Search results for: machine and plant engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9036

Search results for: machine and plant engineering

6006 Variations in Spatial Learning and Memory across Natural Populations of Zebrafish, Danio rerio

Authors: Tamal Roy, Anuradha Bhat

Abstract:

Cognitive abilities aid fishes in foraging, avoiding predators & locating mates. Factors like predation pressure & habitat complexity govern learning & memory in fishes. This study aims to compare spatial learning & memory across four natural populations of zebrafish. Zebrafish, a small cyprinid inhabits a diverse range of freshwater habitats & this makes it amenable to studies investigating role of native environment in spatial cognitive abilities. Four populations were collected across India from waterbodies with contrasting ecological conditions. Habitat complexity of the water-bodies was evaluated as a combination of channel substrate diversity and diversity of vegetation. Experiments were conducted on populations under controlled laboratory conditions. A square shaped spatial testing arena (maze) was constructed for testing the performance of adult zebrafish. The square tank consisted of an inner square shaped layer with the edges connected to the diagonal ends of the tank-walls by connections thereby forming four separate chambers. Each of the four chambers had a main door in the centre. Each chamber had three sections separated by two windows. A removable coloured window-pane (red, yellow, green or blue) identified each main door. A food reward associated with an artificial plant was always placed inside the left-hand section of the red-door chamber. The position of food-reward and plant within the red-door chamber was fixed. A test fish would have to explore the maze by taking turns and locate the food inside the right-side section of the red-door chamber. Fishes were sorted from each population stock and kept individually in separate containers for identification. At a time, a test fish was released into the arena and allowed 20 minutes to explore in order to find the food-reward. In this way, individual fishes were trained through the maze to locate the food reward for eight consecutive days. The position of red door, with the plant and the reward, was shuffled every day. Following training, an intermission of four days was given during which the fishes were not subjected to trials. Post-intermission, the fishes were re-tested on the 13th day following the same protocol for their ability to remember the learnt task. Exploratory tendencies and latency of individuals to explore on 1st day of training, performance time across trials, and number of mistakes made each day were recorded. Additionally, mechanism used by individuals to solve the maze each day was analyzed across populations. Fishes could be expected to use algorithm (sequence of turns) or associative cues in locating the food reward. Individuals of populations did not differ significantly in latencies and tendencies to explore. No relationship was found between exploration and learning across populations. High habitat-complexity populations had higher rates of learning & stronger memory while low habitat-complexity populations had lower rates of learning and much reduced abilities to remember. High habitat-complexity populations used associative cues more than algorithm for learning and remembering while low habitat-complexity populations used both equally. The study, therefore, helped understand the role of natural ecology in explaining variations in spatial learning abilities across populations.

Keywords: algorithm, associative cue, habitat complexity, population, spatial learning

Procedia PDF Downloads 288
6005 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School

Authors: Martín Pratto Burgos

Abstract:

The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.

Keywords: machine-learning, engineering, university, education, computational models

Procedia PDF Downloads 95
6004 Phytochemical Screening and Anti-Hypothyroidism Activity of Lepidium sativum Ethanolic Extract

Authors: Reham Hajomer, Ikram Elsiddig, Amna Hamad

Abstract:

Lepidium sativum (Garden Cress) belonging to Brassicaceae family is an annual herb locally known as El-rshad. In Ayurveda it is an important medicinal plant, traditionally used for the treatment of jaundice, liver problems, spleen diseases, gastrointestinal disorders, menstrual problems, fracture, arthritis, inflammatory conditions and for treatment of hypothyroidism. Hypothyroidism is a condition in which the thyroid gland does not produce enough thyroid hormones (Triiodithyronine T3 and Thyroxine T4) which are commonly caused by iodine deficiency. It’s divided into primary and secondary hypothyroidism, the primary caused by failure of thyroid function and secondary due to the failure of adequate thyroid-stimulating hormone (TSH) secretion from the pituitary gland or thyroid -releasing hormone (TRH) from the hypothalamus. The disease is most common in women over age 60. The objective regarding this study is to know whether Lepidium sativum would affect the level of thyroid hormones. The extract was prepared with 96% ethanol using Soxhlet apparatus. The anti-hypothyroidism activity was tested by using thirty male Wistar rats weighing (100-140 g) were used in the experiment. They were grouping into five groups, Group 1: Normal group= Administered only distilled water. Then 10 mg/kg Propylthiouracil was added to the drinking water of all other groups to induce hypothyroidism. Group 2: Negative control without any treatment; Group 3: Test group= treated with oral administration of 500mg/kg extract; Group 4: treated with oral administration of 250mg/kg of the extract; Group 5: Standard group (positive control) = treated with intraperitoneal Levothyroxine. All rats were incubated for 20 days at animal house with room temperature of proper ventilation provided with standard diet. The result show that the Lepidium sativum extract was found to increases the T3 and T4 in the propylthiouracil induced rats with values (0.29 ng/dl T3 and 0.57 U T4) for the 500mg/kg and (0.27 ng/dl T3 and 0.517 U T4) for the 250mg/kg in comparison with standard with values (0.241 ng/dl T3 and 0.516 U T4) so that Lepidium sativum can be stimulatory to thyroid function and possess significant anti-hypothyroidism effect with p-values ranges from (0.000006*-0.893472). In conclusion, from results obtained, Lepidium sativum plant extract was found to posses anti-hypothyroidism effects so its act as an agent that stimulates thyroid hormone secretion.

Keywords: anti-hypothyroidism, extract, lepidium, sativum

Procedia PDF Downloads 205
6003 Classification of Emotions in Emergency Call Center Conversations

Authors: Magdalena Igras, Joanna Grzybowska, Mariusz Ziółko

Abstract:

The study of emotions expressed in emergency phone call is presented, covering both statistical analysis of emotions configurations and an attempt to automatically classify emotions. An emergency call is a situation usually accompanied by intense, authentic emotions. They influence (and may inhibit) the communication between caller and responder. In order to support responders in their responsible and psychically exhaustive work, we studied when and in which combinations emotions appeared in calls. A corpus of 45 hours of conversations (about 3300 calls) from emergency call center was collected. Each recording was manually tagged with labels of emotions valence (positive, negative or neutral), type (sadness, tiredness, anxiety, surprise, stress, anger, fury, calm, relief, compassion, satisfaction, amusement, joy) and arousal (weak, typical, varying, high) on the basis of perceptual judgment of two annotators. As we concluded, basic emotions tend to appear in specific configurations depending on the overall situational context and attitude of speaker. After performing statistical analysis we distinguished four main types of emotional behavior of callers: worry/helplessness (sadness, tiredness, compassion), alarm (anxiety, intense stress), mistake or neutral request for information (calm, surprise, sometimes with amusement) and pretension/insisting (anger, fury). The frequency of profiles was respectively: 51%, 21%, 18% and 8% of recordings. A model of presenting the complex emotional profiles on the two-dimensional (tension-insecurity) plane was introduced. In the stage of acoustic analysis, a set of prosodic parameters, as well as Mel-Frequency Cepstral Coefficients (MFCC) were used. Using these parameters, complex emotional states were modeled with machine learning techniques including Gaussian mixture models, decision trees and discriminant analysis. Results of classification with several methods will be presented and compared with the state of the art results obtained for classification of basic emotions. Future work will include optimization of the algorithm to perform in real time in order to track changes of emotions during a conversation.

Keywords: acoustic analysis, complex emotions, emotion recognition, machine learning

Procedia PDF Downloads 398
6002 Assessing the Efficacy of Artificial Intelligence Integration in the FLO Health Application

Authors: Reema Alghamdi, Rasees Aleisa, Layan Sukkar

Abstract:

The primary objective of this research is to conduct an examination of the Flo menstrual cycle application. We do that by evaluating the user experience and their satisfaction with integrated AI features. The study seeks to gather data from primary resources, primarily through surveys, to gather different insights about the application, like its usability functionality in addition to the overall user satisfaction. The focus of our project will be particularly directed towards the impact and user perspectives regarding the integration of artificial intelligence features within the application, contributing to an understanding of the holistic user experience.

Keywords: period, women health, machine learning, AI features, menstrual cycle

Procedia PDF Downloads 76
6001 An Investigation about Rate Of Evaporation from the Water Surface and LNG Pool

Authors: Farokh Alipour, Ali Falavand, Neda Beit Saeid

Abstract:

The calculation of the effect of accidental releases of flammable materials such as LNG requires the use of a suitable consequence model. This study is due to providing a planning advice for developments in the vicinity of LNG sites and other sites handling flammable materials. In this paper, an applicable algorithm that is able to model pool fires on water is presented and applied to estimate pool fire damage zone. This procedure can be used to model pool fires on land and could be helpful in consequence modeling and domino effect zone measurements of flammable materials which is needed in site selection and plant layout.

Keywords: LNG, pool fire, spill, radiation

Procedia PDF Downloads 402
6000 Efficacy of Different Soil-Applied Fungicides to Manage Phytophthora Root Rot of Chili (Solanum annum) in Pakistan

Authors: Kiran Nawaz, Ahmad Ali Shahid, Sehrish Iftikhar, Waheed Anwar, Muhammad Nasir Subhani

Abstract:

Chili (Solanum annum L.) attacks by many fungal pathogens, including members of Oomycetes which are responsible for root rot in different chili growing areas of the world. Oomycetes pathogens cause economic losses in different regions of the Pakistan. Most of the plant tissues, including roots, crowns, fruit, and leaves, are vulnerable to Phytophthora capsici. It is very difficult to manage the Phytophthora root rot of chili as many commercial varieties are tremendously vulnerable to P. capsici. The causal agent of the disease was isolated on corn meal agar (CMA) and identified on a morphological basis by using available taxonomic keys. The pathogen was also confirmed on the molecular basis through internal transcribed spacer region and with other molecular markers.The Blastn results showed 100% homology with already reported sequences of P. capsici in NCBI database. Most of the farmers have conventionally relied on foliar fungicide applications to control Phytophthora root rot in spite of their incomplete effectiveness. In this study, in vitro plate assay, seed soaking and foliar applications of 6 fungicides were evaluated against root rot of chili. In vitro assay revealed that significant inhibition of linear growth was obtained with Triflumizole at 7.0%, followed by Thiophanate methyl (8.9%), Etridiazole (6.0%), Propamocarb (5.9%) and 7.5% with Mefenoxam and Iprodione for P. capsici. The promising treatments of in vitro plate bioassay were evaluated in pot experiments under controlled conditions in the greenhouse. All fungicides were applied after at 6-day intervals. Results of pot experiment showed that all treatments considerably inhibited the percentage of P. capsici root rot incidence. In addition, application of seed soaking with all six fungicides combined with the foliar spray of the same components showed the significant reduction in root rot incidence. The combine treatments of all fungicides as in vitro bioassay, seed soaking followed by foliar spray is considered non-harmful control methods which have advantages and limitation. Hence, these applications proved effective and harmless for the management of soil-borne plant pathogens.

Keywords: blastn, bioassay, corn meal agar(CMA), oomycetes

Procedia PDF Downloads 242
5999 Development and Evaluation of a Calcium Rich Plant-Based Supplement on Bone Turnover of Peri and Post Menopausal Women

Authors: Gayathri.G, Hemamalini.A.J, Chandrasekaran.A

Abstract:

Problem statement: Nutritional deficiency, especially calcium, may lead to poor bone formation and mineralization. Although there are plenty of synthetic supplements available, it is essential to make a calcium rich food supplement accessible to combat calcium deficiency that could be readily prepared at the household level. Thus the current study aimed to formulate and standardize an indigenous low-cost calcium-rich food supplement and to study the impact of supplementation on the bone resorption and formation markers. Methods: A Randomized controlled trial was conducted with 60 subjects distributed equally in control and experimental groups, including perimenopausal and postmenopausal women. A plant-based calcium-rich product was developed and supplemented in form of balls as a midmorning and evening snack by addition of optimized proportions of leaves of Sesbania Grandiflora, seeds of Sesamum indicum, Eleusine coracana, Glycine max, Vigna mungo for a period of 6 months. Postmenopausal and perimenopausal women received 1200mg and 800mg of calcium per day from the supplemented, respectively. Outcome measures like serum calcium; betacrosslaps (bone resorption marker) and total P1NP (bone absorption marker) were assessed after 3 months and after 6 months. Results: There were no significant changes seen in the serum calcium and total P1NP levels (bone formation marker) among the subjects during the supplementation period. The bone resorption marker (betacrosslaps) reduced in all the groups and the reduction (0.32 ± 0.130 ng/ml to 0.25 ± 0.130 ng/ml) was found to be statistically highly significant (p < 0.01) in experimental group of perimenopausal subjects and significant (p < 0.05) in experimental group of postmenopausal subjects (1.11 ± 0.290 ng/ml to 0.42 ± 0.263 ng/ml). Conclusion: With the current severe calcium deficiency in the Indian population, integrating low-cost, calcium-rich native foods that could be readily prepared at household level would be useful in raising the nutritional consumption of calcium, which would, in turn, decrease bone turnover.

Keywords: calcium, sesbania grandiflora, sesamum indicum, eleusine coracana, glycine max, vigna mungo, postmenopause, perimenopause, bone resorption, bone absorption, betacrosslaps, total P1NP

Procedia PDF Downloads 134
5998 Influence of Farnesol on Growth and Development of Dysdercus koenigii

Authors: Shailendra Kumar, Kamal Kumar Gupta

Abstract:

Dysdercus koenigii is an economically important pest of cotton worldwide. The pest damages the crop by sucking sap, staining lint, reducing the oil content of the seeds and deteriorating the quality of cotton. Plant possesses a plethora of secondary metabolites which are used as defense mechanism against herbivores. One of the important categories of such chemicals is insect growth regulators and the intermediates in their biosynthesis. Farnesol belongs to sesquiterpenoid. It is an intermediate in Juvenile hormone biosynthetic pathway in insects has been widely reported in the variety of plants. This chemical can disrupt the normal metabolic function and therefore, affects various life processes of the insects. Present study tested the efficacy of farnesol against Dysdercus koenigii. 2μl of 5% (100µg) and 10% (200µg) of the farnesol was applied topically on the dorsum of thoracic region of the newly emerged fifth instar nymphs of Dysdercus. The treated insects were observed daily for their survival, weight gain, and developmental anomalies for a period of ten days. The results indicated that treatment with 200µg farnesol decreased survival of the insects to 70% after 24h of exposure. At lower doses, no significant decrease in the survival was observed. However, the surviving nymphs showed alteration in growth, development, and metamorphosis. The weight gain in the treated nymphs showed deviation from control. The treated nymphs showed an increase in mortality during subsequent days and increase in the nymphal duration. The number of nymphs undergoing metamorphosis decreased to 46% and 88% in the treatments with the dose of 200µg and 100µg respectively. Severe developmental anomalies were also observed in the treated nymphs. The treated nymphs moulted into supernumerary nymphs, adultoids, adults with exuviae attached and adults with wing deformities. On treatment with 200µg; 26% adultoid, 4% adults with exuviae attached and 12% adults with wing deformed were produced. Treatment with 100µg resulted in production of 34% adultoid, 26% adults with deformed wing and 4% adults with exuviae attached. Many of the treated nymphs did not metamorphose into adults, remained in nymphal stage and died. Our results indicated potential application plant-derived secondary metabolites like farnesol in the management of Dysdercus population.

Keywords: development, Dysdercus koenigii, farnesol, survival

Procedia PDF Downloads 355
5997 Theoretical Modelling of Molecular Mechanisms in Stimuli-Responsive Polymers

Authors: Catherine Vasnetsov, Victor Vasnetsov

Abstract:

Context: Thermo-responsive polymers are materials that undergo significant changes in their physical properties in response to temperature changes. These polymers have gained significant attention in research due to their potential applications in various industries and medicine. However, the molecular mechanisms underlying their behavior are not well understood, particularly in relation to cosolvency, which is crucial for practical applications. Research Aim: This study aimed to theoretically investigate the phenomenon of cosolvency in long-chain polymers using the Flory-Huggins statistical-mechanical framework. The main objective was to understand the interactions between the polymer, solvent, and cosolvent under different conditions. Methodology: The research employed a combination of Monte Carlo computer simulations and advanced machine-learning methods. The Flory-Huggins mean field theory was used as the basis for the simulations. Spinodal graphs and ternary plots were utilized to develop an initial computer model for predicting polymer behavior. Molecular dynamic simulations were conducted to mimic real-life polymer systems. Machine learning techniques were incorporated to enhance the accuracy and reliability of the simulations. Findings: The simulations revealed that the addition of very low or very high volumes of cosolvent molecules resulted in smaller radii of gyration for the polymer, indicating poor miscibility. However, intermediate volume fractions of cosolvent led to higher radii of gyration, suggesting improved miscibility. These findings provide a possible microscopic explanation for the cosolvency phenomenon in polymer systems. Theoretical Importance: This research contributes to a better understanding of the behavior of thermo-responsive polymers and the role of cosolvency. The findings provide insights into the molecular mechanisms underlying cosolvency and offer specific predictions for future experimental investigations. The study also presents a more rigorous analysis of the Flory-Huggins free energy theory in the context of polymer systems. Data Collection and Analysis Procedures: The data for this study was collected through Monte Carlo computer simulations and molecular dynamic simulations. The interactions between the polymer, solvent, and cosolvent were analyzed using the Flory-Huggins mean field theory. Machine learning techniques were employed to enhance the accuracy of the simulations. The collected data was then analyzed to determine the impact of cosolvent volume fractions on the radii of gyration of the polymer. Question Addressed: The research addressed the question of how cosolvency affects the behavior of long-chain polymers. Specifically, the study aimed to investigate the interactions between the polymer, solvent, and cosolvent under different volume fractions and understand the resulting changes in the radii of gyration. Conclusion: In conclusion, this study utilized theoretical modeling and computer simulations to investigate the phenomenon of cosolvency in long-chain polymers. The findings suggest that moderate cosolvent volume fractions can lead to improved miscibility, as indicated by higher radii of gyration. These insights contribute to a better understanding of the molecular mechanisms underlying cosolvency in polymer systems and provide predictions for future experimental studies. The research also enhances the theoretical analysis of the Flory-Huggins free energy theory.

Keywords: molecular modelling, flory-huggins, cosolvency, stimuli-responsive polymers

Procedia PDF Downloads 70
5996 MIMO PID Controller of a Power Plant Boiler–Turbine Unit

Authors: N. Ben-Mahmoud, M. Elfandi, A. Shallof

Abstract:

This paper presents a methodology to design multivariable PID controllers for multi-input and multi-output systems. The proposed control strategy, which is centralized, combines of PID controllers. The proportional gains in the P controllers act as tuning parameters of (SISO) in order to modify the behavior of the loops almost independently. The design procedure consists of three steps: first, an ideal decoupler including integral action is determined. Second, the decoupler is approximated with PID controllers. Third, the proportional gains are tuned to achieve the specified performance. The proposed method is applied to representative processes.

Keywords: boiler turbine, MIMO, PID controller, control by decoupling, anti wind-up techniques

Procedia PDF Downloads 327
5995 Contribution to the Study of the Fungal Flora Seed-Borne in Cereal: Wheat and Barley

Authors: M’lik Randa, Lakhdari Wassima, Dahliz Abderrahmène, Soud Adila, Hammi Hamida

Abstract:

In cereal culture, as in the most the vegetal productions the seeds play an important role in the development of the future plant. The healthy seeds are very important for the quality and quantity production. This study on a media (P.D.A) shows that an important mycoflora exists in the crops. Among the identified fungical, we notice the presence of Helminthosporium sp, Alternaria sp, Botrytis and Macrosporium. The use of the illness causing facies, especially for Helminthosporium, Alternaria and Botrytis emphasizes the relation between the seminicole inoculums and the appearance of symptoms on young plants noted by authors.

Keywords: seeds, barley, wheat, fungical flora

Procedia PDF Downloads 416
5994 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model

Authors: Snehal G. Teli, R. J. Shelke

Abstract:

CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.

Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images

Procedia PDF Downloads 76
5993 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink

Authors: Sanjay Rathee, Arti Kashyap

Abstract:

Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.

Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining

Procedia PDF Downloads 294
5992 Vineyard Soils of Karnataka - Characterization, Classification and Soil Site Suitability Evaluation

Authors: Harsha B. R., K. S. Anil Kumar

Abstract:

Land characterization, classification, and soil suitability evaluation of grapes-growing pedons were assessed at fifteen taluks covering four agro climatic zones of Karnataka. Study on problems and potentials of grapes cultivation in selected agro-climatic zones was carried out along with the plant sample analysis. Twenty soil profiles were excavated as study site based on the dominance of area falling under grapes production and existing spatial variability of soils. The detailed information of profiles and horizon wise soil samples were collected to study the morphological, physical, chemical, and fertility characteristics. Climatic analysis and water retention characteristics of soils of major grapes-growing areas were also done. Based on the characterisation and classification study, it was revealed that soils of Doddaballapur (Bangalore Blue and Wine grapes), Bangalore North (GKVK Farm, Rajankunte, and IIHR Farm), Devanahalli, Magadi, Hoskote, Chikkaballapur (Dilkush and Red globe), Yelaburga, Hagari Bommanahalli, Bagalkot (UHS farm) and Indi fall under the soil order Alfisol. Vijaypur pedon of northern dry zone was keyed out as Vertisols whereas, Jamkhandi and Athani as Inceptisols. Properties of Aridisols were observed in B. Bagewadi (Manikchaman and Thompson Seedless) and Afzalpur. Soil fertility status and its mapping using GIS technique revealed that all the nutrients were found to be in adequate range except nitrogen, potassium, zinc, iron, and boron, which indicated the need for application along with organic matter to improve the SOC status. Varieties differed among themselves in yield and plant nutrient composition depending on their age, climatic, soil, and management requirements. Bangalore North (GKVK farm) and Jamkhandi are having medium soil organic carbon stocks of 6.21 and 6.55 kg m⁻³, respectively. Soils of Bangalore North (Rajankunte) were highly suitable (S1) for grapes cultivation. Under northern Karnataka, Vijayapura, B. Bagewadi, Indi, and Afzalpur vineyards were good performers despite the limitations of fertility and free lime content.

Keywords: land characterization, suitability, soil orders, soil organic carbon stock

Procedia PDF Downloads 114
5991 Analysis of Electric Mobility in the European Union: Forecasting 2035

Authors: Domenico Carmelo Mongelli

Abstract:

The context is that of great uncertainty in the 27 countries belonging to the European Union which has adopted an epochal measure: the elimination of internal combustion engines for the traction of road vehicles starting from 2035 with complete replacement with electric vehicles. If on the one hand there is great concern at various levels for the unpreparedness for this change, on the other the Scientific Community is not preparing accurate studies on the problem, as the scientific literature deals with single aspects of the issue, moreover addressing the issue at the level of individual countries, losing sight of the global implications of the issue for the entire EU. The aim of the research is to fill these gaps: the technological, plant engineering, environmental, economic and employment aspects of the energy transition in question are addressed and connected to each other, comparing the current situation with the different scenarios that could exist in 2035 and in the following years until total disposal of the internal combustion engine vehicle fleet for the entire EU. The methodologies adopted by the research consist in the analysis of the entire life cycle of electric vehicles and batteries, through the use of specific databases, and in the dynamic simulation, using specific calculation codes, of the application of the results of this analysis to the entire EU electric vehicle fleet from 2035 onwards. Energy balance sheets will be drawn up (to evaluate the net energy saved), plant balance sheets (to determine the surplus demand for power and electrical energy required and the sizing of new plants from renewable sources to cover electricity needs), economic balance sheets (to determine the investment costs for this transition, the savings during the operation phase and the payback times of the initial investments), the environmental balances (with the different energy mix scenarios in anticipation of 2035, the reductions in CO2eq and the environmental effects are determined resulting from the increase in the production of lithium for batteries), the employment balances (it is estimated how many jobs will be lost and recovered in the reconversion of the automotive industry, related industries and in the refining, distribution and sale of petroleum products and how many will be products for technological innovation, the increase in demand for electricity, the construction and management of street electric columns). New algorithms for forecast optimization are developed, tested and validated. Compared to other published material, the research adds an overall picture of the energy transition, capturing the advantages and disadvantages of the different aspects, evaluating the entities and improvement solutions in an organic overall picture of the topic. The results achieved allow us to identify the strengths and weaknesses of the energy transition, to determine the possible solutions to mitigate these weaknesses and to simulate and then evaluate their effects, establishing the most suitable solutions to make this transition feasible.

Keywords: engines, Europe, mobility, transition

Procedia PDF Downloads 62
5990 Modeling of the Heat and Mass Transfer in Fluids through Thermal Pollution in Pipelines

Authors: V. Radulescu, S. Dumitru

Abstract:

Introduction: Determination of the temperature field inside a fluid in motion has many practical issues, especially in the case of turbulent flow. The phenomenon is greater when the solid walls have a different temperature than the fluid. The turbulent heat and mass transfer have an essential role in case of the thermal pollution, as it was the recorded during the damage of the Thermoelectric Power-plant Oradea (closed even today). Basic Methods: Solving the theoretical turbulent thermal pollution represents a particularly difficult problem. By using the semi-empirical theories or by simplifying the made assumptions, based on the experimental measurements may be assured the elaboration of the mathematical model for further numerical simulations. The three zones of flow are analyzed separately: the vicinity of the solid wall, the turbulent transition zone, and the turbulent core. For each area are determined the distribution law of temperature. It is determined the dependence of between the Stanton and Prandtl numbers with correction factors, based on measurements experimental. Major Findings/Results: The limitation of the laminar thermal substrate was determined based on the theory of Landau and Levice, using the assumption that the longitudinal component of the velocity pulsation and the pulsation’s frequency varies proportionally with the distance to the wall. For the calculation of the average temperature, the formula is used a similar solution as for the velocity, by an analogous mediation. On these assumptions, the numerical modeling was performed with a gradient of temperature for the turbulent flow in pipes (intact or damaged, with cracks) having 4 different diameters, between 200-500 mm, as there were in the Thermoelectric Power-plant Oradea. Conclusions: It was made a superposition between the molecular viscosity and the turbulent one, followed by addition between the molecular and the turbulent transfer coefficients, necessary to elaborate the theoretical and the numerical modeling. The concept of laminar boundary layer has a different thickness when it is compared the flow with heat transfer and that one without a temperature gradient. The obtained results are within the margin of error of 5%, between the semi-empirical classical theories and the developed model, based on the experimental data. Finally, it is obtained a general correlation between the Stanton number and the Prandtl number, for a specific flow (with associated Reynolds number).

Keywords: experimental measurements, numerical correlations, thermal pollution through pipelines, turbulent thermal flow

Procedia PDF Downloads 164
5989 Beyond Possibilities: Re-Reading Republican Ankara

Authors: Zelal Çınar

Abstract:

This paper aims to expose the effects of the ideological program of Turkish Republic on city planning, through the first plan of Ankara. As the new capital, Ankara was planned to be the ‘showcase’ of modern Turkey. It was to represent all new ideologies and the country’s cultural similarities with the west. At the same time it was to underline the national identity and independence of Turkish republic. To this end, a new plan for the capital was designed by German city planner Carl Christopher Lörcher. Diametrically opposed with the existing fabric of the city, this plan was built on the basis of papers and plans, on ideological aims. On the contrary, this paper argues that the city is a machine of possibilities, rather than a clear, materialized system.

Keywords: architecture, ideology, modernization, urban planning

Procedia PDF Downloads 273
5988 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes

Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez

Abstract:

Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.

Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability

Procedia PDF Downloads 233
5987 An Alternative Credit Scoring System in China’s Consumer Lendingmarket: A System Based on Digital Footprint Data

Authors: Minjuan Sun

Abstract:

Ever since the late 1990s, China has experienced explosive growth in consumer lending, especially in short-term consumer loans, among which, the growth rate of non-bank lending has surpassed bank lending due to the development in financial technology. On the other hand, China does not have a universal credit scoring and registration system that can guide lenders during the processes of credit evaluation and risk control, for example, an individual’s bank credit records are not available for online lenders to see and vice versa. Given this context, the purpose of this paper is three-fold. First, we explore if and how alternative digital footprint data can be utilized to assess borrower’s creditworthiness. Then, we perform a comparative analysis of machine learning methods for the canonical problem of credit default prediction. Finally, we analyze, from an institutional point of view, the necessity of establishing a viable and nationally universal credit registration and scoring system utilizing online digital footprints, so that more people in China can have better access to the consumption loan market. Two different types of digital footprint data are utilized to match with bank’s loan default records. Each separately captures distinct dimensions of a person’s characteristics, such as his shopping patterns and certain aspects of his personality or inferred demographics revealed by social media features like profile image and nickname. We find both datasets can generate either acceptable or excellent prediction results, and different types of data tend to complement each other to get better performances. Typically, the traditional types of data banks normally use like income, occupation, and credit history, update over longer cycles, hence they can’t reflect more immediate changes, like the financial status changes caused by the business crisis; whereas digital footprints can update daily, weekly, or monthly, thus capable of providing a more comprehensive profile of the borrower’s credit capabilities and risks. From the empirical and quantitative examination, we believe digital footprints can become an alternative information source for creditworthiness assessment, because of their near-universal data coverage, and because they can by and large resolve the "thin-file" issue, due to the fact that digital footprints come in much larger volume and higher frequency.

Keywords: credit score, digital footprint, Fintech, machine learning

Procedia PDF Downloads 162
5986 Multiscale Modelling of Citrus Black Spot Transmission Dynamics along the Pre-Harvest Supply Chain

Authors: Muleya Nqobile, Winston Garira

Abstract:

We presented a compartmental deterministic multi-scale model which encompass internal plant defensive mechanism and pathogen interaction, then we consider nesting the model into the epidemiological model. The objective was to improve our understanding of the transmission dynamics of within host and between host of Guignardia citricapa Kiely. The inflow of infected class was scaled down to individual level while the outflow was scaled up to average population level. Conceptual model and mathematical model were constructed to display a theoretical framework which can be used for predicting or identify disease pattern.

Keywords: epidemiological model, mathematical modelling, multi-scale modelling, immunological model

Procedia PDF Downloads 459
5985 Dyeing with Natural Dye from Pterocarpus indicus Extract Using Eco-Friendly Mordants

Authors: Ploysai Ohama, Nuttawadee Hanchengchai, Thiva Saksri

Abstract:

Natural dye extracted from Pterocarpus indicus was applied to a cotton fabric and silk yarn by dyeing processing different eco-friendly mordants. Analytical studies such as UV–VIS spectrophotometry and gravimetric analysis were performed on the extracts. The color of each dyed material was investigated in terms of the CIELAB (L*, a* and b*) and K/S values. Cotton fabric dyed without mordants had a shade of greenish-brown, while those post-mordanted with selected eco-friendly mordants such as alum, lemon juice and limewater result in a variety of brown and darker color shade of fabric.

Keywords: natural dyes, plant materials, dyeing, mordant

Procedia PDF Downloads 415
5984 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis

Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan

Abstract:

We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.

Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.

Procedia PDF Downloads 139
5983 Determining the Effective Substance of Cottonseed Extract on the Treatment of Leishmaniasis

Authors: Mehrosadat Mirmohammadi, Sara Taghdisi, Ali Padash, Mohammad Hossein Pazandeh

Abstract:

Gossypol, a yellowish anti-nutritional compound found in cotton plants, exists in various plant parts, including seeds, husks, leaves, and stems. Chemically, gossypol is a potent polyphenolic aldehyde with antioxidant and therapeutic properties. However, its free form can be toxic, posing risks to both humans and animals. Initially, we extracted gossypol from cotton seeds using n-hexane as a solvent (yield: 84.0 ± 4.0%). We also obtained cotton seed and cotton boll extracts via Soxhlet extraction (25:75 hydroalcoholic ratio). These extracts, combined with cornstarch, formed four herbal medicinal formulations. Ethical approval allowed us to investigate their effects on Leishmania-caused skin wounds, comparing them to glucantime (local ampoule). Herbal formulas outperformed the control group (ethanol only) in wound treatment (p-value 0.05). The average wound diameter after two months did not significantly differ between plant extract ointments and topical glucantime. Notably, cotton boll extract with 1% extra gossypol crystal showed the best therapeutic effect. We extracted gossypol from cotton seeds using n-hexane via Soxhlet extraction. Saponification, acidification, and recrystallization steps followed. FTIR, UV-Vis, and HPLC analyses confirmed the product’s identity. Herbal medicines from cotton seeds effectively treated chronic wounds compared to the ethanol-only control group. Wound diameter differed significantly between extract ointments and glucantime injections. It seems that due to the presence of large amounts of fat in the oil, the extraction of gossypol from it faces many obstacles. The extraction of this compound with our technique showed that extraction from oil has a higher efficiency, perhaps because of the preparation of oil by cold pressing method, the possibility of losing this compound is much less than when extraction is done with Soxhlet. On the other hand, the gossypol in the oil is mostly bound to the protein, which somehow protects the gossypol until the last stage of the extraction process. Since this compound is very sensitive to light and heat, it was extracted as a derivative with acetic acid. Also, in the treatment section, it was found that the ointment prepared with the extract is more effective and Gossypol is one of the effective ingredients in the treatment. Therefore, gossypol can be extracted from the oil and added to the extract from which gossypol has been extracted to make an effective medicine with a certain dose.

Keywords: cottonseed, glucantime, gossypol, leishmaniasis

Procedia PDF Downloads 61
5982 In vitro Susceptibility of Isolated Shigella flexneri and Shigella dysenteriae to the Ethanolic Extracts of Trachyspermum ammi and Peganum harmala

Authors: Ibrahim Siddig Hamid, Ikram Mohamed Eltayeb

Abstract:

Trachyspermum ammi belongs to the family Apiaceae, is used traditionally for the treatment of gastrointestinal ailments, lack of appetite and bronchial problems as well used as antiseptic, antimicrobial, antipyretic, febrifugal and in the treatment of typhoid fever. Peganum harmala belongs to the family Zygophyllaceae it has been reported to have an antibacterial activity and used to treat depression and recurring fevers. It also used to kill algae, bacteria, intestinal parasites and molds. In Sudan, the combination of two plants are traditionally used for the treatment of bacillary dysentery. Bacillary dysentery is caused by one or more types of Shigella species bacteria mainly Shigella dysenteri and shigella flexneri. Bacillary dysentery is mainly found in hot countries like Sudan with poor hygiene and sanitation. Bacillary dysentery causes sudden onset of high fever and chills, abdominal pain, cramps and bloating, urgency to pass stool, weight loss, and dehydration and if left untreated it can lead to serious complications including delirium, convulsions and coma. A serious infection like this can be fatal within 24 hours. The objective of this study is to investigate the in vitro susceptibility of Sh. flexneri and Sh. dysenteriae to the T. ammi and P. harmala. T. ammi and P. harmala were extracted by 96% ethanol using Soxhlet apparatus. The antimicrobial activity of the extracts was investigated according to the disc diffusion method. The discs were prepared by soaking sterilized filter paper discs in 20 microliter of serially diluted solutions of each plant extract with the concentrations (100, 50, 25, 12.5, 6.25mg/dl) then placing them on Muller Hinton Agar plates that were inoculated with bacterial suspension separately, the plates were incubated for 24 hours at 37c and the minimum inhibitory concentration of the extract which was the least concentration of the extract to inhibit fungal growth was determined. The results showed the high antimicrobial activity of T. ammi extract with an average diameter zone ranging from 18-20 mm and its minimum inhibitory concentration was found to be 25 mg/ml against the two shigella species. P. harmala extract was found to have slight antibacterial effect against the two bacteria. This result justified the Sudanese traditional use of Trachyspermum ammi plant for the treatment of bacillary dysentery.

Keywords: harmala, peganum, shigella, trachyspermum

Procedia PDF Downloads 244
5981 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms

Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli

Abstract:

Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.

Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning

Procedia PDF Downloads 73
5980 An Algorithm Based on the Nonlinear Filter Generator for Speech Encryption

Authors: A. Belmeguenai, K. Mansouri, R. Djemili

Abstract:

This work present a new algorithm based on the nonlinear filter generator for speech encryption and decryption. The proposed algorithm consists on the use a linear feedback shift register (LFSR) whose polynomial is primitive and nonlinear Boolean function. The purpose of this system is to construct Keystream with good statistical properties, but also easily computable on a machine with limited capacity calculated. This proposed speech encryption scheme is very simple, highly efficient, and fast to implement the speech encryption and decryption. We conclude the paper by showing that this system can resist certain known attacks.

Keywords: nonlinear filter generator, stream ciphers, speech encryption, security analysis

Procedia PDF Downloads 296
5979 A Machine Learning-Assisted Crime and Threat Intelligence Hunter

Authors: Mohammad Shameel, Peter K. K. Loh, James H. Ng

Abstract:

Cybercrime is a new category of crime which poses a different challenge for crime investigators and incident responders. Attackers can mask their identities using a suite of tools and with the help of the deep web, which makes them difficult to track down. Scouring the deep web manually takes time and is inefficient. There is a growing need for a tool to scour the deep web to obtain useful evidence or intel automatically. In this paper, we will explain the background and motivation behind the research, present a survey of existing research on related tools, describe the design of our own crime/threat intelligence hunting tool prototype, demonstrate its capability with some test cases and lastly, conclude with proposals for future enhancements.

Keywords: cybercrime, deep web, threat intelligence, web crawler

Procedia PDF Downloads 174
5978 Mood Recognition Using Indian Music

Authors: Vishwa Joshi

Abstract:

The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.

Keywords: music, mood, features, classification

Procedia PDF Downloads 500
5977 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics

Procedia PDF Downloads 574