Search results for: management models
12479 Governing Urban Water Infrasystems: A Case Study of Los Angeles in the Context of Global Frameworks
Authors: Joachim Monkelbaan, Marcia Hale
Abstract:
Now that global frameworks for sustainability governance (e.g. the Sustainable Development Goals, Paris Climate Agreement and Sendai Framework for Disaster Risk Reduction) are in place, the question is how these aspirations that represent major transitions can be put into practice. Water ‘infrasystems’ can play an especially significant role in strengthening regional sustainability. Infrasystems include both hard and soft infrastructure, such as pipes and technology for delivering water, as well as the institutions and governance models that direct its delivery. As such, an integrated infrasystems view is crucial for Integrative Water Management (IWM). Due to frequently contested ownership of and responsibility for water resources, these infrasystems can also play an important role in facilitating conflict and catalysing community empowerment, especially through participatory approaches to governance. In this paper, we analyze the water infrasystem of the Los Angeles region through the lens of global frameworks for sustainability governance. By complementing a solid overview of governance theories with empirical data from interviews with water actors in the LA metropolitan region (including NGOs, water managers, scientists and elected officials), this paper elucidates ways for this infrasystem to be better aligned with global sustainability frameworks. In addition, it opens up the opportunity to scrutinize the appropriateness of global frameworks when it comes to fostering sustainability action at the local level.Keywords: governance, transitions, global frameworks, infrasystems
Procedia PDF Downloads 24512478 The Urban Stray Animal Identification Management System Based on YOLOv5
Authors: Chen Xi, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Tong Zhiyuan
Abstract:
Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature has led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using YOLOv5 recognition technology) and recording and managing them in a database.Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network
Procedia PDF Downloads 10412477 Perceived Role of Business School in Developing Leadership in Students
Authors: Ranala Nirmala, Rajanala Krishna Gopal
Abstract:
Business schools train management graduates to join the industry in managerial positions. Most of the managerial positions require leadership competency and while some of the business schools have leadership development as a course, many assume leadership development among students through their curriculum. While literature supports the need for leadership development among students, there are few studies which explored the role of department and leadership skills in business management students. This paper is based on an empirical study of students of a university based business school and explored the relationship between the perceived role of department, including the faculty, infrastructure, etc on the leadership skills and potential of the students. Students have been administered an instrument that captured different leadership aspects of the students and the data was reduced into fourteen dimensions including leadership skills perceived by student, role of department in developing leadership skills, leadership potential of students, etc. Anova and regression analysis are the primary statistical tools were used (using SPSS 17.0) and the results revealed that there is a significant relationship between the student perceptions of their leadership potential and the role of department, the faculty, the curriculum, etc. This study supports introducing focused courses in management curriculum to promote leadership among students.Keywords: students, management education, leadership, role of institution
Procedia PDF Downloads 48712476 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning
Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih
Abstract:
Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network
Procedia PDF Downloads 18712475 In Case of Possible Disaster Management with Geographic Information System in Konya
Authors: Savaş Durduran, Ceren Yağci
Abstract:
The nature of the events going on in the world, when people’s lives are considered significantly affects natural disasters. Considering thousands of years of earth history, it is seen that many natural disasters, particularly earthquakes located in our country. Behaving cautious, without occurring hazards, after being disaster is much easier and cost effective than returning to the normal life. The four phases of disaster management in the whole world has been described as; pre-disaster preparedness and mitigation, post-disaster response and rehabilitation studies. Pre-disaster and post-disaster phases has half the weight of disaster management. How much would be prepared for disaster, no matter how disaster damage reducing work gives important, we will be less harm from material and spiritual sense. To do this in a systematic way we use the Geographic Information Systems (GIS). The execution of the emergency services to be on time and emergency control mechanism against the development the most appropriate decision Geographic Information System GIS) can be useful. The execution of the emergency services to be on time and emergency control mechanism towards for developing to be the most appropriate decision Geographic Information System (GIS) can be useful. The results obtained by using products with GIS analysis of seismic data to the city, manager of the city required information and data that can be more healthy and satisfies the appropriate policy decisions can be produced. In this study, using ArcGIS software and benefiting reports of the earthquake that occurred in the Konya city, spatial and non-spatial data consisting databases created, by the help of this database a potential disaster management aimed in the city of Konya regard to urban earthquake, GIS-aided analyzes were performed.Keywords: geographic information systems (GIS), disaster management, emergency control mechanism, Konya
Procedia PDF Downloads 47312474 Driving Innovation by Enhancing Employee Roles: The Balancing Act of Employee-Driven Innovation
Authors: L. Tirabeni, K. E. Soderquist, P. Pisano
Abstract:
Our purpose is to investigate how the relationship between employees and innovation management processes can drive organizations to successful innovations. This research is deeply related to a new way of thinking about human resources management practices. It’s not simply about improving the employees’ engagement, but rather about a different and more radical commitment: the employee can take on the role traditionally played by the customer, namely to become the first tester of an innovative product or service, the first user/customer and eventually the first investor in the innovation. This new perception of employees could create the basis of a novelty in the innovation process where innovation is taken to a next level when the problems with customer driven innovation on the one hand, and employees driven innovation on the other can be balanced. This research identifies an effective approach to innovation where the employees will participate throughout the whole innovation process, not only in the idea creation but also in the idea definition and development by giving feedback in parallel to that provided by customers and lead-users.Keywords: employee-driven innovation, engagement, human resource management, innovative companies
Procedia PDF Downloads 41212473 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand
Authors: Jefferson Hernandez, Juan Padilla
Abstract:
Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.Keywords: price elasticity, volume, correlation structures, Bayesian models
Procedia PDF Downloads 16512472 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 11212471 Hydrological Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil
Authors: Mehdi Fuladipanah, Mehdi Jorabloo
Abstract:
Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of the river ecosystem. Then, it is severe to determine ecosystem flow requirement. In this paper, Flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude was determined as 1-day, 3-day, 7-day, and 30 days. According to the second method, hydraulic alteration indices often had low and medium range. To maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m^3.s^-1.Keywords: Gharasou River, water flow management, non-uniformity distribution, ecosystem flow requirement, hydraulic alteration
Procedia PDF Downloads 33512470 Examining the Influence of Firm Internal Level Factors on Performance Variations among Micro and Small Enterprises: Evidence from Tanzanian Agri-Food Processing Firms
Authors: Pulkeria Pascoe, Hawa P. Tundui, Marcia Dutra de Barcellos, Hans de Steur, Xavier Gellynck
Abstract:
A majority of Micro and Small Enterprises (MSEs) experience low or no growth. Understanding their performance remains unfinished and disjointed as there is no consensus on the factors influencing it, especially in developing countries. Using a Resource-Based View (RBV) as the theoretical background, this cross-sectional study employed four regression models to examine the influence of firm-level factors (firm-specific characteristics, firm resources, manager socio-demographic characteristics, and selected management practices) on the overall performance variations among 442 Tanzanian micro and small agri-food processing firms. Study results confirmed the RBV argument that intangible resources make a larger contribution to overall performance variations among firms than that tangible resources. Firms' tangible and intangible resources explained 34.5% of overall performance variations (intangible resources explained the overall performance variability by 19.4% compared to tangible resources, which accounted for 15.1%), ranking first in explaining the overall performance variance. Firm-specific characteristics ranked second by influencing variations in overall performance by 29.0%. Selected management practices ranked third (6.3%), while the manager's socio-demographic factors were last on the list, as they influenced the overall performance variability among firms by only 5.1%. The study also found that firms that focus on proper utilization of tangible resources (financial and physical), set targets, and undertake better working capital management practices performed higher than their counterparts (low and average performers). Furthermore, accumulation and proper utilization of intangible resources (relational, organizational, and reputational), undertaking performance monitoring practices, age of the manager, and the choice of the firm location and activity were the dominant significant factors influencing the variations among average and high performers, relative to low performers. The entrepreneurial background was a significant factor influencing variations in average and low-performing firms, indicating that entrepreneurial skills are crucial to achieving average levels of performance. Firm age, size, legal status, source of start-up capital, gender, education level, and total business experience of the manager were not statistically significant variables influencing the overall performance variations among the agri-food processors under the study. The study has identified both significant and non-significant factors influencing performance variations among low, average, and high-performing micro and small agri-food processing firms in Tanzania. Therefore, results from this study will help managers, policymakers and researchers to identify areas where more attention should be placed in order to improve overall performance of MSEs in agri-food industry.Keywords: firm-level factors, micro and small enterprises, performance, regression analysis, resource-based-view
Procedia PDF Downloads 8612469 Transformational Justice for Employees' Job Satisfaction
Authors: Hassan Barau Singhry
Abstract:
Purpose: Leadership or the absence of it is an important behaviour affecting employees’ job satisfaction. Although, there are many models of leadership, one that stands out in a period of change is the transformational behaviour. The aim of this study is to investigate the role of an organizational justice on the relationship between transformational leadership and employee job satisfaction. The study is based on the assumption that change begins with leaders and leaders should be fair and just. Methodology: A cross-sectional survey through structured questionnaire was employed to collect the data of this study. The population is selected the three tiers of government such as the local, state, and federal governments in Nigeria. The sampling method used in this research is stratified random sampling. 418 middle managers of public organizations respondents to the questionnaire. Multiple regression aided by structural equation modeling was employed to test 4 hypothesized relationships. Finding: The regression results support for the mediating role of organizational justice such as distributive, procedural, interpersonal and informational justice in the link between transformational leadership and job satisfaction. Originality/value: This study adds to the literature of human resource management by empirically validating and integrating transformational leadership behaviour with the four dimensions of organizational justice theory. The study is expected to be beneficial to the top and middle-level administrators as well as theory building and testing.Keywords: distributive justice, job satisfaction, organizational justice, procedural justice, transformational leadership
Procedia PDF Downloads 17412468 Re-Engineering Management Process in IRAN’s Smart Schools
Authors: M. R. Babaei, S. M. Hosseini, S. Rahmani, L. Moradi
Abstract:
Today, the quality of education and training systems and the effectiveness of the education systems of most concern to stakeholders and decision-makers of our country's development in each country. In Iran this is a double issue of concern to numerous reasons; So that governments, over the past decade have hardly even paid the running costs of education. ICT is claiming it has the power to change the structure of a program for training, reduce costs and increase quality, and do education systems and products consistent with the needs of the community and take steps to practice education. Own of the areas that the introduction of information technology has fundamentally changed is the field of education. The aim of this research is process reengineering management in schools simultaneously has been using field studies to collect data in the form of interviews and a questionnaire survey. The statistical community of this research has been the country of Iran and smart schools under the education. Sampling was targeted. The data collection tool was a questionnaire composed of two parts. The questionnaire consists of 36 questions that each question designates one of effective factors on the management of smart schools. Also each question consists of two parts. The first part designates the operating position in the management process, which represents the domain's belonging to the management agent (planning, organizing, leading, controlling). According to the classification of Dabryn and in second part the factors affect the process of managing the smart schools were examined, that Likert scale is used to classify. Questions the validity of the group of experts and prominent university professors in the fields of information technology, management and reengineering of approved and Cronbach's alpha reliability and also with the use of the formula is evaluated and approved. To analyse the data, descriptive and inferential statistics were used to analyse the factors contributing to the rating of (Linkert scale) descriptive statistics (frequency table data, mean, median, mode) was used. To analyse the data using analysis of variance and nonparametric tests and Friedman test, the assumption was evaluated. The research conclusions show that the factors influencing the management process re-engineering smart schools in school performance is affected.Keywords: re-engineering, management process, smart school, Iran's school
Procedia PDF Downloads 24412467 The Health Impact of Intensive Case Management on Women with an Opioid Use Disorder and Their Infants
Authors: Shannon Rappe, Elizabeth Morse, David Phillippi
Abstract:
Postpartum women with an opioid use disorder (OUD) are at high risk for treatment disengagement, leaving them vulnerable to overdose and death between seven and twelve months postpartum. Intensive case management programs have been proposed as an effective strategy to reduce barriers and increase treatment engagement among postpartum women. The purpose of this project is to determine the effects of early engagement in an intensive case management program on postpartum engagement and infant health outcomes among postpartum women with opioid use. This retrospective review of secondary data was collected on 225 infants, and 221 postpartum women enrolled in an intensive case management program in Tennessee between May 1, 2019, and May 5, 2020. Chi-squares were computed to examine the timing of engagement during pregnancy, maternal treatment outcomes, and infant health outcomes, including neonatal abstinence syndrome (NAS), birth weight, gestational age, and length of stay. The mean prenatal program engagement was 109 days (SD = 67.6); 16.7% (n = 37) enrolled during the first trimester, 37.6% (n = 83) in the second trimester, and 45.7% (n = 101) in the third trimester. Of the 221 women engaged, 45.2% (n = 100) remained engaged in the case of management at the time of data collection, and 40% (n = 89) remained engaged in MAT at the time of data collection. Twenty- five percent (n = 25) of mothers who graduated sustained engagement in MAT. Of 225 infants 28.9% (n = 65) had a positive NAS status, mean birth weight was 6.5 lbs. (SD = 19.3); mean gestational age was 38.3 weeks (SD = 19.3) and mean length of stay was 8.19 days (SD = 9.8). This study's findings identified that engaging mothers during pregnancy in a program designed to meet their unique challenges positively impacts both the mother and infant outcomes, regardless of their timing.Keywords: intensive case management, neonatal abstinence syndrome, opioid addiction, opioid crisis, opioid use in pregnant women, postpartum addiction
Procedia PDF Downloads 21012466 Context Aware Anomaly Behavior Analysis for Smart Home Systems
Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu
Abstract:
The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.Keywords: Internet of Things, network security, context awareness, intrusion detection
Procedia PDF Downloads 19112465 Water Management of Polish Agriculture and Adaptation to Climate Change
Authors: Dorota M. Michalak
Abstract:
The agricultural sector, due to the growing demand for food and over-exploitation of the natural environment, contributes to the deepening of climate change, on the one hand, and on the other hand, shrinking freshwater resources, as a negative effect of climate change, threaten the food security of each country. Therefore, adaptation measures to climate change should take into account effective water management and seek solutions ensuring food production at an unchanged or higher level, while not burdening the environment and not contributing to the worsening of the negative consequences of climate change. The problems of Poland's water management result not only from relatively small, natural water resources but to a large extent on the low efficiency of their use. Appropriate agricultural practices and state solutions in this field can contribute to achieving significant benefits in terms of economical water management in agriculture, providing a greater amount of water that could also be used for other purposes, including for purposes related to environmental protection. The aim of the article is to determine the level of use of water resources in Polish agriculture and the advancement of measures aimed at adapting Polish agriculture in the field of water management to climate change. The study provides knowledge about Polish legal regulations and water management tools, the shaping of water policy of Polish agriculture against the background of EU countries and other sources of energy, and measures supporting Polish agricultural holdings in the effective management of water resources run by state budget institutions. In order to achieve the above-mentioned goals, the author used research tools such as the analysis of existing sources and a survey conducted among five groups of entities, i.e. agricultural advisory centers and departments, agricultural, rural and environmental protection departments, regional water management boards, provincial agricultural chambers and restructuring and modernization of agriculture. The main conclusion of the analyses carried out is the low use of water in Polish agriculture in relation to other EU countries, other sources of intake in Poland, as well as irrigation. The analysis allows us to observe another problem, which is the lack of reporting and data collection, which is extremely important from the point of view of the effectiveness of adaptation measures to climate change. The results obtained from the survey indicate a very low level of support for government institutions in the implementation of adaptation measures to climate change and the water management of Polish farms. Some of the basic problems of the adaptation policy to change climate with regard to water management in Polish agriculture include a lack of knowledge regarding climate change, the possibilities of adapting, the available tools or ways to rationalize the use of water resources. It also refers to the lack of ordering procedures and the separation of responsibility with a proper territorial unit, non-functioning channels of information flow and practically low effects.Keywords: water management, adaptation policy, agriculture, climate change
Procedia PDF Downloads 14212464 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy
Authors: Erick Pruchnicki, Nikhil Padhye
Abstract:
Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials
Procedia PDF Downloads 11312463 PhenoScreen: Development of a Systems Biology Tool for Decision Making in Recurrent Urinary Tract Infections
Authors: Jonathan Josephs-Spaulding, Hannah Rettig, Simon Graspeunter, Jan Rupp, Christoph Kaleta
Abstract:
Background: Recurrent urinary tract infections (rUTIs) are a global cause of emergency room visits and represent a significant burden for public health systems. Therefore, metatranscriptomic approaches to investigate metabolic exchange and crosstalk between uropathogenic Escherichia coli (UPEC), which is responsible for 90% of UTIs, and collaborating pathogens of the urogenital microbiome is necessary to better understand the pathogenetic processes underlying rUTIs. Objectives: This study aims to determine the level in which uropathogens optimize the host urinary metabolic environment to succeed during invasion. By developing patient-specific metabolic models of infection, these observations can be taken advantage of for the precision treatment of human disease. Methods: To date, we have set up an rUTI patient cohort and observed various urine-associated pathogens. From this cohort, we developed patient-specific metabolic models to predict bladder microbiome metabolism during rUTIs. This was done by creating an in silico metabolomic urine environment, which is representative of human urine. Metabolic models of uptake and cross-feeding of rUTI pathogens were created from genomes in relation to the artificial urine environment. Finally, microbial interactions were constrained by metatranscriptomics to indicate patient-specific metabolic requirements of pathogenic communities. Results: Metabolite uptake and cross-feeding are essential for strain growth; therefore, we plan to design patient-specific treatments by adjusting urinary metabolites through nutritional regimens to counteract uropathogens by depleting essential growth metabolites. These methods will provide mechanistic insights into the metabolic components of rUTI pathogenesis to provide an evidence-based tool for infection treatment.Keywords: recurrent urinary tract infections, human microbiome, uropathogenic Escherichia coli, UPEC, microbial ecology
Procedia PDF Downloads 13512462 Application of GIS-Based Construction Engineering: An Electronic Document Management System
Authors: Mansour N. Jadid
Abstract:
This paper describes the implementation of a GIS to provide decision support for successfully monitoring the movements and storage of materials, hence ensuring that finished products travel from the point of origin to the destination construction site through the supply-chain management (SCM) system. This system ensures the efficient operation of suppliers, manufacturers, and distributors by determining the shortest path from the point of origin to the final destination to reduce construction costs, minimize time, and enhance productivity. These systems are essential to the construction industry because they reduce costs and save time, thereby improve productivity and effectiveness. This study describes a typical supply-chain model and a geographical information system (GIS)-based SCM that focuses on implementing an electronic document management system, which maps the application framework to integrate geodetic support with the supply-chain system. This process provides guidance for locating the nearest suppliers to fill the information needs of project members in different locations. Moreover, this study illustrates the use of a GIS-based SCM as a collaborative tool in innovative methods for implementing Web mapping services, as well as aspects of their integration by generating an interactive GIS for the construction industry platform.Keywords: construction, coordinate, engineering, GIS, management, map
Procedia PDF Downloads 30312461 Performance Management of Tangible Assets within the Balanced Scorecard and Interactive Business Decision Tools
Authors: Raymond K. Jonkers
Abstract:
The present study investigated approaches and techniques to enhance strategic management governance and decision making within the framework of a performance-based balanced scorecard. The review of best practices from strategic, program, process, and systems engineering management provided for a holistic approach toward effective outcome-based capability management. One technique, based on factorial experimental design methods, was used to develop an empirical model. This model predicted the degree of capability effectiveness and is dependent on controlled system input variables and their weightings. These variables represent business performance measures, captured within a strategic balanced scorecard. The weighting of these measures enhances the ability to quantify causal relationships within balanced scorecard strategy maps. The focus in this study was on the performance of tangible assets within the scorecard rather than the traditional approach of assessing performance of intangible assets such as knowledge and technology. Tangible assets are represented in this study as physical systems, which may be thought of as being aboard a ship or within a production facility. The measures assigned to these systems include project funding for upgrades against demand, system certifications achieved against those required, preventive maintenance to corrective maintenance ratios, and material support personnel capacity against that required for supporting respective systems. The resultant scorecard is viewed as complimentary to the traditional balanced scorecard for program and performance management. The benefits from these scorecards are realized through the quantified state of operational capabilities or outcomes. These capabilities are also weighted in terms of priority for each distinct system measure and aggregated and visualized in terms of overall state of capabilities achieved. This study proposes the use of interactive controls within the scorecard as a technique to enhance development of alternative solutions in decision making. These interactive controls include those for assigning capability priorities and for adjusting system performance measures, thus providing for what-if scenarios and options in strategic decision-making. In this holistic approach to capability management, several cross functional processes were highlighted as relevant amongst the different management disciplines. In terms of assessing an organization’s ability to adopt this approach, consideration was given to the P3M3 management maturity model.Keywords: management, systems, performance, scorecard
Procedia PDF Downloads 32212460 Knowledge Management in the Tourism Industry in Project Management Paradigm
Authors: Olga A. Burukina
Abstract:
Tourism is a complex socio-economic phenomenon, partly regulated by national tourism industries. The sustainable development of tourism in a region, country or in tourist destination depends on a number of factors (political, economic, social, cultural, legal and technological), the understanding and correct interpretation of which is invariably anthropocentric. It is logical that for the successful functioning of a tour operating company, it is necessary to ensure its sustainable development. Sustainable tourism is defined as tourism that fully considers its current and future economic, social and environmental impacts, taking into account the needs of the industry, the environment and the host communities. For the business enterprise, sustainable development is defined as adopting business strategies and activities that meet the needs of the enterprise and its stakeholders today while protecting, sustaining and enhancing the human and natural resources that will be needed in the future. In addition to a systemic approach to the analysis of tourist destinations, each tourism project can and should be considered as a system characterized by a very high degree of variability, since each particular case of its implementation differs from the previous and subsequent ones, sometimes in a cardinal way. At the same time, it is important to understand that this variability is predominantly of anthropogenic nature (except for force majeure situations that are considered separately and afterwards). Knowledge management is the process of creating, sharing, using and managing the knowledge and information of an organization. It refers to a multidisciplinary approach to achieve organisational objectives by making the best use of knowledge. Knowledge management is seen as a key systems component that allows obtaining, storing, transferring, and maintaining information and knowledge in particular, in a long-term perspective. The study aims, firstly, to identify (1) the dynamic changes in the Italian travel industry in the last 5 years before the COVID19 pandemic, which can be considered the scope of force majeure circumstances, (2) the impact of the pandemic on the industry and (3) efforts required to restore it, and secondly, how project management tools can help to improve knowledge management in tour operating companies to maintain their sustainability, diminish potential risks and restore their pre-pandemic performance level as soon as possible. The pilot research is based upon a systems approach and has employed a pilot survey, semi-structured interviews, prior research analysis (aka literature review), comparative analysis, cross-case analysis, and modelling. The results obtained are very encouraging: PM tools can improve knowledge management in tour operating companies and secure the more sustainable development of the Italian tourism industry based on proper knowledge management and risk management.Keywords: knowledge management, project management, sustainable development, tourism industr
Procedia PDF Downloads 15612459 Knowledge Management in Public Sector Employees: A Case Study of Training Participants at National Institute of Management, Pakistan
Authors: Muhammad Arif Khan, Haroon Idrees, Imran Aziz, Sidra Mushtaq
Abstract:
The purpose of this study is to investigate the current level of knowledge mapping skills of the public sector employees in Pakistan. National Institute of Management is one of the premiere public sector training organization for mid-career public sector employees in Pakistan. This study is conducted on participants of fourteen weeks long training course called Mid-Career Management Course (MCMC) which is mandatory for public sector employees in order to ascertain how to enhance their knowledge mapping skills. Methodology: Researcher used both qualitative and quantitative approach to conduct this study. Primary data about current level of participants’ understanding of knowledge mapping was collected through structured questionnaire. Later on, Participant Observation method was used where researchers acted as part of the group to gathered data from the trainees during their performance in training activities and tasks. Findings: Respondents of the study were examined for skills and abilities to organizing ideas, helping groups to develop conceptual framework, identifying critical knowledge areas of an organization, study large networks and identifying the knowledge flow using nodes and vertices, visualizing information, represent organizational structure etc. Overall, the responses varied in different skills depending on the performance and presentations. However, generally all participants have demonstrated average level of using both the IT and Non-IT K-mapping tools and techniques during simulation exercises, analysis paper de-briefing, case study reports, post visit presentation, course review, current issue presentation, syndicate meetings, and daily synopsis. Research Limitations: This study is conducted on a small-scale population of 67 public sector employees nominated by federal government to undergo 14 weeks extensive training program called MCMC (Mid-Career Management Course) at National Institute of Management, Peshawar, Pakistan. Results, however, reflects only a specific class of public sector employees i.e. working in grade 18 and having more than 5 years of work. Practical Implications: Research findings are useful for trainers, training agencies, government functionaries, and organizations working for capacity building of public sector employees.Keywords: knowledge management, km in public sector, knowledge management and professional development, knowledge management in training, knowledge mapping
Procedia PDF Downloads 25412458 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time
Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani
Abstract:
This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management
Procedia PDF Downloads 8412457 Developing a Web-Based Workflow Management System in Cloud Computing Platforms
Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya
Abstract:
Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System
Procedia PDF Downloads 30912456 Exploring the Barriers Regarding Safe Discussions about Menopausal Symptom Management, as Perceived or Experienced by Pre-menopausal and Menopausal Women.
Authors: Karish Thavabalan, Alistair Ovenell, Aman Sutaria, Annabelle Parkhouse, Numan Baydemir, Theodore Lally
Abstract:
Background: Open discussions surrounding menopause are often associated with stigma, with many women feeling uncomfortable to engage in them with friends, colleagues, and healthcare professionals. Though the barriers regarding safe discussions of symptom management experienced by menopausal women are well documented, existing research offers little insight into whether these were shared by pre-menopausal women. This study aimed to explore the barriers regarding safe discussions about menopausal symptom management as perceived or experienced by pre-menopausal and menopausal women. Methods: This qualitative study was conducted over a 2-month period (March 2022 - April 2022) under the auspices of Imperial College Business School, London, UK. Snowball sampling was used to recruit both menopausal (age 45-70) and pre-menopausal participants (age <45), and sampling continued until data saturation was achieved. 16 semi-structured online interviews were conducted, and transcripts were thematically analyzed following Braun and Clarke’s six-step methodology. Results: A total of 7 higher themes regarding safe discussion of menopausal symptom management were identified by both pre-menopausal and menopausal women, including: “ineffective coping mechanisms”, “perceived onus to self-endure”, “lack of workplace support”, “poor knowledge of management approaches”, “poor healthcare infrastructure”, “poor support from friends and family”, “lack of knowledge and interest from a young age”. Conclusion: Identifying the barriers regarding safe discussion helped to highlight which areas require most significant intervention. Alongside tackling the barriers, menopausal women face, ultimately, there is a pertinent need to and address the lack of insight into menopause from a younger age and to encourage earlier discussions so as to not propagate the cycle of stigma.Keywords: menopause, stigma, safe discussions, symptom management
Procedia PDF Downloads 11112455 An Insight into the Conformational Dynamics of Glycan through Molecular Dynamics Simulation
Authors: K. Veluraja
Abstract:
Glycan of glycolipids and glycoproteins is playing a significant role in living systems particularly in molecular recognition processes. Molecular recognition processes are attributed to their occurrence on the surface of the cell, sequential arrangement and type of sugar molecules present in the oligosaccharide structure and glyosidic linkage diversity (glycoinformatics) and conformational diversity (glycoconformatics). Molecular Dynamics Simulation study is a theoretical-cum-computational tool successfully utilized to establish glycoconformatics of glycan. The study on various oligosaccharides of glycan clearly indicates that oligosaccharides do exist in multiple conformational states and these conformational states arise due to the flexibility associated with a glycosidic torsional angle (φ,ψ) . As an example: a single disaccharide structure NeuNacα(2-3) Gal exists in three different conformational states due to the differences in the preferential value of glycosidic torsional angles (φ,ψ). Hence establishing three dimensional structural and conformational models for glycan (cartesian coordinates of every individual atoms of an oligosaccharide structure in a preferred conformation) is quite crucial to understand various molecular recognition processes such as glycan-toxin interaction and glycan-virus interaction. The gycoconformatics models obtained for various glycan through Molecular Dynamics Simulation stored in our 3DSDSCAR (3DSDSCAR.ORG) a public domain database and its utility value in understanding the molecular recognition processes and in drug design venture will be discussed.Keywords: glycan, glycoconformatics, molecular dynamics simulation, oligosaccharide
Procedia PDF Downloads 13712454 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: computational analysis, gendered grammar, misogynistic language, neural networks
Procedia PDF Downloads 11912453 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 30212452 Checking Energy Efficiency by Simulation Tools: The Case of Algerian Ksourian Models
Authors: Khadidja Rahmani, Nahla Bouaziz
Abstract:
Algeria is known for its rich heritage. It owns an immense historical heritage with a universal reputation. Unfortunately, this wealth is withered because of abundance. This research focuses on the Ksourian model, which constitutes a large portion of this wealth. In fact, the Ksourian model is not just a witness to a great part of history or a vernacular culture, but also it includes a panoply of assets in terms of energetic efficiency. In this context, the purpose of our work is to evaluate the performance of the old techniques which are derived from the Ksourian model , and that using the simulation tools. The proposed method is decomposed in two steps; the first consists of isolate and reintroduce each device into a basic model, then run a simulation series on acquired models. And this in order to test the contribution of each of these dialectal processes. In another scale of development, the second step consists of aggregating all these processes in an aboriginal model, then we restart the simulation, to see what it will give this mosaic on the environmental and energetic plan .The model chosen for this study is one of the ksar units of Knadsa city of Bechar (Algeria). This study does not only show the ingenuity of our ancestors in their know-how, and their adapting power to the aridity of the climate, but also proves that their conceptions subscribe in the current concerns of energy efficiency, and respond to the requirements of sustainable development.Keywords: dialectal processes, energy efficiency, evaluation, Ksourian model, simulation tools
Procedia PDF Downloads 19512451 Pre and Post IFRS Loss Avoidance in France and the United Kingdom
Authors: T. Miková
Abstract:
This paper analyzes the effect of a single uniform accounting rule on reporting quality by investigating the influence of IFRS on earnings management. This paper examines whether earnings management is reduced after IFRS adoption through the use of “loss avoidance thresholds”, a method that has been verified in earlier studies. This paper concentrates on two European countries: one that represents the continental code law tradition with weak protection of investors (France) and one that represents the Anglo-American common law tradition, which typically implies a strong enforcement system (the United Kingdom). The research investigates a sample of 526 companies (6822 firm-year observations) during the years 2000 – 2013. The results are different for the two jurisdictions. This study demonstrates that a single set of accounting standards contributes to better reporting quality and reduces the pervasiveness of earnings management in France. In contrast, there is no evidence that a reduction in earnings management followed the implementation of IFRS in the United Kingdom. Due to the fact that IFRS benefit France but not the United Kingdom, other political and economic factors, such legal system or capital market strength, must play a significant role in influencing the comparability and transparency cross-border companies’ financial statements. Overall, the result suggests that IFRS moderately contribute to the accounting quality of reported financial statements and bring benefit for stakeholders, though the role played by other economic factors cannot be discounted.Keywords: accounting standards, earnings management, international financial reporting standards, loss avoidance, reporting quality
Procedia PDF Downloads 19812450 Optimal Data Selection in Non-Ergodic Systems: A Tradeoff between Estimator Convergence and Representativeness Errors
Authors: Jakob Krause
Abstract:
Past Financial Crisis has shown that contemporary risk management models provide an unjustified sense of security and fail miserably in situations in which they are needed the most. In this paper, we start from the assumption that risk is a notion that changes over time and therefore past data points only have limited explanatory power for the current situation. Our objective is to derive the optimal amount of representative information by optimizing between the two adverse forces of estimator convergence, incentivizing us to use as much data as possible, and the aforementioned non-representativeness doing the opposite. In this endeavor, the cornerstone assumption of having access to identically distributed random variables is weakened and substituted by the assumption that the law of the data generating process changes over time. Hence, in this paper, we give a quantitative theory on how to perform statistical analysis in non-ergodic systems. As an application, we discuss the impact of a paragraph in the last iteration of proposals by the Basel Committee on Banking Regulation. We start from the premise that the severity of assumptions should correspond to the robustness of the system they describe. Hence, in the formal description of physical systems, the level of assumptions can be much higher. It follows that every concept that is carried over from the natural sciences to economics must be checked for its plausibility in the new surroundings. Most of the probability theory has been developed for the analysis of physical systems and is based on the independent and identically distributed (i.i.d.) assumption. In Economics both parts of the i.i.d. assumption are inappropriate. However, only dependence has, so far, been weakened to a sufficient degree. In this paper, an appropriate class of non-stationary processes is used, and their law is tied to a formal object measuring representativeness. Subsequently, that data set is identified that on average minimizes the estimation error stemming from both, insufficient and non-representative, data. Applications are far reaching in a variety of fields. In the paper itself, we apply the results in order to analyze a paragraph in the Basel 3 framework on banking regulation with severe implications on financial stability. Beyond the realm of finance, other potential applications include the reproducibility crisis in the social sciences (but not in the natural sciences) and modeling limited understanding and learning behavior in economics.Keywords: banking regulation, non-ergodicity, risk management, semimartingale modeling
Procedia PDF Downloads 148