methane, emissions, landfills, solid waste
Procedia PDF Downloads 5103736 Performance of Stiffened Slender Built up Steel I-Columns
Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady
Abstract:
The present work illustrates a parametric study for the effect of stiffeners on the performance of slender built up steel I-columns. To achieve the desired analysis, finite element technique is used to develop nonlinear three-dimensional models representing the investigated columns. The finite element program (ANSYS 13.0) is used as a calculation tool for the necessary nonlinear analysis. A validation of the obtained numerical results is achieved. The considered parameters in the study are the column slenderness ratio and the horizontal stiffener's dimensions as well as the number of stiffeners. The dimensions of the stiffeners considered in the analysis are the stiffener width and the stiffener thickness. Numerical results signify a considerable effect of stiffeners on the performance and failure load of slender built up steel I-columns.Keywords: columns, local buckling, slender, stiffener, thin walled section
Procedia PDF Downloads 3193735 Evaluating the Cost of Quality: A Case Study of a South African Foundry Business
Authors: Chipo Mugova, Zuko Mjobo
Abstract:
The aim of this study was to evaluate the cost of quality (COQ) at a local foundry business to identify the contribution of its units and processes to quality costs within the foundry’s operations. The foundry selected for detailed case study is one of major businesses that have been targeted by the government to produce components for building and re-furbishing wagons and trains. The study aimed at identifying areas in the foundry’s processes in which investment needs to be made to reduce quality costs. This is in alignment with government’s vision of promoting local business to support local markets leading to creation of jobs, and hence reduction of unemployment rate in South Africa. The methodology adopted used cost of quality models. Results from the study indicated that internal failure costs were significantly higher than all other cost of quality categories, taking more than 60% of the business’s income.Keywords: appraisal costs, cost of quality, failure costs, local content, prevention costs
Procedia PDF Downloads 3413734 Assessment of the Effect of Wind Turbulence on the Aero-Hydrodynamic Behavior of Offshore Wind Turbines
Authors: Reza Dezvareh
Abstract:
The aim of this study is to investigate the amount of wind turbulence on the aero hydrodynamic behavior of offshore wind turbines with a monopile holder platform. Since in the sea, the wind turbine structures are under water and structures interactions, the dynamic analysis has been conducted under combined wind and wave loading. The offshore wind turbines have been investigated undertow models of normal and severe wind turbulence, and the results of this study show that the amplitude of fluctuation of dynamic response of structures including thrust force and base shear force of structures is increased with increasing the amount of wind turbulence, and this increase is not necessarily observed in the mean values of responses. Therefore, conducting the dynamic analysis is inevitable in order to observe the effect of wind turbulence on the structures' response.Keywords: offshore wind turbine, wind turbulence, structural vibration, aero-hydro dynamic
Procedia PDF Downloads 2093733 In silico Analysis of Isoniazid Resistance in Mycobacterium tuberculosis
Authors: A. Nusrath Unissa, Sameer Hassan, Luke Elizabeth Hanna
Abstract:
Altered drug binding may be an important factor in isoniazid (INH) resistance, rather than major changes in the enzyme’s activity as a catalase or peroxidase (KatG). The identification of structural or functional defects in the mutant KatGs responsible for INH resistance remains as an area to be explored. In this connection, the differences in the binding affinity between wild-type (WT) and mutants of KatG were investigated, through the generation of three mutants of KatG, Ser315Thr [S315T], Ser315Asn [S315N], Ser315Arg [S315R] and a WT [S315]) with the help of software-MODELLER. The mutants were docked with INH using the software-GOLD. The affinity is lower for WT than mutant, suggesting the tight binding of INH with the mutant protein compared to WT type. These models provide the in silico evidence for the binding interaction of KatG with INH and implicate the basis for rationalization of INH resistance in naturally occurring KatG mutant strains of Mycobacterium tuberculosis.Keywords: Mycobacterium tuberculosis, KatG, INH resistance, mutants, modelling, docking
Procedia PDF Downloads 3183732 The Research of 'Rope Coiling' Effect in Near-Field Electrospinning
Authors: Feiyu Fang, Han Wang, Xin Chen, Jun Zeng, Feng Liang, Peixuan Wu
Abstract:
The 'rope coiling' effect is a normal instability phenomenon widespread exists in viscous fluid, elastic rods and polymeric fibers owing to compressive stress when they fall into a moving belt. Near-field electro-spinning is the modified electro-spinning technique has the ability to direct write micro fibers. In this research, we study the “rope coiling” effect in near-field electro-spinning. By changing the distance between nozzle and collector or the speed ratio between the charge jet speed and the platform moving speed, we obtain a pile of different models coils including the meandering, alternating and coiling patterns. Therefore, this instability can be used to direct write micro structured fibers with a one-step process.Keywords: rope coiling effects, near-field electrospinning, direct write, micro structure
Procedia PDF Downloads 3543731 Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages
Authors: Burcu Kaya, Jan-Martin Kaiser, Karl-Friedrich Becker, Tanja Braun, Klaus-Dieter Lang
Abstract:
Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.Keywords: dielectric analysis, electronic packages, epoxy molding compounds, transfer molding process
Procedia PDF Downloads 3823730 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 1013729 Decomposition of the Discount Function Into Impatience and Uncertainty Aversion. How Neurofinance Can Help to Understand Behavioral Anomalies
Authors: Roberta Martino, Viviana Ventre
Abstract:
Intertemporal choices are choices under conditions of uncertainty in which the consequences are distributed over time. The Discounted Utility Model is the essential reference for describing the individual in the context of intertemporal choice. The model is based on the idea that the individual selects the alternative with the highest utility, which is calculated by multiplying the cardinal utility of the outcome, as if the reception were instantaneous, by the discount function that determines a decrease in the utility value according to how the actual reception of the outcome is far away from the moment the choice is made. Initially, the discount function was assumed to have an exponential trend, whose decrease over time is constant, in line with a profile of a rational investor described by classical economics. Instead, empirical evidence called for the formulation of alternative, hyperbolic models that better represented the actual actions of the investor. Attitudes that do not comply with the principles of classical rationality are termed anomalous, i.e., difficult to rationalize and describe through normative models. The development of behavioral finance, which describes investor behavior through cognitive psychology, has shown that deviations from rationality are due to the limited rationality condition of human beings. What this means is that when a choice is made in a very difficult and information-rich environment, the brain does a compromise job between the cognitive effort required and the selection of an alternative. Moreover, the evaluation and selection phase of the alternative, the collection and processing of information, are dynamics conditioned by systematic distortions of the decision-making process that are the behavioral biases involving the individual's emotional and cognitive system. In this paper we present an original decomposition of the discount function to investigate the psychological principles of hyperbolic discounting. It is possible to decompose the curve into two components: the first component is responsible for the smaller decrease in the outcome as time increases and is related to the individual's impatience; the second component relates to the change in the direction of the tangent vector to the curve and indicates how much the individual perceives the indeterminacy of the future indicating his or her aversion to uncertainty. This decomposition allows interesting conclusions to be drawn with respect to the concept of impatience and the emotional drives involved in decision-making. The contribution that neuroscience can make to decision theory and inter-temporal choice theory is vast as it would allow the description of the decision-making process as the relationship between the individual's emotional and cognitive factors. Neurofinance is a discipline that uses a multidisciplinary approach to investigate how the brain influences decision-making. Indeed, considering that the decision-making process is linked to the activity of the prefrontal cortex and amygdala, neurofinance can help determine the extent to which abnormal attitudes respect the principles of rationality.Keywords: impatience, intertemporal choice, neurofinance, rationality, uncertainty
Procedia PDF Downloads 1293728 Mental Illness, Dargahs and Healing: A Qualitative Exploration in a North Indian City
Authors: Reetinder Kaur, R. K. Pathak
Abstract:
Mental health is recognised as an important global health concern. World Health Organisation in 2004 estimated that neuropsychiatric illnesses in India account for 10.8 percent of the global burden. The prevalence of serious mental illnesses is estimated as 6.5 percent by National Commission of Macroeconomics and Health in 2005. India spends only 0.06 percent of its health budget on mental health. One of the major problems that exist in Indian mental health care is the treatment gap due to scarcity of manpower, inadequate infrastructure and deficiencies in policy initiatives. As a result, traditional healing is a popular resource for mentally ill individuals and their families. The various traditional healing resources include faith healers, healers at temples and Dargahs. Chandigarh is a Union Territory located in North India. It has surplus manpower and infrastructure available for mental health care. Inspite of availability of mental health care services, mentally ill individuals and their families seek help from traditional healers at various Dargahs within or outside Chandigarh. For the present study, the data was collected from four dargahs. A total of thirty patients medically diagnosed with various mental illnesses, their family members who accompanied them and healers were part of this study. The aim of the study was to: Understand the interactions between healer, patient and family members during the course of treatment, understand explanations of mental illnesses and analyse the healing practices in context of culture. The interviews were conducted using an interview guide for the three sets of informants: Healers, patients and family members. The interview guide for healer focussed on the healing process, healer’s understanding of patient’s explanatory models, healer’s knowledge about mental illnesses and types of these illnesses cured by the healer. The interview guide for patients and family members focussed on their understanding of the symptoms, explanations for illness and help-seeking behaviour. The patients were observed over the weeks (every Thursday, the day of pir and healing) during their visits to the healer. Detailed discussions were made with the healer regarding the healing process and benefits of healing. The data was analysed thematically and the themes: The role of sacred, holistic healing, healer’s understanding of patient’s explanatory models of mental illness, the patient’s, and family’s understanding of mental illnesses, healer’s knowledge about mental illnesses, types of mental illnesses cured by the healer, bad dreams and their interpretation emerged. From the analysis of data, it was found that the healers concentrate their interventions in the social arena, ‘curing’ distressed patients by bringing significant changes in their social environment. It is suggested that in order to make the mental health care services effective in India, the collaboration between healers and psychiatrist is essential. However, certain specifications need to be made to make this kind of collaboration successful and beneficial for the stakeholders.Keywords: Dargah, mental illness, traditional healing, policy
Procedia PDF Downloads 3183727 Journey of Striped Fabric in the History and Designs of Evening Dress from Striped Fabric
Authors: Filiz Erden, E. Elhan Özus, Melek Tufan
Abstract:
If the history of clothing is examined, it is seen that clothing has gone through many stages from ancient times to present. Each nation has shaped its clothing according to its own traditions, customs, beliefs, living conditions. While clothes are being prepared, attributing different meanings to colors and patterns of the fabrics has become a common characteristic of many cultures. It is known that cloths worn in special days such as mourning, weddings, engagements, festivals and business vary according to their models, fabrics, colors and patterns. We witness use of cloth to differentiate people belonging to certain classes from nobles throughout the history. Striped fabric has carried many different meanings and uses throughout the history. In this study, place has been given to the important periods related to the history of striped fabric by examining current meaning of the striped fabric and dimensions of its meanings in the past. Also, evening dresses have been designed by using striped fabrics in order to reveal how striped fabric is liked and demanded after it coped with difficulties and being despised in its history.Keywords: striped fabric, design, clothing, fasion
Procedia PDF Downloads 3113726 Challenges and Opportunities of Cloud-Based E-Learning Systems
Authors: Kashif Laeeq, Zubair A. Shaikh
Abstract:
The paradigm of education is drastically changing from conventional to e-learning model. Due to ease of learning with various other benefits, several educational institutions are adopting the e-learning models. Some institutions are still willing to transform their educational system on to e-learning, but due to limited resources, they are still compromising on the old traditional system. The cloud computing could be one of the best solutions to overcome this problem by providing hardware, software, and infrastructure resources with cost efficient manner. The adoption of cloud computing in education will bring revolution in this paradigm. This paper introduces various positive features of e-learning and presents a way how cloud computing technology can be provisioned e-learning model. This paper also investigates the numerous challenges and opportunities that would be observed in cloud computing adoption in e-learning domain. The concept and knowledge present in this paper may create a new direction of research in the domain of cloud-based e-learning.Keywords: cloud-based e-learning, e-learning, cloud computing application, smart learning
Procedia PDF Downloads 4083725 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels Along The Jeddah Coast, Saudi Arabia
Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati
Abstract:
Sea level rise threatens to increase the impact of future storms and hurricanes on coastal communities. Accurate sea level change prediction and supplement is an important task in determining constructions and human activities in coastal and oceanic areas. In this study, support vector machines (SVM) is proposed to predict daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal parameter values of kernel function are determined using a genetic algorithm. The SVM results are compared with the field data and with back propagation (BP). Among the models, the SVM is superior to BPNN and has better generalization performance.Keywords: tides, prediction, support vector machines, genetic algorithm, back-propagation neural network, risk, hazards
Procedia PDF Downloads 4683724 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach
Authors: Vijay Kr. Yadav, Nilam Rathi
Abstract:
Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy
Procedia PDF Downloads 2573723 Strategic Model of Implementing E-Learning Using Funnel Model
Authors: Mohamed Jama Madar, Oso Wilis
Abstract:
E-learning is the application of information technology in the teaching and learning process. This paper presents the Funnel model as a solution for the problems of implementation of e-learning in tertiary education institutions. While existing models such as TAM, theory-based e-learning and pedagogical model have been used over time, they have generally been found to be inadequate because of their tendencies to treat materials development, instructional design, technology, delivery and governance as separate and isolated entities. Yet it is matching components that bring framework of e-learning strategic implementation. The Funnel model enhances all these into one and applies synchronously and asynchronously to e-learning implementation where the only difference is modalities. Such a model for e-learning implementation has been lacking. The proposed Funnel model avoids ad-ad-hoc approach which has made other systems unused or inefficient, and compromised educational quality. Therefore, the proposed Funnel model should help tertiary education institutions adopt and develop effective and efficient e-learning system which meets users’ requirements.Keywords: e-learning, pedagogical, technology, strategy
Procedia PDF Downloads 4523722 Consumer Cognitive Models of Vaccine Attitudes: Behavioral Informed Strategies Promoting Vaccination Policy in Greece
Authors: Halkiopoulos Constantinos, Koutsopoulou Ioanna, Gkintoni Evgenia, Antonopoulou Hera
Abstract:
Immunization appears to be an essential part of health care service in times of pandemics such as covid-19 and aims not only to protect the health of the population but also the health and sustainability of the economies of the countries affected. It is reported that more than 3.44 billion doses have been administered so far, which accounts for 45 doses for 100 people. Vaccination programs in various countries have been promoted and accepted by people differently and therefore they proceeded in different ways and speed; most countries directing them towards people with vulnerable chronic or recent health statuses. Large scale restriction measures or lockdown, personal protection measures such as masks and gloves and a decrease in leisure and sports activities were also implemented around the world as part of the protection health strategies against the covid-19 pandemic. This research aims to present an analysis based on variations on people’s attitudes towards vaccination based on demographic, social and epidemiological characteristics, and health status on the one hand and perception of health, health satisfaction, pain, and quality of life on the other hand. 1500 Greek e-consumers participated in the research, mainly through social media who took part in an online-based survey voluntarily. The questionnaires included demographic, social and medical characteristics of the participants, and questions asking people’s willingness to be vaccinated and their opinion on whether there should be a vaccine against covid-19. Other stressor factors were also reported in the questionnaires and participants’ loss of someone close due to covid-19, or staying at home quarantine due to being infected from covid-19. WHOQUOL-BREF and GLOBAL PSYCHOTRAUMA SCREEN- GPS were used with kind permission from WHO and from the International Society for Traumatic Stress Studies in this study. Attitudes towards vaccination varied significantly related to aging, level of education, health status and consumer behavior. Health professionals’ attitudes also varied in relation to age, level of education, profession, health status and consumer needs. Vaccines have been the most common technological aid of human civilization so far in the fight against viruses. The results of this study can be used for health managers and digital marketers of pharmaceutical companies and also other staff involved in vaccination programs and for designing health policy immunization strategies during pandemics in order to achieve positive attitudes towards vaccination and larger populations being vaccinated in shorter periods of time after the break out of pandemic. Health staff needs to be trained, aided and supervised to go through with vaccination programs and to be protected through vaccination programs themselves. Feedback in each country’s vaccination program, short backs, deficiencies and delays should be addressed and worked out.Keywords: consumer behavior, cognitive models, vaccination policy, pandemic, Covid-19, Greece
Procedia PDF Downloads 185