Search results for: chemical learning
8632 Screening of New Antimicrobial Agents from Heterocyclic Derivatives
Authors: W. Mazari, K. Boucherit, Z. Boucherit-Otmani, M. N. Rahmoun, M. Benabdallah
Abstract:
The hospital or any other establishment of care can be considered as an ecosystem where the patient comes into contact with a frightening microbial universe and a risk to contract infection that is referred to as nosocomial or health care-associated. In these last years, the incidence of these infections has risen sharply. Several microorganisms are the cause of these nosocomial infections and the emergence of resistance of the microbial strains against antibiotics creates a danger to public health. The search for new antimicrobial agents to overcome this problem has produced interesting compounds through chemical synthesis, which plays a very important role in the research and discovery of new drugs. It is in this framework that our study was conducted at our laboratory and it involves evaluating the antibacterial activity of thirteen 2-pyridone derivatives synthesized by two methods, the diffusion disc method and the dilution method against eight Gram negative bacterial strains. The results seem interesting especially for two products that have shown the best activities against Escherichia coli ATCC 25922 and Enterobacter cloacae ATCC 13047 with CMI of 512µg/ml.Keywords: heterocyclic derivatives, chemical synthesis, antimicrobial activity, biotechnology
Procedia PDF Downloads 3678631 Nutritional Quality of Partially Processed Chicken Meat Products from Egyptian and Saudi Arabia Markets
Authors: Ali Meawad Ahmad, Hosny A. Abdelrahman
Abstract:
Chicken meat is a good source of protein of high biological value which contains most of essential amino-acids with high proportion of unsaturated fatty acids and low cholesterol level. Besides, it contain many vitamins as well as minerals which are important for the human body. Therefore, a total of 150 frozen chicken meat product samples, 800g each within their shelf-life, were randomly collected from commercial markets from Egypt (75 samples) and Saudi Arabian (75 samples) for chemical evaluation. The mean values of fat% in the examined samples of Egyptian and Saudi markets were 16.0% and 4.6% for chicken burger; 15.0% and 11% for nuggets and 11% and 11% for strips respectively. The mean values of moisture % in the examined samples of Egyptian and Saudi markets were 67.0% and 81% for chicken burger; 66.0% and 78% for nuggets and 71.0% and 72% for strips respectively. The mean values of protein % in the examined samples of Egyptian and Saudi markets were 15% and 17% for chicken burger; 16% and 16% for nuggets and 16% and 17% for strips respectively. The obtained results were compared with the Egyptian slandered and suggestions for improving the chemical quality of chicken products were given.Keywords: chicken meat, nutrition, Egypt, markets
Procedia PDF Downloads 5688630 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach
Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya
Abstract:
A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.Keywords: deep learning, hidden Markov model, pothole, speed breaker
Procedia PDF Downloads 1448629 Analysis of Pangasinan State University: Bayambang Students’ Concerns Through Social Media Analytics and Latent Dirichlet Allocation Topic Modelling Approach
Authors: Matthew John F. Sino Cruz, Sarah Jane M. Ferrer, Janice C. Francisco
Abstract:
COVID-19 pandemic has affected more than 114 countries all over the world since it was considered a global health concern in 2020. Different sectors, including education, have shifted to remote/distant setups to follow the guidelines set to prevent the spread of the disease. One of the higher education institutes which shifted to remote setup is the Pangasinan State University (PSU). In order to continue providing quality instructions to the students, PSU designed Flexible Learning Model to still provide services to its stakeholders amidst the pandemic. The model covers the redesigning of delivering instructions in remote setup and the technology needed to support these adjustments. The primary goal of this study is to determine the insights of the PSU – Bayambang students towards the remote setup implemented during the pandemic and how they perceived the initiatives employed in relation to their experiences in flexible learning. In this study, the topic modelling approach was implemented using Latent Dirichlet Allocation. The dataset used in the study. The results show that the most common concern of the students includes time and resource management, poor internet connection issues, and difficulty coping with the flexible learning modality. Furthermore, the findings of the study can be used as one of the bases for the administration to review and improve the policies and initiatives implemented during the pandemic in relation to remote service delivery. In addition, further studies can be conducted to determine the overall sentiment of the other stakeholders in the policies implemented at the University.Keywords: COVID-19, topic modelling, students’ sentiment, flexible learning, Latent Dirichlet allocation
Procedia PDF Downloads 1228628 Optimization of Quercus cerris Bark Liquefaction
Authors: Luísa P. Cruz-Lopes, Hugo Costa e Silva, Idalina Domingos, José Ferreira, Luís Teixeira de Lemos, Bruno Esteves
Abstract:
The liquefaction process of cork based tree barks has led to an increase of interest due to its potential innovation in the lumber and wood industries. In this particular study the bark of Quercus cerris (Turkish oak) is used due to its appreciable amount of cork tissue, although of inferior quality when compared to the cork provided by other Quercus trees. This study aims to optimize alkaline catalysis liquefaction conditions, regarding several parameters. To better comprehend the possible chemical characteristics of the bark of Quercus cerris, a complete chemical analysis was performed. The liquefaction process was performed in a double-jacket reactor heated with oil, using glycerol and a mixture of glycerol/ethylene glycol as solvents, potassium hydroxide as a catalyst, and varying the temperature, liquefaction time and granulometry. Due to low liquefaction efficiency resulting from the first experimental procedures a study was made regarding different washing techniques after the filtration process using methanol and methanol/water. The chemical analysis stated that the bark of Quercus cerris is mostly composed by suberin (ca. 30%) and lignin (ca. 24%) as well as insolvent hemicelluloses in hot water (ca. 23%). On the liquefaction stage, the results that led to higher yields were: using a mixture of methanol/ethylene glycol as reagents and a time and temperature of 120 minutes and 200 ºC, respectively. It is concluded that using a granulometry of <80 mesh leads to better results, even if this parameter barely influences the liquefaction efficiency. Regarding the filtration stage, washing the residue with methanol and then distilled water leads to a considerable increase on final liquefaction percentages, which proves that this procedure is effective at liquefying suberin content and lignocellulose fraction.Keywords: liquefaction, Quercus cerris, polyalcohol liquefaction, temperature
Procedia PDF Downloads 3338627 Nutritional Value Determination of Different Varieties of Oats and Barley Using Near-Infrared Spectroscopy Method for the Horses Nutrition
Authors: V. Viliene, V. Sasyte, A. Raceviciute-Stupeliene, R. Gruzauskas
Abstract:
In horse nutrition, the most suitable cereal for their rations composition could be defined as oats and barley. Oats have high nutritive value because it provides more protein, fiber, iron and zinc than other whole grains, has good taste, and an activity of stimulating metabolic changes in the body. Another cereal – barley is very similar to oats as a feed except for some characteristics that affect how it is used; however, barley is lower in fiber than oats and is classified as a "heavy" feed. The value of oats and barley grain, first of all is dependent on its composition. Near-infrared spectroscopy (NIRS) has long been considered and used as a significant method in component and quality analysis and as an emerging technology for authenticity applications for cereal quality control. This paper presents the chemical and amino acid composition of different varieties of barley and oats, also digestible energy of different cereals for horses. Ten different spring barley (n = 5) and oats (n = 5) varieties, grown in one location in Lithuania, were assayed for their chemical composition (dry matter, crude protein, crude fat, crude ash, crude fiber, starch) and amino acids content, digestible amino acids and amino acids digestibility. Also, the grains digestible energy for horses was calculated. The oats and barley samples reflectance spectra were measured by means of NIRS using Foss-Tecator DS2500 equipment. The chemical components: fat, crude protein, starch and fiber differed statistically (P<0.05) between the oats and barley varieties. The highest total amino acid content between oats was determined in variety Flamingsprofi (4.56 g/kg) and the lowest – variety Circle (3.57 g/kg), and between barley - respectively in varieties Publican (3.50 g/kg) and Sebastian (3.11 g/kg). The different varieties of oats digestible amino acid content varied from 3.11 g/kg to 4.07 g/kg; barley different varieties varied from 2.59 g/kg to 2.94 g/kg. The average amino acids digestibility of oats varied from 74.4% (Liz) to 95.6% (Fen) and in barley - from 75.8 % (Tre) to 89.6% (Fen). The amount of digestible energy in the analyzed varieties of oats and barley was an average compound 13.74 MJ/kg DM and 14.85 MJ/kg DM, respectively. An analysis of the results showed that different varieties of oats compared with barley are preferable for horse nutrition according to the crude fat, crude fiber, ash and separate amino acids content, but the analyzed barley varieties dominated the higher amounts of crude protein, the digestible Liz amount and higher DE content, and thus, could be recommended for making feed formulation for horses combining oats and barley, taking into account the chemical composition of using cereal varieties.Keywords: barley, digestive energy, horses, nutritional value, oats
Procedia PDF Downloads 2058626 Learning Curve Effect on Materials Procurement Schedule of Multiple Sister Ships
Authors: Vijaya Dixit Aasheesh Dixit
Abstract:
Shipbuilding industry operates in Engineer Procure Construct (EPC) context. Product mix of a shipyard comprises of various types of ships like bulk carriers, tankers, barges, coast guard vessels, sub-marines etc. Each order is unique based on the type of ship and customized requirements, which are engineered into the product right from design stage. Thus, to execute every new project, a shipyard needs to upgrade its production expertise. As a result, over the long run, holistic learning occurs across different types of projects which contributes to the knowledge base of the shipyard. Simultaneously, in the short term, during execution of a project comprising of multiple sister ships, repetition of similar tasks leads to learning at activity level. This research aims to capture above learnings of a shipyard and incorporate learning curve effect in project scheduling and materials procurement to improve project performance. Extant literature provides support for the existence of such learnings in an organization. In shipbuilding, there are sequences of similar activities which are expected to exhibit learning curve behavior. For example, the nearly identical structural sub-blocks which are successively fabricated, erected, and outfitted with piping and electrical systems. Learning curve representation can model not only a decrease in mean completion time of an activity, but also a decrease in uncertainty of activity duration. Sister ships have similar material requirements. The same supplier base supplies materials for all the sister ships within a project. On one hand, this provides an opportunity to reduce transportation cost by batching the order quantities of multiple ships. On the other hand, it increases the inventory holding cost at shipyard and the risk of obsolescence. Further, due to learning curve effect the production scheduled of each consequent ship gets compressed. Thus, the material requirement schedule of every next ship differs from its previous ship. As more and more ships get constructed, compressed production schedules increase the possibility of batching the orders of sister ships. This work aims at integrating materials management with project scheduling of long duration projects for manufacturing of multiple sister ships. It incorporates the learning curve effect on progressively compressing material requirement schedules and addresses the above trade-off of transportation cost and inventory holding and shortage costs while satisfying budget constraints of various stages of the project. The activity durations and lead time of items are not crisp and are available in the form of probabilistic distribution. A Stochastic Mixed Integer Programming (SMIP) model is formulated which is solved using evolutionary algorithm. Its output provides ordering dates of items and degree of order batching for all types of items. Sensitivity analysis determines the threshold number of sister ships required in a project to leverage the advantage of learning curve effect in materials management decisions. This analysis will help materials managers to gain insights about the scenarios: when and to what degree is it beneficial to treat a multiple ship project as an integrated one by batching the order quantities and when and to what degree to practice distinctive procurement for individual ship.Keywords: learning curve, materials management, shipbuilding, sister ships
Procedia PDF Downloads 5028625 Teaching Method in Situational Crisis Communication Theory: A Literature Review
Authors: Proud Arunrangsiwed
Abstract:
Crisis management strategies could be found in various curriculums, not only in schools of business, but also schools of communication. Young students, such as freshmen and sophomores of undergraduate schools, may not care about learning crisis management strategies. Moreover, crisis management strategies are not a topic art students are familiar with. The current paper discusses a way to adapt entertainment media into a crisis management lesson, and the importance of learning crisis management strategies in the school of animation. Students could learn crisis management strategies by watching movies with content about a crisis and responding to crisis responding. The students should then participate in follow up discussions related to the strategies that were used to address the crisis, as well as their success in solving the crisis.Keywords: situational crisis communication theory, crisis response strategies, media effect, unintentional effect
Procedia PDF Downloads 3238624 Application and Evaluation of Teaching-Learning Guides Based on Swebok for the Requirements Engineering Area
Authors: Mauro Callejas-Cuervo, Andrea Catherine Alarcon-Aldana, Lorena Paola Castillo-Guerra
Abstract:
The software industry requires highly-trained professionals, capable of developing the roles integrated in the cycle of software development. That is why a large part of the task is the responsibility of higher education institutions; often through a curriculum established to orientate the academic development of the students. It is so that nowadays there are different models that support proposals for the improvement of the curricula for the area of Software Engineering, such as ACM, IEEE, ABET, Swebok, of which the last stands out, given that it manages and organises the knowledge of Software Engineering and offers a vision of theoretical and practical aspects. Moreover, it has been applied by different universities in the pursuit of achieving coverage in delivering the different topics and increasing the professional quality of future graduates. This research presents the structure of teaching and learning guides from the objectives of training and methodological strategies immersed in the levels of learning of Bloom’s taxonomy with which it is intended to improve the delivery of the topics in the area of Requirements Engineering. Said guides were implemented and validated in a course of Requirements Engineering of the Systems and Computer Engineering programme in the Universidad Pedagógica y Tecnológica de Colombia (Pedagogical and Technological University of Colombia) using a four stage methodology: definition of the evaluation model, implementation of the guides, guide evaluation, and analysis of the results. After the collection and analysis of the data, the results show that in six out of the seven topics proposed in the Swebok guide, the percentage of students who obtained total marks within the 'High grade' level, that is between 4.0 and 4.6 (on a scale of 0.0 to 5.0), was higher than the percentage of students who obtained marks within the 'Acceptable' range of 3.0 to 3.9. In 86% of the topics and the strategies proposed, the teaching and learning guides facilitated the comprehension, analysis, and articulation of the concepts and processes of the students. In addition, they mainly indicate that the guides strengthened the argumentative and interpretative competencies, while the remaining 14% denotes the need to reinforce the strategies regarding the propositive competence, given that it presented the lowest average.Keywords: pedagogic guide, pedagogic strategies, requirements engineering, Swebok, teaching-learning process
Procedia PDF Downloads 2868623 Teaching: Using Co-teaching as an Instructional Model
Authors: Beverley Gallimore
Abstract:
The Individuals with Disabilities Education Act of 2004 (IDEA) has helped to improve outcomes for students with special education needs. Through IDEA, students with Special Education Needs (SEN) have opportunities for more equitable education within the General Education classroom. However, students with disabilities lack access to instructions that can help them to maximize their fullest learning potential. Recently, educational stakeholders have emphasized Integrated Co-teaching as a tool to increase engagement and learning outcomes for students with disabilities in general education classrooms. As a result of this new approach, general and special education teachers are working collaboratively to teach students with disabilities. However, co-teaching models are not properly designed and structured to effectively benefit students with disabilities. Teachers must be oriented correctly in the co-teaching models if it is to be beneficial for students.Keywords: CO-teaching, differentiation, equitable, collaborative
Procedia PDF Downloads 818622 Tackling the Digital Divide: Enhancing Video Consultation Access for Digital Illiterate Patients in the Hospital
Authors: Wieke Ellen Bouwes
Abstract:
This study aims to unravel which factors enhance accessibility of video consultations (VCs) for patients with low digital literacy. Thirteen in-depth interviews with patients, hospital employees, eHealth experts, and digital support organizations were held. Patients with low digital literacy received in-home support during real-time video consultations and are observed during the set-up of these consultations. Key findings highlight the importance of patient acceptance, emphasizing video consultations benefits and avoiding standardized courses. The lack of a uniform video consultation system across healthcare providers poses a barrier. Familiarity with support organizations – to support patients in usage of digital tools - among healthcare practitioners enhances accessibility. Moreover, considerations regarding the Dutch General Data Protection Regulation (GDPR) law influence support patients receive. Also, provider readiness to use video consultations influences patient access. Further, alignment between learning styles and support methods seems to determine abilities to learn how to use video consultations. Future research could delve into tailored learning styles and technological solutions for remote access to further explore effectiveness of learning methods.Keywords: video consultations, digital literacy skills, effectiveness of support, intra- and inter-organizational relationships, patient acceptance of video consultations
Procedia PDF Downloads 748621 An In-Depth Experimental Study of Wax Deposition in Pipelines
Authors: Arias M. L., D’Adamo J., Novosad M. N., Raffo P. A., Burbridge H. P., Artana G.
Abstract:
Shale oils are highly paraffinic and, consequently, can create wax deposits that foul pipelines during transportation. Several factors must be considered when designing pipelines or treatment programs that prevents wax deposition: including chemical species in crude oils, flowrates, pipes diameters and temperature. This paper describes the wax deposition study carried out within the framework of Y-TEC's flow assurance projects, as part of the process to achieve a better understanding on wax deposition issues. Laboratory experiments were performed on a medium size, 1 inch diameter, wax deposition loop of 15 mts long equipped with a solid detector system, online microscope to visualize crystals, temperature and pressure sensors along the loop pipe. A baseline test was performed with diesel with no paraffin or additive content. Tests were undertaken with different temperatures of circulating and cooling fluid at different flow conditions. Then, a solution formed with a paraffin added to the diesel was considered. Tests varying flowrate and cooling rate were again run. Viscosity, density, WAT (Wax Appearance Temperature) with DSC (Differential Scanning Calorimetry), pour point and cold finger measurements were carried out to determine physical properties of the working fluids. The results obtained in the loop were analyzed through momentum balance and heat transfer models. To determine possible paraffin deposition scenarios temperature and pressure loop output signals were studied. They were compared with WAT static laboratory methods. Finally, we scrutinized the effect of adding a chemical inhibitor to the working fluid on the dynamics of the process of wax deposition in the loop.Keywords: paraffin desposition, flow assurance, chemical inhibitors, flow loop
Procedia PDF Downloads 1058620 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques
Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas
Abstract:
This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.Keywords: hit song science, product life cycle, machine learning, radio
Procedia PDF Downloads 1568619 A Professional Learning Model for Schools Based on School-University Research Partnering That Is Underpinned and Structured by a Micro-Credentialing Regime
Authors: David Lynch, Jake Madden
Abstract:
There exists a body of literature that reports on the many benefits of partnerships between universities and schools, especially in terms of teaching improvement and school reform. This is because such partnerships can build significant teaching capital, by deepening and expanding the skillsets and mindsets needed to create the connections that support ongoing and embedded teacher professional development and career goals. At the same time, this literature is critical of such initiatives when the partnership outcomes are short- term or one-sided, misaligned to fundamental problems, and not expressly focused on building the desired teaching capabilities. In response to this situation, research conducted by Professor David Lynch and his TeachLab research team, has begun to shed light on the strengths and limitations of school/university partnerships, via the identification of key conceptual elements that appear to act as critical partnership success factors. These elements are theorised as an inter-play between professional knowledge acquisition, readiness, talent management and organisational structure. However, knowledge of how these elements are established, and how they manifest within the school and its teaching workforce as an overall system, remains incomplete. Therefore, research designed to more clearly delineate these elements in relation to their impact on school/university partnerships is thus required. It is within this context that this paper reports on the development and testing of a Professional Learning (PL) model for schools and their teachers that incorporates school-university research partnering within a systematic, whole-of-school PL strategy that is underpinned and structured by a micro-credentialing (MC) regime. MC involves learning a narrow-focused certificate (a micro-credential) in a specific topic area (e.g., 'How to Differentiate Instruction for English as a second language Students') and embedded in the teacher’s day-to-day teaching work. The use of MC is viewed as important to the efficacy and sustainability of teacher PL because it (1) provides an evidence-based framework for teacher learning, (2) has the ability to promote teacher social capital and (3) engender lifelong learning in keeping professional skills current in an embedded and seamless to work manner. The associated research is centred on a primary school in Australia (P-6) that acted as an arena to co-develop, test/investigate and report on outcomes for teacher PL that uses MC to support a whole-of-school partnership with a university.Keywords: teaching improvement, teacher professional learning, talent management, education partnerships, school-university research
Procedia PDF Downloads 818618 Corrosion Protection of Structural Steel by Surfactant Containing Reagents
Authors: D. Erdenechimeg, T. Bujinlkham, N. Erdenepurev
Abstract:
The anti-corrosion performance of fatty acid coated mild steel samples is studied. Samples of structural steel coated with collector reagents deposited from surfactant in ethanol solution and overcoated with an epoxy barrier paint. A quantitative corrosion rate was determined by linear polarization resistance method using biopotentiostat/galvanostat 400. Coating morphology was determined by scanning electronic microscopy. A test for hydrophobic surface of steel by surfactant was done. From the samples, the main component or high content iron was determined by chemical method and other metal contents were determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) method. Prior to measuring the corrosion rate, mechanical and chemical treatments were performed to prepare the test specimens. Overcoating the metal samples with epoxy barrier paint after exposing them with surfactant the corrosion rate can be inhibited by 34-35 µm/year.Keywords: corrosion, linear polarization resistance, coating, surfactant
Procedia PDF Downloads 998617 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 948616 Augmented Reality in Teaching Children with Autism
Authors: Azadeh Afrasyabi, Ali Khaleghi, Aliakbar Alijarahi
Abstract:
Training at an early age is so important, because of tremendous changes in adolescence, including the formation of character, physical changes and other factors. One of the most sensitive sectors in this field is the children with a disability and are somehow special children who have trouble in communicating with their environment. One of the emerging technologies in the field of education that can be effectively profitable called augmented reality, where the combination of real world and virtual images in real time produces new concepts that can facilitate learning. The purpose of this paper is to propose an effective training method for special and disabled children based on augmented reality. Of course, in particular, the efficiency of augmented reality in teaching children with autism will consider, also examine the various aspect of this disease and different learning methods in this area.Keywords: technology in education, augmented reality, special education, teaching methods
Procedia PDF Downloads 3718615 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance
Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.Keywords: machine learning, MR prostate, PI-Rads 3, radiomics
Procedia PDF Downloads 1888614 Second Language Development with an Intercultural Approach: A Pilot Program Applied to Higher Education Students from a Escuela Normal in Atequiza, Mexico
Authors: Frida C. Jaime Franco, C. Paulina Navarro Núñez, R. Jacob Sánchez Nájera
Abstract:
The importance of developing multi-language abilities in our global society is noteworthy. However, the necessity, interest, and consciousness of the significance that the development of another language represents, apart from the mother tongue, is not always the same in all contexts as it is in multicultural communities, especially in rural higher education institutions immersed in small communities. Leading opportunities for digital interaction among learners from Mexico and abroad partners represents scaffolding towards, not only language skills development but also intercultural communicative competences (ICC). This study leads us to consider what should be the best approach to work while applying a program of ICC integrated into the practice of EFL. While analyzing the roots of the language, it is possible to obtain the main objective of learning another language, to communicate with a functional purpose, as well as attaching social practices to the learning process, giving a result of functionality and significance to the target language. Hence, the collateral impact that collaborative learning leads to, aims to contribute to a better global understanding as well as a means of self and other cultural awareness through intercultural communication. While communicating through the target language by online collaboration among students in platforms of long-distance communication, language is used as a tool of interaction to broaden students’ perspectives reaching a substantial improvement with the help of their differences. This process should consider the application of the target language in the inquiry of sociocultural information, expecting the learners to integrate communicative skills to handle cultural differentiation at the same time they apply the knowledge of their target language in a real scenario of communication, despite being through virtual resources.Keywords: collaborative learning, communicative approach, culture, interaction, interculturalism, target language, virtual partnership
Procedia PDF Downloads 1308613 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling
Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas
Abstract:
Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.Keywords: flood forecasting, machine learning, multilayer perceptron network, regression
Procedia PDF Downloads 1728612 Effects of an Educative Model in Socially Responsible Behavior and Other Psychological Variables
Authors: Gracia V. Navarro, Maria V. Gonzalez, Carlos G. Reed
Abstract:
The eudaimonic perspective in philosophy and psychology suggests that a good life is closely related to developing oneself in order to contribute to the well-being and happiness of other people and of the world as a whole. Educational psychology can help to achieve this through the design and validation of educative models. Since 2004, the University of Concepcion and other Chilean universities apply an educative model to train socially responsible professionals, people that in the exercise of their profession contribute to generate equity for the development and assess the impacts of their decisions, opting for those that serve the common good. The main aim is to identify if a relationship exists between achieved learning, attitudes toward social responsibility, self-attribution of socially responsible behavior, value type, professional behavior observed and, participation in a specific model to train socially responsible (SR) professionals. The Achieved Learning and Attitudes Toward Social Responsibility Questionnaire, interview with employers and Values Questionnaire and Self-attribution of SR Behavior Questionnaire is applied to 394 students and graduates, divided into experimental and control groups (trained and not trained under the educative model), in order to identify the professional behavior of the graduates. The results show that students and graduates perceive cognitive, affective and behavioral learning, with significant differences in attitudes toward social responsibility and self-attribution of SR behavior, between experimental and control. There are also differences in employers' perceptions about the professional practice of those who were trained under the model and those who were not. It is concluded that the educative model has an impact on the learning of social responsibility and educates for a full life. It is also concluded that it is necessary to identify mediating variables of the model effect.Keywords: educative model, good life, professional social responsibility, values
Procedia PDF Downloads 2648611 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.
Authors: Zabeehullah, Fahim Arif, Yawar Abbas
Abstract:
Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.Keywords: SDN, IoT, DL, ML, DRS
Procedia PDF Downloads 1108610 STEM Curriculum Development Using Robotics with K-12 Students in Brazil
Authors: Flavio Campos
Abstract:
This paper describes an implementation of a STEM curriculum program using robotics as a technological resource at a private school in Brazil. Emphasized the pedagogic and didactic aspects and brings a discussion about STEM curriculum and the perspective of using robotics and the relation between curriculum, science and technologies into the learning process. The results indicate that STEM curriculum integration with robotics as a technological resource in K-12 students learning process has complex aspects, such as relation between time/space, the development of educators and the relation between robotics and other subjects. Therefore, the comprehension of these aspects could indicate some steps that we should consider when integrating STEM basis and robotics into curriculum, which can improve education for science and technology significantly.Keywords: STEM curriculum, educational robotics, constructionist approach, education and technology
Procedia PDF Downloads 3428609 Teaching and Learning Physics via GPS and WikiS
Authors: Hashini E. Mohottala
Abstract:
We report the combine use of Wikispaces (WikiS) and Group Problem Solving (GPS) sessions conducted in the introductory level physics classes. As a part of this new teaching tool, some essay type problems were posted on the WikiS in weekly basis and students were encouraged to participate in problem solving without providing numerical final answers but the steps. Wikispace is used as a platform for students to meet online and create discussions. Each week students were further evaluated on problem solving skills opening up more opportunity for peer interaction through GPS. Each group was given a different problem to solve and the answers were graded. Students developed a set of skills in decision-making, problem solving, communication, negotiation, critical and independent thinking and teamwork through the combination of WikiS and GPS.Keywords: group problem solving (GPS), wikispace (WikiS), physics education, learning
Procedia PDF Downloads 4188608 Managing Construction and Demolition Wastes - A Case Study of Multi Triagem, Lda
Authors: Cláudia Moço, Maria Santos, Carlos Arsénio, Débora Mendes, Miguel Oliveira. José Paulo Da Silva
Abstract:
Construction industry generates large amounts of waste all over the world. About 450 million tons of construction and demolition wastes (C&DW) are produced annually in the European Union. C&DW are highly heterogeneous materials in size and composition, which imposes strong difficulties on their management. Directive n.º 2008/98/CE, of the European Parliament and of the Council of 6 November establishes that 70 % of the C&DW have to be recycled by 2020. To evaluate possible applications of these materials, a detailed physical, chemical and environmental characterization is necessary. Multi Triagem, Lda. is a company located in Algarve (Portugal) and was supported by the European Regional Development Fund (grant QREN 30307 Multivalor) to quantify and characterize the received C&DW, in order to evaluate their possible applications. This evaluation, performed in collaboration with the University of Algarve, involves a physical, chemical and environmental detailed characterization of the received C&DW. In this work we report on the amounts, trial procedures and properties of the C&DW received over a period of fifteen month. In this period the company received C&DW coming from 393 different origins. The total amount was 32.458 tons, mostly mixtures containing concrete, masonry/mortar and soil/rock. Most of C&DW came from demodulation constructions and diggings. The organic/inert component, namely metal, glass, wood and plastics, were screened first and account for about 3 % of the received materials. The remaining materials were screened and grouped according to their origin and contents, the latter evaluated by visual inspection. Twenty five samples were prepared and submitted to a detailed physical, chemical and environmental analysis. The C&DW aggregates show lower quality properties than natural aggregates for concrete preparation and unbound layers of road pavements. However, chemical analyzes indicated that most samples are environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds is needed in order to perform a proper screening of the C&DW. C&DW aggregates provide a good alternative to natural aggregates.Keywords: construction and demolition wastes, waste classification, waste composition, waste screening
Procedia PDF Downloads 3518607 Rapid Generation of Octagonal Pyramids on Silicon Wafer for Photovoltaics by Swift Anisotropic Chemical Etching Process
Authors: Sami Iqbal, Azam Hussain, Weiping Wu, Guo Xinli, Tong Zhang
Abstract:
A novel octagonal upright micro-pyramid structure was generated by wet chemical anisotropic etching on a monocrystalline silicon wafer (100). The primary objectives are to reduce front surface reflectance of silicon wafers, improve wettability, enhance surface morphology, and maximize the area coverage by generated octagonal pyramids. Under rigorous control and observation, the etching process' response time was maintained precisely. The experimental outcomes show a significant decrease in the optical surface reflectance of silicon wafers, with the lowest reflectance of 8.98%, as well as enhanced surface structure, periodicity, and surface area coverage of more than 85%. The octagonal silicon pyramid was formed with a high etch rate of 0.41 um/min and a much shorter reaction time with the addition of hydrofluoric acid coupled with magnetic stirring (mechanical agitation) at 300 rpm.Keywords: octagonal pyramids, rapid etching, solar cells, surface engineering, surface reflectance
Procedia PDF Downloads 1018606 A Redesigned Pedagogy in Introductory Programming Reduces Failure and Withdrawal Rates by Half
Authors: Said Fares, Mary Fares
Abstract:
It is well documented that introductory computer programming courses are difficult and that failure rates are high. The aim of this project was to reduce the high failure and withdrawal rates in learning to program. This paper presents a number of changes in module organization and instructional delivery system in teaching CS1. Daily out of class help sessions and tutoring services were applied, interactive lectures and laboratories, online resources, and timely feedback were introduced. Five years of data of 563 students in 21 sections was collected and analyzed. The primary results show that the failure and withdrawal rates were cut by more than half. Student surveys indicate a positive evaluation of the modified instructional approach, overall satisfaction with the course and consequently, higher success and retention rates.Keywords: failure rate, interactive learning, student engagement, CS1
Procedia PDF Downloads 3088605 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project
Authors: Soheila Sadeghi
Abstract:
In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management
Procedia PDF Downloads 398604 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing
Authors: Rida Kanwal, Wang Yuhui, Song Weiguo
Abstract:
Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior
Procedia PDF Downloads 208603 Performance Evaluation of On-Site Sewage Treatment System (Johkasou)
Authors: Aashutosh Garg, Ankur Rajpal, A. A. Kazmi
Abstract:
The efficiency of an on-site wastewater treatment system named Johkasou was evaluated based on its pollutant removal efficiency over 10 months. This system was installed at IIT Roorkee and had a capacity of treating 7 m3/d of sewage water, sufficient for a group of 30-50 people. This system was fed with actual wastewater through an equalization tank to eliminate the fluctuations throughout the day. Methanol and ammonium chloride was added into this equalization tank to increase the Chemical Oxygen Demand (COD) and ammonia content of the influent. The outlet from Johkasou is sent to a tertiary unit consisting of a Pressure Sand Filter and an Activated Carbon Filter for further treatment. Samples were collected on alternate days from Monday to Friday and the following parameters were evaluated: Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN). The Average removal efficiency for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN) was observed as 89.6, 97.7, 96, and 80% respectively. The cost of treating the wastewater comes out to be Rs 23/m3 which includes electricity, cleaning and maintenance, chemical, and desludging costs. Tests for the coliforms were also performed and it was observed that the removal efficiency for total and fecal coliforms was 100%. The sludge generation rate is approximately 20% of the BOD removal and it needed to be removed twice a year. It also showed a very good response against the hydraulic shock load. We performed vacation stress analysis on the system to evaluate the performance of the system when there is no influent for 8 consecutive days. From the result of stress analysis, we concluded that system needs a recovery time of about 48 hours to stabilize. After about 2 days, the system returns again to original conditions and all the parameters in the effluent become within the limits of National Green Tribunal (NGT) standards. We also performed another stress analysis to save the electricity in which we turned the main aeration blower off for 2 to 12 hrs a day and the results showed that we can turn the blower off for about 4-6 hrs a day and this will help in reducing the electricity costs by about 25%. It was concluded that the Johkasou system can remove a sufficient amount of all the physiochemical parameters tested to satisfy the prescribed limit set as per Indian Standard.Keywords: on-site treatment, domestic wastewater, Johkasou, nutrient removal, pathogens removal
Procedia PDF Downloads 115