Search results for: harmonic components
1235 Simplified INS\GPS Integration Algorithm in Land Vehicle Navigation
Authors: Othman Maklouf, Abdunnaser Tresh
Abstract:
Land vehicle navigation is subject of great interest today. Global Positioning System (GPS) is the main navigation system for positioning in such systems. GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation (INS) is the implementation of inertial sensors to determine the position and orientation of a vehicle. The availability of low-cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop INS using an inertial measurement unit (IMU). INS has unbounded error growth since the error accumulates at each step. Usually, GPS and INS are integrated with a loosely coupled scheme. With the development of low-cost, MEMS inertial sensors and GPS technology, integrated INS/GPS systems are beginning to meet the growing demands of lower cost, smaller size, and seamless navigation solutions for land vehicles. Although MEMS inertial sensors are very inexpensive compared to conventional sensors, their cost (especially MEMS gyros) is still not acceptable for many low-end civilian applications (for example, commercial car navigation or personal location systems). An efficient way to reduce the expense of these systems is to reduce the number of gyros and accelerometers, therefore, to use a partial IMU (ParIMU) configuration. For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a field experiment for a low-cost strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach, we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost IMU (Inertial Measurement Unit) and because of the relatively small area of the trajectory.Keywords: GPS, IMU, Kalman filter, materials engineering
Procedia PDF Downloads 4211234 Evaluating Habitat Manipulation as a Strategy for Rodent Control in Agricultural Ecosystems of Pothwar Region, Pakistan
Authors: Nadeem Munawar, Tariq Mahmood
Abstract:
Habitat manipulation is an important technique that can be used for controlling rodent damage in agricultural ecosystems. It involves intentionally manipulation of vegetation cover in adjacent habitats around the active burrows of rodents to reduce shelter, food availability and to increase predation pressure. The current study was conducted in the Pothwar Plateau during the respective non-crop period of wheat-groundnut (post-harvested and un-ploughed/non-crop fallow lands) with the aim to assess the impact of the reduction in vegetation height of adjacent habitats (field borders) on rodent’s richness and abundance. The study area was divided into two sites viz. treated and non-treated. At the treated sites, habitat manipulation was carried out by removing crop cache, and non-crop vegetation’s over 10 cm in height to a distance of approximately 20 m from the fields. The trapping sessions carried out at both treated and non-treated sites adjacent to wheat-groundnut fields were significantly different (F 2, 6 = 13.2, P = 0.001) from each other, which revealed that a maximum number of rodents were captured from non-treated sites. There was a significant difference in the overall abundance of rodents (P < 0.05) between crop stages and between treatments in both crops. The manipulation effect was significantly observed on damage to crops, and yield production resulted in the reduction of damage within the associated croplands (P < 0.05). The outcomes of this study indicated a significant reduction of rodent population at treated sites due to changes in vegetation height and cover which affect important components, i.e., food, shelter, movements and increased risk sensitivity in their feeding behavior; therefore, they were unable to reach levels where they cause significant crop damage. This method is recommended for being a cost-effective and easy application.Keywords: agricultural ecosystems, crop damage, habitat manipulation, rodents, trapping
Procedia PDF Downloads 1651233 English for Academic and Specific Purposes: A Corpus-Informed Approach to Designing Vocabulary Teaching Materials
Authors: Said Ahmed Zohairy
Abstract:
Significant shifts in the theory and practice of teaching vocabulary affect teachers’ decisions about learning materials’ design. Relevant literature supports teaching specialised, authentic, and multi-word lexical items rather than focusing on single-word vocabulary lists. Corpora, collections of texts stored in a database, presents a reliable source of teaching and learning materials. Although corpus-informed studies provided guidance for teachers to identify useful language chunks and phraseological units, there is a scarcity in the literature discussing the use of corpora in teaching English for academic and specific purposes (EASP). The aim of this study is to improve teaching practices and provide a description of the pedagogical choices and procedures of an EASP tutor in an attempt to offer guidance for novice corpus users. It draws on the researcher’s experience of utilising corpus linguistic tools to design vocabulary learning activities without focusing on students’ learning outcomes. Hence, it adopts a self-study research methodology which is based on five methodological components suggested by other self-study researchers. The findings of the study noted that designing specialised and corpus-informed vocabulary learning activities could be challenging for teachers, as they require technical knowledge of how to navigate corpora and utilise corpus analysis tools. Findings also include a description of the researcher’s approach to building and analysing a specialised corpus for the benefit of novice corpus users; they should be able to start their own journey of designing corpus-based activities.Keywords: corpora, corpus linguistics, corpus-informed, English for academic and specific purposes, agribusiness, vocabulary, phraseological units, materials design
Procedia PDF Downloads 241232 Performance Comparison of Droop Control Methods for Parallel Inverters in Microgrid
Authors: Ahmed Ismail, Mustafa Baysal
Abstract:
Although the energy source in the world is mainly based on fossil fuels today, there is a need for alternative energy generation systems, which are more economic and environmentally friendly, due to continuously increasing demand of electric energy and lacking power resources and networks. Distributed Energy Resources (DERs) such as fuel cells, wind and solar power have recently become widespread as alternative generation. In order to solve several problems that might be encountered when integrating DERs to power system, the microgrid concept has been proposed. A microgrid can operate both grid connected and island mode to benefit both utility and customers. For most distributed energy resources (DER) which are connected in parallel in LV-grid like micro-turbines, wind plants, fuel cells and PV cells electrical power is generated as a direct current (DC) and converted to an alternative currents (AC) by inverters. So the inverters are assumed to be primary components in a microgrid. There are many control techniques of parallel inverters to manage active and reactive sharing of the loads. Some of them are based on droop method. In literature, the studies are usually focused on improving the transient performance of inverters. In this study, the performance of two different controllers based on droop control method is compared for the inverters operated in parallel without any communication feedback. For this aim, a microgrid in which inverters are controlled by conventional droop controller and modified droop controller is designed. Modified controller is obtained by adding PID into conventional droop control. Active and reactive power sharing performance, voltage and frequency responses of those control methods are measured in several operational cases. Study cases have been simulated by MATLAB-SIMULINK.Keywords: active and reactive power sharing, distributed generation, droop control, microgrid
Procedia PDF Downloads 5921231 Phyto-Therapeutic, Functional and Nutritional Acclaims of Turnip (Brassica rapus L.): An Overview
Authors: Tabussam Tufail
Abstract:
Purpose: The core purpose of the current review article is to elaborate the phytochemicals present in turnip (brassica rapus l.) and also allied health claims. Plant-based foods contain a significant amount of bioactive compounds which provide desirable health benefits beyond the basic nutrition. Epidemiological evidence suggests that consumption of a diet rich in vegetables and fruits has positive implications for human health. Design: Potential of turnip peroxidase (TP) for the treatment of phenolic-contaminated solutions has been reviewed. However, issues of taste along with behavioral nutrition ought to be considered. So in the last decades, special attention has been paid towards edible plants, especially those that are rich in secondary metabolites (frequently called phytochemicals) and nowadays, there is an increasing interest in the antioxidant activity of such phytochemicals present in the diet. These chemicals favor nutritional and phytotherapy that is emerging as new concepts of health aid in recent years. Turnip is rich in these valuable ingredients though it can be employed as having health promoting and healing properties. Findings: Numerous bioactive components i.e. organic acids, phenolic compounds, turnip peroxidase, kaempeferol, vitamin-K, etc. are present in turnip. The review focused on the significance of plant derived (especially turnip) phenolic compounds as a source of certain beneficial compounds for human health. Owing to the presence of bioactive moieties, the turnip has high antioxidant activity, positive role in blood clotting, effectual in phenobarbital-induced sleeping time, effective against hepatic injury in diabetics and also have a good hepatoprotective role. Strong recommendations for consumption of nutraceuticals from turnip have become progressively popular to improve health, and to prevent from diseases.Keywords: phytochemicals, turnip, antioxidants, health benefits
Procedia PDF Downloads 2351230 Development of Automatic Farm Manure Spreading Machine for Orchards
Authors: Barış Ozluoymak, Emin Guzel, Ahmet İnce
Abstract:
Since chemical fertilizers are used for meeting the deficiency of plant nutrients, its many harmful effects are not taken into consideration for the structure of the earth. These fertilizers are hampering the work of the organisms in the soil immediately after thrown to the ground. This interference is first started with a change of the soil pH and micro organismic balance is disrupted by reaction in the soil. Since there can be no fragmentation of plant residues, organic matter in the soil will be increasingly impoverished in the absence of micro organismic living. Biological activity reduction brings about a deterioration of the soil structure. If the chemical fertilization continues intensively, soils will get worse every year; plant growth will slow down and stop due to the intensity of chemical fertilizers, yield decline will be experienced and farmer will not receive an adequate return on his investment. In this research, a prototype of automatic farm manure spreading machine for orange orchards that not just manufactured in Turkey was designed, constructed, tested and eliminate the human drudgery involved in spreading of farm manure in the field. The machine comprised several components as a 5 m3 volume hopper, automatic controlled hydraulically driven chain conveyor device and side delivery conveyor belts. To spread the solid farm manure automatically, the machine was equipped with an electronic control system. The hopper and side delivery conveyor designs fitted between orange orchard tree row spacing. Test results showed that the control system has significant effects on reduction in the amount of unnecessary solid farm manure use and avoiding inefficient manual labor.Keywords: automatic control system, conveyor belt application, orchard, solid farm manure
Procedia PDF Downloads 2851229 Stabilization of y-Sterilized Food, Packaging Materials by Synergistic Mixtures of Food-Contact Approval Stabilizers
Authors: Sameh A. S. Thabit Alariqi
Abstract:
Food is widely packaged with plastic materials to prevent microbial contamination and spoilage. Ionizing radiation is widely used to sterilize the food-packaging materials. Sterilization by γ-radiation causes degradation for the plastic packaging materials such as embrittlement, stiffening, softening, discoloration, odour generation, and decrease in molecular weight. Many antioxidants can prevent γ-degradation but most of them are toxic. The migration of antioxidants to its environment gives rise to major concerns in case of food packaging plastics. In this attempt, we have aimed to utilize synergistic mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene-diene terpolymer (EPDM) have been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and organo-phosphites (hydroperoxide decomposer). Results were discussed by comparing the stabilizing efficiency of mixtures with and without phenol system. Among phenol containing systems where we mostly observed discoloration due to the oxidation of hindered phenol, the combination of secondary HAS, tertiary HAS, organo-phosphite and hindered phenol exhibited improved stabilization efficiency than single or binary additive systems. The mixture of secondary HAS and tertiary HAS, has shown antagonistic effect of stabilization. However, the combination of organo-phosphite with secondary HAS, tertiary HAS and phenol antioxidants have been found to give synergistic even at higher doses of -sterilization. The effects have been explained through the interaction between the stabilizers. After γ-irradiation, the consumption of oligomeric stabilizer significantly depends on the components of stabilization mixture. The effect of the organo-phosphite antioxidant on the overall stability has been discussed.Keywords: ethylene-propylene-diene terpolymer, synergistic mixtures, gamma sterilization, gamma stabilization
Procedia PDF Downloads 4401228 Optimal Sputtering Conditions for Nickel-Cermet Anodes in Intermediate Temperature Solid Oxide Fuel Cells
Authors: Waqas Hassan Tanveer, Yoon Ho Lee, Taehyun Park, Wonjong Yu, Yaegeun Lee, Yusung Kim, Suk Won Cha
Abstract:
Nickel-Gadolinium Doped Ceria (Ni-GDC) cermet anodic thin films were prepared on Scandia Stabilized Zirconia (ScSZ) electrolyte supports by radio frequency (RF) sputtering, with a range of different sputtering powers (50 – 200W) and background Ar gas pressures (30 – 90mTorr). The effects of varying sputtering power and pressure on the properties of Ni-GDC films were studied using Focused Ion Beam (FIB), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX), and Atomic Force Microscopy (AFM) techniques. The Ni content was found to be always higher than the Ce content, at all sputtering conditions. This increased Ni content was attributed to significantly higher energy transfer efficiency of Ni ions as compared to Ce ions with Ar background sputtering gas. The solid oxide fuel cell configuration was completed by using lanthanum strontium manganite (LSM/YSZ) cathodes on the other side of ScSZ supports. Performance comparison of cells was done by Voltage-Current-Power (VIP) curves, while the resistances of various cell components were observed by nyquist plots. Initial results showed that anode films made by higher powered RF sputtering performed better than lower powered ones for a specific Ar pressure. Interestingly, however, anodes made at highest power and pressure, were not the ones that showed the maximum power output at an intermediate solid oxide fuel cell temperature of 800°C. Finally, an optimal sputtering condition was reported for high performance Ni-GDC anodes.Keywords: intermediate temperature solid oxide fuel cells, nickel-cermet anodic thin films, nyquist plots, radio frequency sputtering
Procedia PDF Downloads 2401227 The Impact of Nonverbal Communication Between Restaurant Staff and Customers on Customer Attraction in Restaurants: A Case Study of Food Courts in Tehran City
Authors: Mahshid Asadollahi, Mohammad Akbari Asl
Abstract:
The restaurant industry is highly competitive, and restaurants are constantly looking for ways to attract new customers and retain their existing ones. Nonverbal communication is an important factor in creating a positive customer experience and can play a significant role in attracting customers to restaurants. Nonverbal communication can include body language, facial expressions, tone of voice, and physical proximity, among other things. The present study aimed to investigate the impact of nonverbal communication between restaurant employees and customers on attracting customers in food courts in Tehran. The research method was descriptive-correlational, and the statistical population of this study included all customers of food court restaurants in Tehran, which was about 30 restaurants. The research sample was selected through probability sampling, and 440 customers completed emotional response, customer satisfaction, and nonverbal communication questionnaires in person. The data obtained were analyzed using multiple regression analysis. The results showed that vocal language, employee proximity, physical appearance, and speech movements, as components of nonverbal communication of restaurant employees, had an impact on attracting customers. Additionally, positive and negative emotions of customers have a significant relationship with customer attraction in Food Court restaurants. The study shows that various nonverbal communication factors can play a significant role in attracting customers, and that positive and negative customer emotions can affect customer satisfaction. Therefore, restaurant owners and managers should pay attention to nonverbal communication and train their employees accordingly to create a positive and welcoming atmosphere for customers.Keywords: verbal language, proximity of employees, physical appearance, speech gestures, nonverbal communication, customer emotions, customer attraction
Procedia PDF Downloads 991226 Exploring the Visual Representations of Neon Signs and Its Vernacular Tacit Knowledge of Neon Making
Authors: Brian Kwok
Abstract:
Hong Kong is well-known for its name as "the Pearl of the Orient", due to its spectacular night-view with vast amount of decorative neon lights on the streets. Neon signs are first used as the pervasive media of communication for all kinds of commercial advertising, ranging from movie theatres to nightclubs and department stores, and later appropriated by artists as medium of artwork. As a well-established visual language, it displays texts in bilingual format due to British's colonial influence, which are sometimes arranged in an opposite reading order. Research on neon signs as a visual representation is rare but significant because they are part of people’s collective memories of the unique cityscapes which associate the shifting values of people's daily lives and culture identity. Nevertheless, with the current policy to remove abandoned neon signs, their total number dramatically declines recently. The Buildings Department found an estimation of 120,000 unauthorized signboards (including neon signs) in Hong Kong in 2013, and the removal of such is at a rate of estimated 1,600 per year since 2006. In other words, the vernacular cultural values and historical continuity of neon signs will gradually be vanished if no immediate action is taken in documenting them for the purpose of research and cultural preservation. Therefore, the Hong Kong Neon Signs Archive project was established in June of 2015, and over 100 neon signs are photo-documented so far. By content analysis, this project will explore the two components of neon signs – the use of visual languages and vernacular tacit knowledge of neon makers. It attempts to answer these questions about Hong Kong's neon signs: 'What are the ways in which visual representations are used to produce our cityscapes and streetscapes?'; 'What are the visual languages and conventions of usage in different business types?'; 'What the intact knowledge are applied when producing these visual forms of neon signs?'Keywords: cityscapes, neon signs, tacit knowledge, visual representation
Procedia PDF Downloads 3011225 Comparative Proteomic Analysis of Rice bri1 Mutant Leaves at Jointing-Booting Stage
Authors: Jiang Xu, Daoping Wang, Yinghong Pan
Abstract:
The jointing-booting stage is a critical period of both vegetative growth and reproductive growth in rice. Therefore, the proteomic analysis of the mutant Osbri1, whose corresponding gene OsBRI1 encodes the putative BRs receptor OsBRI1, at jointing-booting stage is very important for understanding the effects of BRs on vegetative and reproductive growth. In this study, the proteomes of leaves from an allelic mutant of the DWARF 61 (D61, OsBRI1) gene, Fn189 (dwarf54, d54) and its wild-type variety T65 (Taichung 65) at jointing-booting stage were analysed by using a Q Exactive plus orbitrap mass spectrometer, and more than 3,100 proteins were identified in each sample. Ontology analysis showed that these proteins distribute in various space of the cells, such as the chloroplast, mitochondrion, and nucleus, they functioned as structural components and/or catalytic enzymes and involved in many physiological processes. Moreover, quantitative analysis displayed that 266 proteins were differentially expressed in two samples, among them, 77 proteins decreased and 189 increased more than two times in Fn189 compared with T65, the proteins whose content decreased in Fn189 including b5-like Heme/Steroid binding domain containing protein, putative retrotransposon protein, putative glutaminyl-tRNA synthetase, and higher content proteins such as mTERF, putative Oligopeptidase homologue, zinc knuckle protein, and so on. A former study founded that the transcription level of a mTERF was up-regulated in the leaves of maize seedling after EBR treatment. In our experiments, it was interesting that one mTERF protein increased, but another mTERF decreased in leaves of Fn189 at jointing-booting stage, which suggested that BRs may have differential regulation mechanisms on the expression of various mTERF proteins. The relationship between other differential proteins with BRs is still unclear, and the effects of BRs on rice protein contents and its regulation mechanisms still need further research.Keywords: bri1 mutant, jointing-booting stage, proteomic analysis, rice
Procedia PDF Downloads 2471224 Assessment Client Satisfaction with Family Physician in Health Care Centers of Jiroft County and Its Relationship with Physician’ Demographic Variables
Authors: Babak Nemat Shahrbabaki, Arezo Fallahi, Masoomeh Hashemian
Abstract:
Introduction: Health and safety are basic components of civil right. Health care systems in different countries were influenced by political, economic and cultural circumstances. In order to health services to people, these systems are organized with different forms, methods such as: prevention, treatment and rehabilitation and in this among, public satisfaction with the services provided is important. This study aimed to determine client satisfaction with family physician and relationship with physician’ demographic variables in health care centers of Jiroft county, Iran. Methods: This is a descriptive-analytical study. The collective data tool was a self-made questionnaire with two parts. The first part comprised demographic characteristics, and the second part contained 11 items for the assessment of satisfaction with family physician from different aspects. In addition, questionnaire, reliability and validity were confirmed. Random simple sampling method was used to determine samples. 234 people referred to the health centers filled questionnaire. The data were analyzed using SPSS software, and inferential statistical analysis was performed. Findings: The majority of the study population were women, married, and aged between 18 and 62 years (mean= 30.09±10.71). Total average satisfaction score was 42.63±3.68. Overall satisfaction averages were 9.47% very high, 30.04% high, 33.09% moderate, 15.12% low, and 12.28% very low. Except lodge on of family physician none of physician’ demographic variables did not effect on satisfaction index. Discussion & Conclusion: The Results showed that mean of satisfaction indexes of family physicians was high and lodge on of family physician effected on this index. Informing people about the main goals of family-doctor program will help to promote the quality of program and increase people satisfaction.Keywords: family physician program, satisfaction, health-care centers, client
Procedia PDF Downloads 4431223 A Trend Based Forecasting Framework of the ATA Method and Its Performance on the M3-Competition Data
Authors: H. Taylan Selamlar, I. Yavuz, G. Yapar
Abstract:
It is difficult to make predictions especially about the future and making accurate predictions is not always easy. However, better predictions remain the foundation of all science therefore the development of accurate, robust and reliable forecasting methods is very important. Numerous number of forecasting methods have been proposed and studied in the literature. There are still two dominant major forecasting methods: Box-Jenkins ARIMA and Exponential Smoothing (ES), and still new methods are derived or inspired from them. After more than 50 years of widespread use, exponential smoothing is still one of the most practically relevant forecasting methods available due to their simplicity, robustness and accuracy as automatic forecasting procedures especially in the famous M-Competitions. Despite its success and widespread use in many areas, ES models have some shortcomings that negatively affect the accuracy of forecasts. Therefore, a new forecasting method in this study will be proposed to cope with these shortcomings and it will be called ATA method. This new method is obtained from traditional ES models by modifying the smoothing parameters therefore both methods have similar structural forms and ATA can be easily adapted to all of the individual ES models however ATA has many advantages due to its innovative new weighting scheme. In this paper, the focus is on modeling the trend component and handling seasonality patterns by utilizing classical decomposition. Therefore, ATA method is expanded to higher order ES methods for additive, multiplicative, additive damped and multiplicative damped trend components. The proposed models are called ATA trended models and their predictive performances are compared to their counter ES models on the M3 competition data set since it is still the most recent and comprehensive time-series data collection available. It is shown that the models outperform their counters on almost all settings and when a model selection is carried out amongst these trended models ATA outperforms all of the competitors in the M3- competition for both short term and long term forecasting horizons when the models’ forecasting accuracies are compared based on popular error metrics.Keywords: accuracy, exponential smoothing, forecasting, initial value
Procedia PDF Downloads 1771222 Conversion of Sweet Sorghum Bagasse to Sugars for Succinic Acid Production
Authors: Enlin Lo, Ioannis Dogaris, George Philippidis
Abstract:
Succinic acid is a compound used for manufacturing lacquers, resins, and other coating chemicals. It is also used in the food and beverage industry as a flavor additive. It is predominantly manufactured from petrochemicals, but it can also be produced by fermentation of sugars from renewable feedstocks, such as plant biomass. Bio-based succinic acid has great potential in becoming a platform chemical (building block) for commodity and high-value chemicals. In this study, the production of bio-based succinic acid from sweet sorghum was investigated. Sweet sorghum has high fermentable sugar content and can be cultivated in a variety of climates. In order to avoid competition with food feedstocks, its non-edible ‘bagasse’ (the fiber part after extracting the juice) was targeted. Initially, various conditions of pretreating sweet sorghum bagasse (SSB) were studied in an effort to remove most of the non-fermentable components and expose the cellulosic fiber containing the fermentable sugars (glucose). Concentrated (83%) phosphoric acid was utilized at temperatures 50-80 oC for 30-60 min at various SSB loadings (10-15%), coupled with enzymatic hydrolysis using commercial cellulase (Ctec2, Novozymes) enzyme, to identify the conditions that lead to the highest glucose yields for subsequent fermentation to succinic acid. As the pretreatment temperature and duration increased, the bagasse color changed from light brown to dark brown-black, indicating decomposition, which ranged from 15% to 72%, while the theoretical glucose yield is 91%. With Minitab software statistical analysis, a model was built to identify the optimal pretreatment condition for maximum glucose released. The projected theoretical bio-based succinic acid production is 23g per 100g of SSB, which will be confirmed with fermentation experiments using the bacterium Actinobacillus succinogenes.Keywords: biomass, cellulose, enzymatic hydrolysis, fermentation, pretreatment, succinic acid
Procedia PDF Downloads 2191221 The Impact of Lipids on Lung Fibrosis
Authors: G. Wojcik, J. Gindlhuber, A. Syarif, K. Hoetzenecker, P. Bohm, P. Vesely, V. Biasin, G. Kwapiszewska
Abstract:
Pulmonary fibrosis is a rare disease where uncontrolled wound healing processes damage the lung structure. Intensive changes within the extracellular matrix (ECM) and its interaction with fibroblasts have a major role in pulmonary fibrosis development. Among others, collagen is one of the main components of the ECM, and it is important for lung structure. In IPF, constant production of collagen by fibroblast, through TGFβ1-SMAD2/3 pathways, leads to an uncontrolled deposition of matrix and hence lung remodeling. Abnormal changes in lipid production, alterations in fatty acids (FAs) metabolism, enhanced oxidative stress, and lipid peroxidation in fibrotic lung and fibrotic fibroblasts have been reported; however, the interplay between the collagen and lipids is not yet established. One of the FAs influx regulators is Angiopoietin-like 4 (ANGPTL4), which inhibits lipoprotein lipase work, decreasing the availability of FAs. We hypothesized that altered lipid composition or availability could have the capability to influence the phenotype of different fibroblast populations in the lung and hence influence lung fibrosis. To prove our hypothesis, we aim to investigate lipids and their influence on human, animal, and in vitro levels. In the bleomycin model, treatment with the well-known metabolic drugs Rosiglitazone or Metformin significantly lower collagen production. Similar results were noticed in ANGPTL4 KO animals, where the KO of ANGPTL4 leads to an increase of FAs availability and lower collagen deposition after the bleomycin challenge. Currently, we study the treatment of different FAs on human lung para fibroblasts (hPF) isolated from donors. To understand the lipid composition, we are collecting human lung tissue from donors and pulmonary fibrosis patients for Liquid chromatography-mass spectrometry. In conclusion, our results suggest the lipid influence on collagen deposition during lung fibrosis, but further research needs to be conducted to understand the matter of this relationship.Keywords: collagen, fibroblasts, lipidomics, lung, pulmonary fibrosis
Procedia PDF Downloads 841220 Optimization of Ultrasound Assisted Extraction of Polysaccharides from Plant Waste Materials: Selected Model Material is Hazelnut Skin
Abstract:
In this study, optimization of ultrasound assisted extraction (UAE) of hemicellulose based polysaccharides from plant waste material has been studied. Selected material is hazelnut skin. Extraction variables for the operation are extraction time, amplitude and application temperature. Optimum conditions have been evaluated depending on responses such as amount of wet crude polysaccharide, total carbohydrate content and dried sample. Pretreated hazelnut skin powders were used for the experiments. 10 grams of samples were suspended in 100 ml water in a jacketed vessel with additional magnetic stirring. Mixture was sonicated by immersing ultrasonic probe processor. After the extraction procedures, ethanol soluble and insoluble sides were separated for further examinations. The obtained experimental data were analyzed by analysis of variance (ANOVA). Second order polynomial models were developed using multiple regression analysis. The individual and interactive effects of applied variables were evaluated by Box Behnken Design. The models developed from the experimental design were predictive and good fit with the experimental data with high correlation coefficient value (R2 more than 0.95). Extracted polysaccharides from hazelnut skin are assumed to be pectic polysaccharides according to the literature survey of Fourier Transform Spectrometry (FTIR) analysis results. No more change can be observed between spectrums of different sonication times. Application of UAE at optimized condition has an important effect on extraction of hemicellulose from plant material by satisfying partial hydrolysis to break the bounds with other components in plant cell wall material. This effect can be summarized by varied intensity of microjets and microstreaming at varied sonication conditions.Keywords: hazelnut skin, optimization, polysaccharide, ultrasound assisted extraction
Procedia PDF Downloads 3311219 Simulation of GAG-Analogue Biomimetics for Intervertebral Disc Repair
Authors: Dafna Knani, Sarit S. Sivan
Abstract:
Aggrecan, one of the main components of the intervertebral disc (IVD), belongs to the family of proteoglycans (PGs) that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein. Its primary function is to maintain tissue hydration and hence disc height under the high loads imposed by muscle activity and body weight. Significant PG loss is one of the first indications of disc degeneration. A possible solution to recover disc functions is by injecting a synthetic hydrogel into the joint cavity, hence mimicking the role of PGs. One of the hydrogels proposed is GAG-analogues, based on sulfate-containing polymers, which are responsible for hydration in disc tissue. In the present work, we used molecular dynamics (MD) to study the effect of the hydrogel crosslinking (type and degree) on the swelling behavior of the suggested GAG-analogue biomimetics by calculation of cohesive energy density (CED), solubility parameter, enthalpy of mixing (ΔEmix) and the interactions between the molecules at the pure form and as a mixture with water. The simulation results showed that hydrophobicity plays an important role in the swelling of the hydrogel, as indicated by the linear correlation observed between solubility parameter values of the copolymers and crosslinker weight ratio (w/w); this correlation was found useful in predicting the amount of PEGDA needed for the desirable hydration behavior of (CS)₄-peptide. Enthalpy of mixing calculations showed that all the GAG analogs, (CS)₄ and (CS)₄-peptide are water-soluble; radial distribution function analysis revealed that they form interactions with water molecules, which is important for the hydration process. To conclude, our simulation results, beyond supporting the experimental data, can be used as a useful predictive tool in the future development of biomaterials, such as disc replacement.Keywords: molecular dynamics, proteoglycans, enthalpy of mixing, swelling
Procedia PDF Downloads 751218 Effect of Volute Tongue Shape and Position on Performance of Turbo Machinery Compressor
Authors: Anuj Srivastava, Kuldeep Kumar
Abstract:
This paper proposes a numerical study of volute tongue design, which affects the centrifugal compressor operating range and pressure recovery. Increased efficiency has been the traditional importance of compressor design. However, the increased operating range has become important in an age of ever-increasing productivity and energy costs in the turbomachinery industry. Efficiency and overall operating range are the two most important parameters studied to evaluate the aerodynamic performance of centrifugal compressor. Volute is one of the components that have significant effect on these two parameters. Choice of volute tongue geometry has major role in compressor performance, also affects performance map. The author evaluates the trade-off on using pull-back tongue geometry on centrifugal compressor performance. In present paper, three different tongue positions and shapes are discussed. These designs are compared in terms of pressure recovery coefficient, pressure loss coefficient, and stable operating range. The detailed flow structures for various volute geometries and pull back angle near tongue are studied extensively to explore the fluid behavior. The viscous Navier-Stokes equations are used to simulate the flow inside the volute. The numerical calculations are compared with thermodynamic 1-D calculations. Author concludes that the increment in compression ratio accompanies with more uniform pressure distribution in the modified tongue shape and location, a uniform static pressure around the circumferential which build a more uniform flow in the impeller and diffuser. Also, the blockage at the tongue of the volute was causing circumferentially nonuniformed pressure along the volute. This nonuniformity may lead impeller and diffuser to operate unstably. However, it is not the volute that directly controls the stall.Keywords: centrifugal compressor volute, tongue geometry, pull-back, compressor performance, flow instability
Procedia PDF Downloads 1631217 Nutritional Advantages of Millet (Panucum Miliaceum L) and Opportunities for Its Processing as Value Added Foods
Authors: Fatima Majeed Almonajim
Abstract:
Panucum miliaceum L is a plant from the genus Gramineae, In the world, millets are regarded as a significant grain, however, they are very little exploited. Millet grain is abundant in nutrients and health-beneficial phenolic compounds, making it suitable as food and feed. The plant has received considerable attention for its high content of phenolic compounds, low glycemic index, the presence of unsaturated fats and lack of gluten which are beneficial to human health, and thus, have made the plant being effective in treating celiac disease, diabetes, lowering blood lipids (cholesterol) and preventing tumors. Moreover, the plant requires little water to grow, a property that is worth considering. This study provides an overview of the nutritional and health benefits provided by millet types grown in 2 areas Iraq and Iran, aiming to compare the effect of climate on the components of millet. In this research, millet samples collected from the both Babylon (Iraqi) and Isfahan (Iranian) types were extracted and after HPTLC, the resulted pattern of the two samples were compared. As a result, the Iranian millet showed more terpenoid compounds than Iraqi millet, and therefore, Iranian millet has a higher priority than Iraqi millet in increasing the human body's immunity. On the other hand, in view of the number of essential amino acids, the Iraqi millet contains more nutritional value compared to the Iranian millet. Also, due to the higher amount of histidine in the Iranian millet, compiled to the lack of gluten found from previous studies, we came to the conclusion that the addition of millet in the diet of children, more specifically those children with irritable bowel syndrome, can be considered beneficial. Therefore, as a component of dairy products, millet can be used in preparing food for children such as dry milk.Keywords: HPTLC, phytochemicals, specialty foods, Panucum miliaceum L, nutrition
Procedia PDF Downloads 951216 Development of Functional Cosmetic Materials from Demilitarized Zone Habiting Plants
Authors: Younmin Shin, Jin Kyu Kim, Mirim Jin, Jeong June Choi
Abstract:
Demilitarized Zone (DMZ) is a peace region located between South and North Korea border to avoid accidental armed conflict. Because human accessing to the area was forced to be prohibited for more than 60 years, DMZ is one of the cleanest land keeping wild lives as nature itself in South Korea. In this study, we evaluated the biological efficacies of plants (SS, PC, and AR) inhabiting in DMZ for the development of functional cosmetics. First, we tested the cytotoxicity of plant extracts in keratinocyte and melanocyte, which are the major cell components of skin. By 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with the cell lines, we determined the safety concentrations of the extracts for the efficacy tests. Next, we assessed the anti-wrinkle cosmetic function of SS by demonstrating that SS treatment decreased the expression of Matrix metalloproteinase-1 (MMP-1) in UV-irradiated keratinocytes via real-time PCR. The suppressive effect of SS was greatly potentiated by combination with other DMZ-inhabiting plants, PC and AR. The expression of tyrosinase, which is one the main enzyme that producing melanin in melanocyte, was also down-regulated by the DMZ-inhabiting SS extract. Wound healing activity was also investigated by in vitro test with HaCat cell line, a human fibroblast cell line. All the natural materials extracted form DMZ habiting plants accelerated the recovery of the cells. These results suggested that DMZ is a treasure island of functional plants and DMZ-inhabiting natural products are warranted to develop functional cosmetic materials. This study was carried out with the support of R&D Program for Forest Science Technology (Project No. 2017027A00-1819-BA01) provided by Korea Forest Service (Korea Forestry Promotion Institute).Keywords: anti-wrinkle, Demilitarized Zone, functional cosmetics, whitening
Procedia PDF Downloads 1441215 In vitro Antioxidant and Antisickling Effects of Aerva javanica, and Ficus palmata Extracts on Sickle Cell Anemia
Authors: E. A. Alaswad, H. M. Choudhry, F. Z. Filimban
Abstract:
Sickle Cell Anemia (SCA) is one type of blood diseases related to autosomal disorder. The sickle shaped red blood cells are the main cause of many problems in the blood vessels and capillaries. Aerva Javanica (J) and Ficus Palmata (P) are medicinal plants that have many popular uses and have been proved their efficacy. The aim of this study was to assess the antioxidants activity and the antisickling effect of J and P extractions. The period of this study, air-dried leaves of J, and P plants were ground and the active components were extracted by maceration in water (W) and methanol (M) as solvents. The antioxidants activity of JW, PW, JM, and PM were assessed by way of the radical scavenging method using 2,2-diphenyl-1-picrylhydrazyl (DPPH). To determine the antisickling effect of J and P extracts. 20 samples were collected from sickle cell anemia patients. Different concentrations of J and P extracts (200 and 110 μg/mL) were added on the sample and incubated. A drop of each sample was examined with light microscope. Normal and sickled RBCs were calculated and expressed as the percent of sickling. The stabilization effect of the extracts was measured by the osmotic fragility test for erythrocytes. The finding suggests as estimated by DPPH method, all the extracts showed an antioxidant activity with a significant inhibition of the DPPH radicals. PM has the least IC50% with 71.49 μg/ml while JM was the most with 408.49 μg/ml. Sickle cells treated with extracts at different concentrations significantly reduced the percentage of sickling compering to control samples. However, JM 200 μg/mL give the highest anti-sickling affect with 17.4% of sickling compared to control 67.5 of sickling while PM at 200 μg/mL showed the highest membrane cell stability. In a conclusion, the results showed that J and P extracts have antisickling effects. Therefore, the Aerva javanica and Ficus palmata may have a role in SCA management and a good impact on the patient's lives.Keywords: Aerva javanica, antioxidant, antisickling, Ficus palmata, sickle cell anemia
Procedia PDF Downloads 1681214 Diversification of Rice-Based Cropping Systems under Irrigated Condition
Authors: A. H. Nanher, N. P. Singh
Abstract:
In India, Agriculture is largely in rice- based cropping system. It has indicated decline in factor productivity along with emergence of multi - nutrient deficiency, buildup of soil pathogen and weed flora because it operates and removes nutrients from the same rooting depth. In designing alternative cropping systems, the common approaches are crop intensification, crop diversification and cultivar options. The intensification leads to the diversification of the cropping system. Intensification is achieved by introducing an additional component crop in a pre-dominant sequential system by desirable adjustments in cultivars of one or all the component crops. Invariably, this results in higher land use efficiency and productivity per unit time Crop Diversification through such crop and inclusion of fodder crops help to improve the economic situation of small and marginal farmers because of higher income. Inclusion of crops in sequential and intercropping systems reduces some obnoxious weeds through formation of canopies due to competitive planting pattern and thus provides an opportunity to utilize cropping systems as a tool of weed management with non-chemical means. Use of organic source not only acts as supplement for fertilizer (nitrogen) but also improve the physico-chemical properties of soils. Production and use of nitrogen rich biomass offer better prospect for supplementing chemical fertilizers on regular basis. Such biological diversity brings yield and economic stability because of its potential for compensation among components of the system. In a particular agro-climatic and resource condition, the identification of most suitable crop sequence is based on its productivity, stability, land use efficiency as well as production efficiency and its performance is chiefly judged in terms of productivity and net return.Keywords: integrated farming systems, sustainable intensification, system of crop intensification, wheat
Procedia PDF Downloads 4241213 Model-Based Approach as Support for Product Industrialization: Application to an Optical Sensor
Authors: Frederic Schenker, Jonathan J. Hendriks, Gianluca Nicchiotti
Abstract:
In a product industrialization perspective, the end-product shall always be at the peak of technological advancement and developed in the shortest time possible. Thus, the constant growth of complexity and a shorter time-to-market calls for important changes on both the technical and business level. Undeniably, the common understanding of the system is beclouded by its complexity which leads to the communication gap between the engineers and the sale department. This communication link is therefore important to maintain and increase the information exchange between departments to ensure a punctual and flawless delivery to the end customer. This evolution brings engineers to reason with more hindsight and plan ahead. In this sense, they use new viewpoints to represent the data and to express the model deliverables in an understandable way that the different stakeholder may identify their needs and ideas. This article focuses on the usage of Model-Based System Engineering (MBSE) in a perspective of system industrialization and reconnect the engineering with the sales team. The modeling method used and presented in this paper concentrates on displaying as closely as possible the needs of the customer. Firstly, by providing a technical solution to the sales team to help them elaborate commercial offers without omitting technicalities. Secondly, the model simulates between a vast number of possibilities across a wide range of components. It becomes a dynamic tool for powerful analysis and optimizations. Thus, the model is no longer a technical tool for the engineers, but a way to maintain and solidify the communication between departments using different views of the model. The MBSE contribution to cost optimization during New Product Introduction (NPI) activities is made explicit through the illustration of a case study describing the support provided by system models to architectural choices during the industrialization of a novel optical sensor.Keywords: analytical model, architecture comparison, MBSE, product industrialization, SysML, system thinking
Procedia PDF Downloads 1611212 Determination of Temperature Dependent Characteristic Material Properties of Commercial Thermoelectric Modules
Authors: Ahmet Koyuncu, Abdullah Berkan Erdogmus, Orkun Dogu, Sinan Uygur
Abstract:
Thermoelectric modules are integrated to electronic components to keep their temperature in specific values in electronic cooling applications. They can be used in different ambient temperatures. The cold side temperatures of thermoelectric modules depend on their hot side temperatures, operation currents, and heat loads. Performance curves of thermoelectric modules are given at most two different hot surface temperatures in product catalogs. Characteristic properties are required to select appropriate thermoelectric modules in thermal design phase of projects. Generally, manufacturers do not provide characteristic material property values of thermoelectric modules to customers for confidentiality. Common commercial software applied like ANSYS ICEPAK, FloEFD, etc., include thermoelectric modules in their libraries. Therefore, they can be easily used to predict the effect of thermoelectric usage in thermal design. Some software requires only the performance values in different temperatures. However, others like ICEPAK require three temperature-dependent equations for material properties (Seebeck coefficient (α), electrical resistivity (β), and thermal conductivity (γ)). Since the number and the variety of thermoelectric modules are limited in this software, definitions of characteristic material properties of thermoelectric modules could be required. In this manuscript, the method of derivation of characteristic material properties from the datasheet of thermoelectric modules is presented. Material characteristics were estimated from two different performance curves by experimentally and numerically in this study. Numerical calculations are accomplished in ICEPAK by using a thermoelectric module exists in the ICEPAK library. A new experimental setup was established to perform experimental study. Because of similar results of numerical and experimental studies, it can be said that proposed equations are approved. This approximation can be suggested for the analysis includes different type or brand of TEC modules.Keywords: electrical resistivity, material characteristics, thermal conductivity, thermoelectric coolers, seebeck coefficient
Procedia PDF Downloads 1791211 Technological Development of a Biostimulant Bioproduct for Fruit Seedlings: An Engineering Overview
Authors: Andres Diaz Garcia
Abstract:
The successful technological development of any bioproduct, including those of the biostimulant type, requires to adequately completion of a series of stages allied to different disciplines that are related to microbiological, engineering, pharmaceutical chemistry, legal and market components, among others. Engineering as a discipline has a key contribution in different aspects of fermentation processes such as the design and optimization of culture media, the standardization of operating conditions within the bioreactor and the scaling of the production process of the active ingredient that it will be used in unit operations downstream. However, all aspects mentioned must take into account many biological factors of the microorganism such as the growth rate, the level of assimilation to various organic and inorganic sources and the mechanisms of action associated with its biological activity. This paper focuses on the practical experience within the Colombian Corporation for Agricultural Research (Agrosavia), which led to the development of a biostimulant bioproduct based on native rhizobacteria Bacillus amyloliquefaciens, oriented mainly to plant growth promotion in cape gooseberry nurseries and fruit crops in Colombia, and the challenges that were overcome from the expertise in the area of engineering. Through the application of strategies and engineering tools, a culture medium was optimized to obtain concentrations higher than 1E09 CFU (colony form units)/ml in liquid fermentation, the process of biomass production was standardized and a scale-up strategy was generated based on geometric (H/D of bioreactor relationships), and operational criteria based on a minimum dissolved oxygen concentration and that took into account the differences in the capacity of control of the process in the laboratory and pilot scales. Currently, the bioproduct obtained through this technological process is in stages of registration in Colombia for cape gooseberry fruits for export.Keywords: biochemical engineering, liquid fermentation, plant growth promoting, scale-up process
Procedia PDF Downloads 1121210 Utilization of Activated Carbon for the Extraction and Separation of Methylene Blue in the Presence of Acid Yellow 61 Using an Inclusion Polymer Membrane
Authors: Saâd Oukkass, Abderrahim Bouftou, Rachid Ouchn, L. Lebrun, Miloudi Hlaibi
Abstract:
We invariably exist in a world steeped in colors, whether in our clothing, food, cosmetics, or even medications. However, most of the dyes we use pose significant problems, being both harmful to the environment and resistant to degradation. Among these dyes, methylene blue and acid yellow 61 stand out, commonly used to dye various materials such as cotton, wood, and silk. Fortunately, various methods have been developed to treat and remove these polluting dyes, among which membrane processes play a prominent role. These methods are praised for their low energy consumption, ease of operation, and their ability to achieve effective separation of components. Adsorption on activated carbon is also a widely employed technique, complementing the basic processes. It proves particularly effective in capturing and removing organic compounds from water due to its substantial specific surface area while retaining its properties unchanged. In the context of our study, we examined two crucial aspects. Firstly, we explored the possibility of selectively extracting methylene blue from a mixture containing another dye, acid yellow 61, using a polymer inclusion membrane (PIM) made of PVA. After characterizing the morphology and porosity of the membrane, we applied kinetic and thermodynamic models to determine the values of permeability (P), initial flux (J0), association constant (Kass), and apparent diffusion coefficient (D*). Subsequently, we measured activation parameters (activation energy (Ea), enthalpy (ΔH#ass), entropy (ΔS#)). Finally, we studied the effect of activated carbon on the processes carried out through the membrane, demonstrating a clear improvement. These results make the membrane developed in this study a potentially pivotal player in the field of membrane separation.Keywords: dyes, methylene blue, membrane, activated carbon
Procedia PDF Downloads 811209 Combustion Characteristics of Wet Woody Biomass in a Grate Furnace: Including Measurements within the Bed
Authors: Narges Razmjoo, Hamid Sefidari, Michael Strand
Abstract:
Biomass combustion is a growing technique for heat and power production due to the increasing stringent regulations with CO2 emissions. Grate-fired systems have been regarded as a common and popular combustion technology for burning woody biomass. However, some grate furnaces are not well optimized and may emit significant amount of unwanted compounds such as dust, NOx, CO, and unburned gaseous components. The combustion characteristics inside the fuel bed are of practical interest, as they are directly related to the release of volatiles and affect the stability and the efficiency of the fuel bed combustion. Although numerous studies have been presented on the grate firing of biomass, to the author’s knowledge, none of them have conducted a detailed experimental study within the fuel bed. It is difficult to conduct measurements of temperature and gas species inside the burning bed of the fuel in full-scale boilers. Results from such inside bed measurements can also be applied by the numerical experts for modeling the fuel bed combustion. The current work presents an experimental investigation into the combustion behavior of wet woody biomass (53 %) in a 4 MW reciprocating grate boiler, by focusing on the gas species distribution along the height of the fuel bed. The local concentrations of gases (CO, CO2, CH4, NO, and O2) inside the fuel bed were measured through a glass port situated on the side wall of the furnace. The measurements were carried out at five different heights of the fuel bed, by means of a bent stainless steel probe containing a type-k thermocouple. The sample gas extracted from the fuel bed, through the probe, was filtered and dried and then was analyzed using two infrared spectrometers. Temperatures of about 200-1100 °C were measured close to the grate, indicating that char combustion is occurring at the bottom of the fuel bed and propagates upward. The CO and CO2 concentration varied in the range of 15-35 vol % and 3-16 vol %, respectively, and NO concentration varied between 10-140 ppm. The profile of the gas concentrations distribution along the bed height provided a good overview of the combustion sub-processes in the fuel bed.Keywords: experimental, fuel bed, grate firing, wood combustion
Procedia PDF Downloads 3261208 Integration of Polarization States and Color Multiplexing through a Singular Metasurface
Authors: Tarik Sipahi
Abstract:
Photonics research continues to push the boundaries of optical science, and the development of metasurface technology has emerged as a transformative force in this domain. The work presents the intricacies of a unified metasurface design tailored for efficient polarization and color control in optical systems. The proposed unified metasurface serves as a singular, nanoengineered optical element capable of simultaneous polarization modulation and color encoding. Leveraging principles from metamaterials and nanophotonics, this design allows for unprecedented control over the behavior of light at the subwavelength scale. The metasurface's spatially varying architecture enables seamless manipulation of both polarization states and color wavelengths, paving the way for a paradigm shift in optical system design. The advantages of this unified metasurface are diverse and impactful. By consolidating functions that traditionally require multiple optical components, the design streamlines optical systems, reducing complexity and enhancing overall efficiency. This approach is particularly promising for applications where compactness, weight considerations, and multifunctionality are crucial. Furthermore, the proposed unified metasurface design not only enhances multifunctionality but also addresses key challenges in optical system design, offering a versatile solution for applications demanding compactness and lightweight structures. The metasurface's capability to simultaneously manipulate polarization and color opens new possibilities in diverse technological fields. The research contributes to the evolution of optical science by showcasing the transformative potential of metasurface technology, emphasizing its role in reshaping the landscape of optical system architectures. This work represents a significant step forward in the ongoing pursuit of pushing the boundaries of photonics, providing a foundation for future innovations in compact and efficient optical devices.Keywords: metasurface, nanophotonics, optical system design, polarization control
Procedia PDF Downloads 531207 Modeling and Design of E-mode GaN High Electron Mobility Transistors
Authors: Samson Mil'shtein, Dhawal Asthana, Benjamin Sullivan
Abstract:
The wide energy gap of GaN is the major parameter justifying the design and fabrication of high-power electronic components made of this material. However, the existence of a piezo-electrics in nature sheet charge at the AlGaN/GaN interface complicates the control of carrier injection into the intrinsic channel of GaN HEMTs (High Electron Mobility Transistors). As a result, most of the transistors created as R&D prototypes and all of the designs used for mass production are D-mode devices which introduce challenges in the design of integrated circuits. This research presents the design and modeling of an E-mode GaN HEMT with a very low turn-on voltage. The proposed device includes two critical elements allowing the transistor to achieve zero conductance across the channel when Vg = 0V. This is accomplished through the inclusion of an extremely thin, 2.5nm intrinsic Ga₀.₇₄Al₀.₂₆N spacer layer. The added spacer layer does not create piezoelectric strain but rather elastically follows the variations of the crystal structure of the adjacent GaN channel. The second important factor is the design of a gate metal with a high work function. The use of a metal gate with a work function (Ni in this research) greater than 5.3eV positioned on top of n-type doped (Nd=10¹⁷cm⁻³) Ga₀.₇₄Al₀.₂₆N creates the necessary built-in potential, which controls the injection of electrons into the intrinsic channel as the gate voltage is increased. The 5µm long transistor with a 0.18µm long gate and a channel width of 30µm operate at Vd=10V. At Vg =1V, the device reaches the maximum drain current of 0.6mA, which indicates a high current density. The presented device is operational at frequencies greater than 10GHz and exhibits a stable transconductance over the full range of operational gate voltages.Keywords: compound semiconductors, device modeling, enhancement mode HEMT, gallium nitride
Procedia PDF Downloads 2601206 Adopt and Apply Research-Supported Standards and Practices to Ensure Quality for Online Education and Digital Learning at Course, Program and Institutional Levels
Authors: Yaping Gao
Abstract:
With the increasing globalization of education and the continued momentum and wider adoption of online and digital learning all over the world, post pandemic, how could best practices and extensive experience gained from the higher education community over the past few decades be adopted and adapted to benefit international communities, which can be vastly different culturally and pedagogically? How can schools and institutions adopt, adapt and apply these proven practices to develop strategic plans for digital transformation at institutional levels, and to improve or create quality online or digital learning environments at course and program levels to help all students succeed? The presenter will introduce the primary components of the US-based quality assurance process, including : 1) five sets of research-supported standards to guide the design, development and review of online and hybrid courses; 2) professional development offerings and pathways for administrators, faculty and instructional support staff; 3) a peer-review process for course/program reviews resulting in constructive recommendations for continuous improvement, certification of quality and international recognition; and 4) implementation of the quality assurance process on a continuum to program excellence, achievement of institutional goals, and facilitation of accreditation process and success. Regardless language, culture, pedagogical practices, or technological infrastructure, the core elements of quality teaching and learning remain the same across all delivery formats. What is unique is how to ensure quality of teaching and learning in online education and digital learning. No one knows all the answers to everything but no one needs to reinvent the wheel either. Together the international education community can support and learn from each other to achieve institutional goals and ensure all students succeed in the digital learning environments.Keywords: Online Education, Digital Learning, Quality Assurance, Standards and Best Practices
Procedia PDF Downloads 25