Search results for: Sustainable architecture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6208

Search results for: Sustainable architecture

3178 Mind Care Assistant - Companion App

Authors: Roshani Gusain, Deep Sinha, Karan Nayal, Anmol Kumar Mishra, Manav Singh

Abstract:

In this research paper, we introduce "Mind Care Assistant - Companion App", which is a Flutter and Firebase-based mental health monitor. The app wants to improve and monitor the mental health of its users, it uses noninvasive ways to check for a change in their emotional state. By responding to questions, the app will provide individualized suggestions ᅳ tasks and mindfulness exercises ᅳ for users who are depressed or anxious. The app features a chat-bot that incorporates cognitive behavioural therapy (CBT) principles and combines natural language processing with machine learning to develop personalised responses. The feature of the app that makes it easy for us to choose between iOS and Android is cross-platform, which allows users from both mobile systems to experience almost no changes in their interfaces. With Firebase integration synchronized and real-time data storage, security is easily possible. The paper covers the architecture of the app, how it was developed and some important features. The primary research result presents the promise of a "Mind Care Assistant" in mental health care using new wait-for-health technology, proposing a full stack application to be able to manage depression/anxiety and overall Mental well-being very effectively.

Keywords: mental health, mobile application, flutter, firebase, Depression, Anxiety

Procedia PDF Downloads 12
3177 The Invisible Planner: Unearthing the Informal Dynamics Shaping Mixed-Use and Compact Development in Ghanaian Cities

Authors: Muwaffaq Usman Adam, Isaac Quaye, Jim Anbazu, Yetimoni Kpeebi, Michael Osei-Assibey

Abstract:

Urban informality, characterized by spontaneous and self-organized practices, plays a significant but often overlooked role in shaping the development of cities, particularly in the context of mixed-use and compact urban environments. This paper aims to explore the invisible planning processes inherent in informal practices and their influence on the urban form of Ghanaian cities. By examining the dynamic interplay between informality and formal planning, the study will discuss the ways in which informal actors shape and plan for mixed-use and compact development. Drawing on the synthesis of relevant secondary data, the research will begin by defining urban informality and identifying the factors that contribute to its prevalence in Ghanaian cities. It will delve into the concept of mixed-use and compact development, highlighting its benefits and importance in urban areas. Drawing on case studies, the paper will uncover the hidden planning processes that occur within informal settlements, showcasing their impact on the physical layout, land use, and spatial arrangements of Ghanaian cities. The study will also uncover the challenges and opportunities associated with informal planning. It examines the constraints faced by informal planners (actors) while also exploring the potential benefits and opportunities that emerge when informality is integrated into formal planning frameworks. By understanding the invisible planner, the research will offer valuable insights into how informal practices can contribute to sustainable and inclusive urban development. Based on the findings, the paper will present policy implications and recommendations. It highlights the need to bridge the policy gaps and calls for the recognition of informal planning practices within formal systems. Strategies are proposed to integrate informality into planning frameworks, fostering collaboration between formal and informal actors to achieve compact and mixed-use development in Ghanaian cities. This research underscores the importance of recognizing and leveraging the invisible planner in Ghanaian cities. By embracing informal planning practices, cities can achieve more sustainable, inclusive, and vibrant urban environments that meet the diverse needs of their residents. This research will also contribute to a deeper understanding of the complex dynamics between informality and planning, advocating for inclusive and collaborative approaches that harness the strengths of both formal and informal actors. The findings will likewise contribute to advancing our understanding of informality's role as an invisible yet influential planner, shedding light on its spatial planning implications on Ghanaian cities.

Keywords: informality, mixed-uses, compact development, land use, ghana

Procedia PDF Downloads 124
3176 Systematic Review of Digital Interventions to Reduce the Carbon Footprint of Primary Care

Authors: Anastasia Constantinou, Panayiotis Laouris, Stephen Morris

Abstract:

Background: Climate change has been reported as one of the worst threats to healthcare. The healthcare sector is a significant contributor to greenhouse gas emissions with primary care being responsible for 23% of the NHS’ total carbon footprint. Digital interventions, primarily focusing on telemedicine, offer a route to change. This systematic review aims to quantify and characterize the carbon footprint savings associated with the implementation of digital interventions in the setting of primary care. Methods: A systematic review of published literature was conducted according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) guidelines. MEDLINE, PubMed, and Scopus databases as well as Google scholar were searched using key terms relating to “carbon footprint,” “environmental impact,” “sustainability”, “green care”, “primary care,”, and “general practice,” using citation tracking to identify additional articles. Data was extracted and analyzed in Microsoft Excel. Results: Eight studies were identified conducted in four different countries between 2010 and 2023. Four studies used interventions to address primary care services, three studies focused on the interface between primary and specialist care, and one study addressed both. Digital interventions included the use of mobile applications, online portals, access to electronic medical records, electronic referrals, electronic prescribing, video-consultations and use of autonomous artificial intelligence. Only one study carried out a complete life cycle assessment to determine the carbon footprint of the intervention. It estimate that digital interventions reduced the carbon footprint at primary care level by 5.1 kgCO2/visit, and at the interface with specialist care by 13.4 kg CO₂/visit. When assessing the relationship between travel-distance saved and savings in emissions, we identified a strong correlation, suggesting that most of the carbon footprint reduction is attributed to reduced travel. However, two studies also commented on environmental savings associated with reduced use of paper. Patient savings in the form of reduced fuel cost and reduced travel time were also identified. Conclusion: All studies identified significant reductions in carbon footprint following implementation of digital interventions. In the future, controlled, prospective studies incorporating complete life cycle assessments and accounting for double-consulting effects, use of additional resources, technical failures, quality of care and cost-effectiveness are needed to fully appreciate the sustainable benefit of these interventions

Keywords: carbon footprint, environmental impact, primary care, sustainable healthcare

Procedia PDF Downloads 62
3175 An Enhanced Distributed Weighted Clustering Algorithm for Intra and Inter Cluster Routing in MANET

Authors: K. Gomathi

Abstract:

Mobile Ad hoc Networks (MANET) is defined as collection of routable wireless mobile nodes with no centralized administration and communicate each other using radio signals. Especially MANETs deployed in hostile environments where hackers will try to disturb the secure data transfer and drain the valuable network resources. Since MANET is battery operated network, preserving the network resource is essential one. For resource constrained computation, efficient routing and to increase the network stability, the network is divided into smaller groups called clusters. The clustering architecture consists of Cluster Head(CH), ordinary node and gateway. The CH is responsible for inter and intra cluster routing. CH election is a prominent research area and many more algorithms are developed using many different metrics. The CH with longer life sustains network lifetime, for this purpose Secondary Cluster Head(SCH) also elected and it is more economical. To nominate efficient CH, a Enhanced Distributed Weighted Clustering Algorithm (EDWCA) has been proposed. This approach considers metrics like battery power, degree difference and speed of the node for CH election. The proficiency of proposed one is evaluated and compared with existing algorithm using Network Simulator(NS-2).

Keywords: MANET, EDWCA, clustering, cluster head

Procedia PDF Downloads 398
3174 Role of Machine Learning in Internet of Things Enabled Smart Cities

Authors: Amit Prakash Singh, Shyamli Singh, Chavi Srivastav

Abstract:

This paper presents the idea of Internet of Thing (IoT) for the infrastructure of smart cities. Internet of Thing has been visualized as a communication prototype that incorporates myriad of digital services. The various component of the smart cities shall be implemented using microprocessor, microcontroller, sensors for network communication and protocols. IoT enabled systems have been devised to support the smart city vision, of which aim is to exploit the currently available precocious communication technologies to support the value-added services for function of the city. Due to volume, variety, and velocity of data, it requires analysis using Big Data concept. This paper presented the various techniques used to analyze big data using machine learning.

Keywords: IoT, smart city, embedded systems, sustainable environment

Procedia PDF Downloads 575
3173 HcDD: The Hybrid Combination of Disk Drives in Active Storage Systems

Authors: Shu Yin, Zhiyang Ding, Jianzhong Huang, Xiaojun Ruan, Xiaomin Zhu, Xiao Qin

Abstract:

Since large-scale and data-intensive applications have been widely deployed, there is a growing demand for high-performance storage systems to support data-intensive applications. Compared with traditional storage systems, next-generation systems will embrace dedicated processor to reduce computational load of host machines and will have hybrid combinations of different storage devices. The advent of flash- memory-based solid state disk has become a critical role in revolutionizing the storage world. However, instead of simply replacing the traditional magnetic hard disk with the solid state disk, it is believed that finding a complementary approach to corporate both of them is more challenging and attractive. This paper explores an idea of active storage, an emerging new storage configuration, in terms of the architecture and design, the parallel processing capability, the cooperation of other machines in cluster computing environment, and a disk configuration, the hybrid combination of different types of disk drives. Experimental results indicate that the proposed HcDD achieves better I/O performance and longer storage system lifespan.

Keywords: arallel storage system, hybrid storage system, data inten- sive, solid state disks, reliability

Procedia PDF Downloads 448
3172 Investigating Water-Oxidation Using a Ru(III) Carboxamide Water Coordinated Complex

Authors: Yosra M. Badiei, Evelyn Ortiz, Marisa Portenti, David Szalda

Abstract:

Water-oxidation half-reaction is a critical reaction that can be driven by a sustainable energy source (e.g., solar or wind) and be coupled with a chemical fuel making reaction which stores the released electrons and protons from water (e.g., H₂ or methanol). The use of molecular water-oxidation catalysts (WOC) allow the rationale design of redox active metal centers and provides a better understanding of their structure-activity-relationship. Herein, the structure of a Ru(III) complex bearing a doubly deprotonated N,N'-bis(aryl)pyridine-2,6-dicarboxamide ligand which contains a water molecule in its primary coordination sphere was elucidated by single-crystal X-ray diffraction. Further spectroscopic experimental data and pH-dependent electrochemical studies reveal its water-oxidation reactivity. Emphasis on mechanistic details for O₂ formation of this complex will be addressed.

Keywords: water-oxidation, catalysis, ruthenium, artificial photosynthesis

Procedia PDF Downloads 201
3171 Modular, Responsive, and Interactive Green Walls - A Case Study

Authors: Flaviu Mihai Frigura-Lliasa, Andreea Anamaria Anghel, Attila Simo

Abstract:

Due to the beauty, usefulness, science, constantly changing, constantly evolving features, and most of the time, mystery it involves, nature-based art is seen as a both modern and timeless direction that has been extensively used in design. The goal of the team's activities was to experiment with ways of fusing the two most common contemporary ways of referring to green installations, that is, either in a pure artistic or in an ecological manner, and creating a living, dynamic, interactive installation capable of both receiving and interpreting external factors, such as natural and human stimuli, that would not only determine some of the mechanism's presets. By consequent, a complex experiment made up of various research and project stages was elaborated in order to transform an idea into an actual interactive green installation within months thanks to the interaction, teamwork, and design processes undertaken throughout the academic years by both university lecturers and some of our students. The outcomes would lead to the development of a dynamic artwork called "Modgrew" as well as the introduction of experiment-based learning at the Timisoara Faculty of Architecture and Urban Planning, as well as at the Faculty of Electrical and Power Engineering, for the green wall automation issues.

Keywords: green design, living walls, modular structure, interactive proof of concept

Procedia PDF Downloads 76
3170 A Critical Analysis of Cognitive Explanations of Afterlife Belief

Authors: Mahdi Biabanaki

Abstract:

Religion is present in all human societies and has been for tens of thousands of years. What is noteworthy is that although religious traditions vary in different societies, there are considerable similarities in their religious beliefs. In all human cultures, for example, there is a widespread belief in the afterlife. Cognitive science of Religion (CSR), an emerging branch of cognitive science, searches for the root of these widespread similarities and the widespread prevalence of beliefs such as beliefs in the afterlife in common mental structures among humans. Accordingly, the cognitive architecture of the human mind has evolved to produce such beliefs automatically and non-reflectively. For CSR researchers, belief in the afterlife is an intuitive belief resulting from the functioning of mental tools. Our purpose in this article is to extract and evaluate the cognitive explanations presented in the CSR field for explaining beliefs in the afterlife. Our research shows that there are two basic theories in this area of CSR, namely "intuitive dualism" and "simulation constraint" theory. We show that these two theories face four major challenges and limitations in explaining belief in the afterlife: inability to provide a causal explanation, inability to explain cultural/religious differences in afterlife belief, the lack of distinction between the natural and the rational foundations of belief in the afterlife and disregarding the supernatural foundations of the afterlife belief.

Keywords: afterlife, cognitive science of religion, intuitive dualism, simulation constraint

Procedia PDF Downloads 213
3169 Rebuilding Health Post-Conflict: Case Studies from Afghanistan, Cambodia, and Mozambique

Authors: Spencer Rutherford, Shadi Saleh

Abstract:

War and conflict negatively impact all facets of a health system; services cease to function, resources become depleted, and any semblance of governance is lost. Following cessation of conflict, the rebuilding process includes a wide array of international and local actors. During this period, stakeholders must contend with various trade-offs, including balancing sustainable outcomes with immediate health needs, introducing health reform measures while also increasing local capacity, and reconciling external assistance with local legitimacy. Compounding these factors are additional challenges, including coordination amongst stakeholders, the re-occurrence of conflict, and ulterior motives from donors and governments, to name a few. Therefore, the present paper evaluated health system development in three post-conflict countries over a 12-year timeline. Specifically, health policies, health inputs (such infrastructure and human resources), and measures of governance, from the post-conflict periods of Afghanistan, Cambodia, and Mozambique, were assessed against health outputs and other measures. All post-conflict countries experienced similar challenges when rebuilding the health sector, including; division and competition between donors, NGOs, and local institutions; urban and rural health inequalities; and the re-occurrence of conflict. However, countries also employed unique and effective mechanisms for reconstructing their health systems, including; government engagement of the NGO and private sector; integration of competing factions into the same workforce; and collaborative planning for health policy. Based on these findings, best-practice development strategies were determined and compiled into a 12-year framework. Briefly, during the initial stage of the post-conflict period, primary stakeholders should work quickly to draft a national health strategy in collaboration with the government, and focus on managing and coordinating NGOs through performance-based partnership agreements. With this scaffolding in place, the development community can then prioritize the reconstruction of primary health care centers, increasing and retaining health workers, and horizontal integration of immunization services. The final stages should then concentrate on transferring ownership of the health system national institutions, implementing sustainable financing mechanisms, and phasing-out NGO services. Overall, these findings contribute post-conflict health system development by evaluating the process holistically and along a timeline and can be of further use by healthcare managers, policy-makers, and other health professionals.

Keywords: Afghanistan, Cambodia, health system development, health system reconstruction, Mozambique, post-conflict, state-building

Procedia PDF Downloads 159
3168 Mechanical Response of Aluminum Foam Under Biaxial Combined Quasi-Static Compression-Torsional Loads

Authors: Solomon Huluka, Akrum Abdul-Latif, Rachid Baleh

Abstract:

Metal foams have been developed intensively as a new class of materials for the last two decades due to their unique structural and multifunctional properties. The aim of this experimental work was to characterize the effect of biaxial loading complexity (combined compression-torsion) on the plastic response of highly uniform architecture open-cell aluminum foams of spherical porous with a density of 80%. For foam manufacturing, the Kelvin cells model was used to generate the generally spherical shape with a cell diameter of 11 mm. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e. 0°, 45° and 60°). The key mechanical responses to be examined are yield stress, stress plateau, and energy absorption capacity. The collapse mode was also investigated. It was concluded that the higher the loading complexity, the greater the yield strength and the greater energy absorption capacity of the foam. Experimentally, it was also noticed that there were large softening effects that occurred after the first pick stress for both biaxial-45° and biaxial-60° loading.

Keywords: aluminum foam, loading complexity, characterization, biaxial loading

Procedia PDF Downloads 142
3167 Accessibility and Visibility through Space Syntax Analysis of the Linga Raj Temple in Odisha, India

Authors: S. Pramanik

Abstract:

Since the early ages, the Hindu temples have been interpreted through various Vedic philosophies. These temples are visited by pilgrims which demonstrate the rituals and religious belief of communities, reflecting a variety of actions and behaviors. Darsana a direct seeing, is a part of the pilgrimage activity. During the process of Darsana, a devotee is prepared for entry in the temple to realize the cognizing Truth culminating in visualizing the idol of God, placed at the Garbhagriha (sanctum sanctorum). For this, the pilgrim must pass through a sequential arrangement of spaces. During the process of progress, the pilgrims visualize the spaces differently from various points of views. The viewpoints create a variety of spatial patterns in the minds of pilgrims coherent to the Hindu philosophies. The space organization and its order are perceived by various techniques of spatial analysis. A temple, as examples of Kalinga stylistic variations, has been chosen for the study. This paper intends to demonstrate some visual patterns generated during the process of Darsana (visibility) and its accessibility by Point Isovist Studies and Visibility Graph Analysis from the entrance (Simha Dwara) to The Sanctum sanctorum (Garbhagriha).

Keywords: Hindu temple architecture, point isovist, space syntax analysis, visibility graph analysis

Procedia PDF Downloads 120
3166 Customized Cow’s Urine Battery Using MnO2 Depolarizer

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-battery represents an entirely new long term, reasonable, reachable and ecofriendly approach to production of sustainable energy. Types of batteries have been developed using MnO2 in various ways. MnO2 is suitable with physical, chemical, electrochemical, and catalytic properties, serving as an effective cathodic depolarizer and may be considered as being the life blood of the battery systems. In the present experimental work, we have studied the effect of generation of power by bio-battery using different concentrations of MnO2. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. After ascertaining the optimum concentration of MnO2, various battery parameters and performance indicates that cow urine solely produces power of 695 mW, while a combination with MnO2 (40%) enhances power of bio-battery, i.e. 1377 mW. On adding more and more MnO2 to the electrolyte, the power suppressed because inflation of internal resistance. The analysis of the data produced from experiment shows that MnO2 is quite suitable to energize the bio-battery.

Keywords: bio-batteries, cow’s urine, manganese dioxide, non-conventional

Procedia PDF Downloads 261
3165 Impact of Legs Geometry on the Efficiency of Thermoelectric Devices

Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana

Abstract:

Key concepts like waste heat recycling or waste heat recovery are the basic ideas in thermoelectricity so as to the design the newest solid state sources of energy for a stable supply of electricity and environmental protection. According to several theoretical predictions; at device level, the geometry and configuration of the thermoelectric legs are crucial in the thermoelectric performance of the thermoelectric modules. Thus, in this work, it has studied the geometry effect of legs on the thermoelectric figure of merit ZT of the device. First, asymmetrical legs are proposed in order to reduce the overall thermal conductance of the device so as to increase the temperature gradient in the legs, as well as by harnessing the Thomson effect, which is generally neglected in conventional symmetrical thermoelectric legs. It has been developed a novel design of a thermoelectric module having asymmetrical legs, and by first time it has been validated experimentally its thermoelectric performance by realizing a proof-of-concept device which shows to have almost twofold the thermoelectric figure of merit as compared to conventional one. Moreover, it has been also varied the length of thermoelectric legs in order to analyze its effect on the thermoelectric performance of the device. Along with this, it has studied the impact of contact resistance in these systems. Experimental results show that device architecture can improve up to twofold the thermoelectric performance of the device.

Keywords: asymmetrical legs, heat recovery, heat recycling, thermoelectric module, Thompson effect

Procedia PDF Downloads 241
3164 Long Distance Aspirating Smoke Detection for Large Radioactive Areas

Authors: Michael Dole, Pierre Ninin, Denis Raffourt

Abstract:

Most of the CERN’s facilities hosting particle accelerators are large, underground and radioactive areas. All fire detection systems installed in such areas, shall be carefully studied to cope with the particularities of this stringent environment. The detection equipment usually chosen by CERN to secure these underground facilities are based on air sampling technology. The electronic equipment is located in non-radioactive areas whereas air sampling networks are deployed in radioactive areas where fire detection is required. The air sampling technology provides very good detection performances and prevent the "radiation-to-electronic" effects. In addition, it reduces the exposure to radiations of maintenance workers and is permanently available during accelerator operation. In order to protect the Super Proton Synchrotron and its 7 km tunnels, a specific long distance aspirating smoke detector has been developed to detect smoke at up to 700 meters between electronic equipment and the last air sampling hole. This paper describes the architecture, performances and return of experience of the long distance fire detection system developed and installed to secure the CERN Super Proton Synchrotron tunnels.

Keywords: air sampling, fire detection, long distance, radioactive areas

Procedia PDF Downloads 160
3163 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 91
3162 Bio-Electro Chemical Catalysis: Redox Interactions, Storm and Waste Water Treatment

Authors: Michael Radwan Omary

Abstract:

Context: This scientific innovation demonstrate organic catalysis engineered media effective desalination of surface and groundwater. The author has developed a technology called “Storm-Water Ions Filtration Treatment” (SWIFTTM) cold reactor modules designed to retrofit typical urban street storm drains or catch basins. SWIFT triggers biochemical redox reactions with water stream-embedded toxic total dissolved solids (TDS) and electrical conductivity (EC). SWIFTTM Catalysts media unlock the sub-molecular bond energy, break down toxic chemical bonds, and neutralize toxic molecules, bacteria and pathogens. Research Aim: This research aims to develop and design lower O&M cost, zero-brine discharge, energy input-free, chemical-free water desalination and disinfection systems. The objective is to provide an effective resilient and sustainable solution to urban storm-water and groundwater decontamination and disinfection. Methodology: We focused on the development of organic, non-chemical, no-plugs, no pumping, non-polymer and non-allergenic approaches for water and waste water desalination and disinfection. SWIFT modules operate by directing the water stream to flow freely through the electrically charged media cold reactor, generating weak interactions with a water-dissolved electrically conductive molecule, resulting in the neutralization of toxic molecules. The system is powered by harvesting sub-molecular bonds embedded in energy. Findings: The SWIFTTM Technology case studies at CSU-CI and CSU-Fresno Water Institute, demonstrated consistently high reduction of all 40 detected waste-water pollutants including pathogens to levels below a state of California Department of Water Resources “Drinking Water Maximum Contaminants Levels”. The technology has proved effective in reducing pollutants such as arsenic, beryllium, mercury, selenium, glyphosate, benzene, and E. coli bacteria. The technology has also been successfully applied to the decontamination of dissolved chemicals, water pathogens, organic compounds and radiological agents. Theoretical Importance: SWIFT technology development, design, engineering, and manufacturing, offer cutting-edge advancement in achieving clean-energy source bio-catalysis media solution, an energy input free water and waste water desalination and disinfection. A significant contribution to institutions and municipalities achieving sustainable, lower cost, zero-brine and zero CO2 discharges clean energy water desalination. Data Collection and Analysis Procedures: The researchers collected data on the performance of the SWIFTTM technology in reducing the levels of various pollutants in water. The data was analyzed by comparing the reduction achieved by the SWIFTTM technology to the Drinking Water Maximum Contaminants Levels set by the state of California. The researchers also conducted live oral presentations to showcase the applications of SWIFTTM technology in storm water capture and decontamination as well as providing clean drinking water during emergencies. Conclusion: The SWIFTTM Technology has demonstrated its capability to effectively reduce pollutants in water and waste water to levels below regulatory standards. The Technology offers a sustainable solution to groundwater and storm-water treatments. Further development and implementation of the SWIFTTM Technology have the potential to treat storm water to be reused as a new source of drinking water and an ambient source of clean and healthy local water for recharge of ground water.

Keywords: catalysis, bio electro interactions, water desalination, weak-interactions

Procedia PDF Downloads 67
3161 The Relationship between Energy Consumption and Economic Growth in Turkey: A Time Series Analysis

Authors: Burcu Guvenek, Volkan Alptekin

Abstract:

Turkey is a country in the process of development and its economy has undergone structural reforms in order to realize a sustainable development and energy has vital role as a basic input for this aim. Turkey has been in the process of economic growth and development and, because of this, has an increasing energy need. This paper investigates relationship between economic growth and electricity consumption using annual data for Turkey between 1970-2008 by using bounds test. As economic growth and energy consumption variables used in empirical analysis was different order of integration I(0) and I(1), we employed bounds test approach. We have not found co-integration relationship between the variables.

Keywords: bounds test, economic growth, energy consumption, Turkey

Procedia PDF Downloads 363
3160 Soil-Cement Floor Produced with Alum Water Treatment Residues

Authors: Flavio Araujo, Paulo Scalize, Julio Lima, Natalia Vieira, Antonio Albuquerque, Isabela Santos

Abstract:

From a concern regarding the environmental impacts caused by the disposal of residues generated in Water Treatment Plants (WTP's), alternatives ways have been studied to use these residues as raw material for manufacture of building materials, avoiding their discharge on water streams, disposal on sanitary landfills or incineration. This paper aims to present the results of a research work, which is using WTR for replacing the soil content in the manufacturing of soil-cement floor with proportions of 0, 5, 10 and 15%. The samples tests showed a reduction mechanical strength in so far as has increased the amount of waste. The water absorption was below the maximum of 6% required by the standard. The application of WTR contributes to the reduction of the environmental damage in the water treatment industry.

Keywords: residue, soil-cement floor, sustainable, WTP

Procedia PDF Downloads 570
3159 Using of Cavitational Disperser for Porous Ceramic and Concrete Material Preparation

Authors: Andrei Shishkin, Aleksandrs Korjakins, Viktors Mironovs

Abstract:

Present paper describes method of obtaining clay ceramic foam (CCF) and foam concrete (FC), by direct foaming with high speed mixer-disperser (HSMD). Three foaming agents (FA) are compared for the FC and CCF production: SCHÄUMUNGSMITTEL W 53 FLÜSSIG (Zschimmer & Schwarz Gmbh, Germany), SCF-1245 (Sika, test sample, Latvia) and FAB-12 (Elade, Latvija). CCF were obtained at 950, 1000°C, 1150°C and 1150°C firing temperature and have mechanical compressive strength 1.2, 2.55, and 4.3 MPa and porosity 79.4, 75.1, 71.6%, respectively. Obtained FC has 6-14 MPa compressive strength and porosity 44-55%. The goal of this work was the development of a sustainable and durable ceramic cellular structures using HSMD.

Keywords: ceramic foam, foam concrete, clay foam, open cell, close cell, direct foaming

Procedia PDF Downloads 808
3158 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation

Authors: Djallel Bouamama, Yasser R. Haddadi

Abstract:

Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.

Keywords: brain tumor classification, image segmentation, CNN, U-NET

Procedia PDF Downloads 33
3157 Examining the Attitude and Behavior Towards Household Waste in China With the Theory of Planned Behavior and PEST Analysis

Authors: Yuxuan Liu, Jianli Hao, Ruoyu Zhang, Lin Lin, Nelsen Andreco Muljadi, Yu Song, Guobin Gong

Abstract:

With the increased municipal waste of China, household waste management (HWM) has become a key issue for sustainable development. In this study, an online survey questionnaire was conducted with the aim of assessing the current attitudes and behaviors of the households in China towards waste separationand recycling practices. Related influential factors are also determined within the context of the theory of planned behavior and PEST analysis. The survey received a total of 551 valid respondents. Results showed that the sample has an overall positive attitudes and behavior toward participating in HWM, but only 16.3% of themregularly segregate their waste. Society and policy are also found to be the two most impactful factors.

Keywords: householde waste management, theory of planned behavior, attitude, behavior

Procedia PDF Downloads 199
3156 Impact of Primary Care on Sexual and Reproductive Health for Migrant Women in Medellín Colombia

Authors: Alexis Piedrahita, Ludi Valencia, Aura Gutierrez

Abstract:

The migration crisis that is currently being experienced in the world is a continuous phenomenon that has had solutions in form but not in substance, violating the international humanitarian law of people who are in transit through countries foreign to their roots, especially women of age reproductive, this has caused different governments and organizations worldwide to meet around this problem to define concise actions to protect the rights of migrant women in the world. This research compiles the stories of migrant women who arrive in Colombia seeking better opportunities, such as accessibility to comprehensive and quality health services, including primary health care. This is the gateway to the offer of health promotion and disease prevention services.

Keywords: accessibility, primary health care, sexual and reproductive health, sustainable development goals, women migrant

Procedia PDF Downloads 76
3155 Tectonic Inversion Manifestations in the Jebel Rouas-Ruissate (Northeastern Tunisia)

Authors: Aymen Arfaoui, Abdelkader Soumaya, Noureddine Ben Ayed

Abstract:

The Rouas-Ruissateis a part of TunisianAtlas system. Analyze of the collected field data allowed us to propose a new interpretation for the main structural features of thisregion. Tectonic inversions along NE-SW trending fault of Zaghouan and holokinetic movements are the main factors controlling the architecture and geometry of the Jebel Rouas-Ruissate. The presence of breccias, Slumps, and synsedimentaryfaults along NW-SE and N-S trending major faults show that they were active during the Mesozoicextensionalepisodes. During Cenozoic inversion period, this structurewas shaped as imbricatefansformed byNE-SW trending thrust faults. The angularunconformitybetweenupperEocene- Oligocene, and Cretaceousdeposits reveals a compressive Eocene tectonic phase (called Pyrenean phase)occurred duringPaleocene-lower Eocene.The Triassicsaltsacted as a decollementlevel in the NE-SW trendingfault propagation fold model of the Rouas-Ruissate.The inversion of fault-slip data along the main regional fault zones reveals a coexistence of strike-slip and reverse fault stress regimes with NW-SE maximum horizontal stress(SHmax) characterizing the Alpine compressive phase (Upper Tortonian).

Keywords: tunisia, imbricate fans, triassic decollement level, fault propagation fold

Procedia PDF Downloads 152
3154 Application of Waterflooding Technique in Petroleum Reservoir

Authors: Khwaja Naweed Seddiqi

Abstract:

Hydrocarbon resources are important for the redevelopment and sustainable progress of Afghanistan’s infrastructure. This paper aim is to increase the oil recovery of Hitervian reservoir of Angut oil field in north part of Afghanistan by an easy and available method, which is Buckley-Leveret frontal displacement theory. In this paper oil displacement by water that takes placed by injecting water into the under laying petroleum reservoir which called waterflooding technique is investigated. The theory is investigated in a laboratory experiment first then applied in Angut oil field which is now under the operation of a private petroleum company. Based on this study oil recovery of Angut oil field, residual oil saturation, Buckle-Leveret saturation and FBL is determined.

Keywords: waterflooding technique, two phase fluid flow, Buckley-Leveret, petroleum engineering

Procedia PDF Downloads 435
3153 Building Safety Through Real-time Design Fire Protection Systems

Authors: Mohsin Ali Shaikh, Song Weiguo, Muhammad Kashan Surahio, Usman Shahid, Rehmat Karim

Abstract:

When the area of a structure that is threatened by a disaster affects personal safety, the effectiveness of disaster prevention, evacuation, and rescue operations can be summarized by three assessment indicators: personal safety, property preservation, and attribution of responsibility. These indicators are applicable regardless of the disaster that affects the building. People need to get out of the hazardous area and to a safe place as soon as possible because there's no other way to respond. The results of the tragedy are thus closely related to how quickly people are advised to evacuate and how quickly they are rescued. This study considers present fire prevention systems to address catastrophes and improve building safety. It proposes the methods of Prevention Level for Deployment in Advance and Spatial Transformation by Human-Machine Collaboration. We present and prototype a real-time fire protection system architecture for building disaster prevention, evacuation, and rescue operations. The design encourages the use of simulations to check the efficacy of evacuation, rescue, and disaster prevention procedures throughout the planning and design phase of the structure.

Keywords: prevention level, building information modeling, quality management system, simulated reality

Procedia PDF Downloads 69
3152 Optimizing the Doses of Chitosan/Tripolyphosphate Loaded Nanoparticles of Clodinofop Propargyl and Fenoxaprop-P-Ethyl to Manage Avena Fatua L.: An Environmentally Safer Alternative to Control Weeds

Authors: Muhammad Ather Nadeem, Bilal Ahmad Khan, Hussam F. Najeeb Alawadi, Athar Mahmood, Aneela Nijabat, Tasawer Abbas, Muhammad Habib, Abdullah

Abstract:

The global prevalence of Avena fatua infestation poses a significant challenge to wheat sustainability. While chemical control stands out as an efficient and rapid way to control weeds, concerns over developing resistance in weeds and environmental pollution have led to criticisms of herbicide use. Consequently, this study was designed to address these challenges through the chemical synthesis, characterization, and optimization of chitosan-based nanoparticles containing clodinofop Propargyl and fenoxaprop-P-ethyl for the effective management of A. fatua. Utilizing the ionic gelification technique, chitosan-based nanoparticles of clodinofop Propargyl and fenoxaprop-P-ethyl were prepared. These nanoparticles were applied at the 3-4 leaf stage of Phalaris minor weed, applying seven altered doses. These nanoparticles were applied at the 3-4 leaf stage of Phalaris minor weed, applying seven altered doses (D0 (Check weeds), D1 (Recommended dose of traditional-herbicide (TH), D2 (Recommended dose of Nano-herbicide (NPs-H)), D3 (NPs-H with 05-fold lower dose), D4 ((NPs-H) with 10-fold lower dose), D5 (NPs-H with 15-fold lower dose), and D6 (NPs-H with 20-fold lower dose)). Characterization of the chitosan-containing herbicide nanoparticles (CHT-NPs) was conducted using FT-IR analysis, demonstrating a perfect match with standard parameters. UV–visible spectrum further revealed absorption peaks at 310 nm for NPs of clodinofop propargyl and at 330 nm for NPs of fenoxaprop-p-ethyl. This research aims to contribute to sustainable weed management practices by addressing the challenges associated with chemical herbicide use. The application of chitosan-based nanoparticles (CHT-NPs) containing fenoxaprop-P-ethyl and clodinofop-propargyl at the recommended dose of the standard herbicide resulted in 100% mortality and visible injury to weeds. Surprisingly, when applied at a lower dose with 5-folds, these chitosan-containing nanoparticles of clodinofop Propargyl and fenoxaprop-P-ethyl demonstrated extreme control efficacy. Furthermore, at a 10-fold lower dose compared to standard herbicides and the recommended dose of clodinofop-propargyl and fenoxaprop-P-ethyl, the chitosan-based nanoparticles exhibited comparable effects on chlorophyll content, visual injury (%), mortality (%), plant height (cm), fresh weight (g), and dry weight (g) of A. fatua. This study indicates that chitosan/tripolyphosphate-loaded nanoparticles containing clodinofop-propargyl and fenoxaprop-P-ethyl can be effectively utilized for the management of A. fatua at a 10-fold lower dose, highlighting their potential for sustainable and efficient weed control.

Keywords: mortality, chitosan-based nanoparticles, visual injury, chlorophyl contents, 5-fold lower dose.

Procedia PDF Downloads 56
3151 Understanding the Social Movements around the ‘Rohingya Crisis’ within the Political Process Model

Authors: Aklima Jesmin, Ubaidur Rob, M. Ashrafur Rahman

Abstract:

Rohingya population of Arakan state in Myanmar are one the most persecuted ethnic minorities in this 21st century. According to the Universal Declaration of Human Rights (UDHR), all human beings are born free, equal in dignity and rights. However, these populations are systematically excluded from this universal proclamation of human rights as they are Rohingya, which signify ‘other’. Based on the accessible and available literatures about Rohingya issue, this study firstly found there are chronological pattern of human rights violations against the ethnic Rohingya which follows the pathology of the Holocaust in this 21st century of human civilization. These violations have been possible due to modern technology, bureaucracy which has been performed through authorization, routinization and dehumanization; not only in formal institutions but in the society as a whole. This kind of apparently never-ending situation poses any author with the problem of available many scientific articles. The most important sources are, therefore the international daily newspapers, social media and official webpage of the non-state actors for nitty-gritty day to day update. Although it challenges the validity and objectivity of the information, but to address the critical ongoing human rights violations against Rohingya population can become a base for further work on this issue. One of the aspects of this paper is to accommodate all the social movements since August 2017 to date. The findings of this paper is that even though it seemed only human rights violations occurred against Rohingya historically but, simultaneously the process of social movements had also started, can be traced more after the military campaign in 2017. Therefore, the Rohingya crisis can be conceptualized within one ‘campaign’ movement for justice, not as episodic events, especially within the Political Process Model than any other social movement theories. This model identifies that the role of international political movements as well as the role of non-state actors are more powerful than any other episodes of violence conducted against Rohinyga in reframing issue, blaming and shaming to Myanmar government and creating the strategic opportunities for social changes. The lack of empowerment of the affected Rohingya population has been found as the loop to utilize this strategic opportunity. Their lack of empowerment can also affect their capacity to reframe their rights and to manage the campaign for their justice. Therefore, this should be placed at the heart of the international policy agenda within the broader socio-political movement for the justice of Rohingya population. Without ensuring human rights of Rohingya population, achieving the promise of the united nation’s sustainable development goals - no one would be excluded – will be impossible.

Keywords: civilization, holocaust, human rights violation, military campaign, political process model, Rohingya population, sustainable development goal, social justice, social movement, strategic opportunity

Procedia PDF Downloads 283
3150 Multi-Modal Feature Fusion Network for Speaker Recognition Task

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.

Keywords: feature fusion, memory network, multimodal input, speaker recognition

Procedia PDF Downloads 32
3149 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation

Authors: Muhammad Zubair Khan, Yugyung Lee

Abstract:

Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.

Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network

Procedia PDF Downloads 102