Search results for: Hybrid deep learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9945

Search results for: Hybrid deep learning

6945 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques

Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart

Abstract:

Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.

Keywords: machine learning, text classification, NLP techniques, semantic representation

Procedia PDF Downloads 100
6944 Petrogenetic Model of Formation of Orthoclase Gabbro of the Dzirula Crystalline Massif, the Caucasus

Authors: David Shengelia, Tamara Tsutsunava, Manana Togonidze, Giorgi Chichinadze, Giorgi Beridze

Abstract:

Orthoclase gabbro intrusive exposes in the Eastern part of the Dzirula crystalline massif of the Central Transcaucasian microcontinent. It is intruded in the Baikal quartz-diorite gneisses as a stock-like body. The intrusive is characterized by heterogeneity of rock composition: variability of mineral content and irregular distribution of rock-forming minerals. The rocks are represented by pyroxenites, gabbro-pyroxenites and gabbros of different composition – K-feldspar, pyroxene-hornblende and biotite bearing varieties. Scientific views on the genesis and age of the orthoclase gabbro intrusive are considerably different. Based on the long-term pertogeochemical and geochronological investigations of the intrusive with such an extraordinary composition the authors came to the following conclusions. According to geological and geophysical data, it is stated that in the Saurian orogeny horizontal tectonic layering of the Earth’s crust of the Central Transcaucasian microcontinent took place. That is precisely this fact that explains the formation of the orthoclase gabbro intrusive. During the tectonic doubling of the Earth’s crust of the mentioned microcontinent thick tectonic nappes of mafic and sialic layers overlap the sialic basement (‘inversion’ layer). The initial magma of the intrusive was of high-temperature basite-ultrabasite composition, crystallization products of which are pyroxenites and gabbro-pyroxenites. Petrochemical data of the magma attest to its formation in the Upper mantle and partially in the ‘crustal astenolayer’. Then, a newly formed overheated dry magma with phenocrysts of clinopyrocxene and basic plagioclase intruded into the ‘inversion’ layer. From the new medium it was enriched by the volatile components causing the selective melting and as a result the formation of leucocratic quartz-feldspar material. At the same time in the basic magma intensive transformation of pyroxene to hornblende was going on. The basic magma partially mixed with the newly formed acid magma. These different magmas intruded first into the allochthonous basite layer without its significant transformation and then into the upper sialic layer and crystallized here at a depth of 7-10 km. By petrochemical data the newly formed leucocratic granite magma belongs to the S type granites, but the above mentioned mixed magma – to H (hybrid) type. During the final stage of magmatic processes the gabbroic rocks impregnated with high-temperature feldspar-bearing material forming anorthoclase or orthoclase. Thus, so called ‘orthoclase gabbro’ includes the rocks of various genetic groups: 1. protolith of gabbroic intrusive; 2. hybrid rock – K-feldspar gabbro and 3. leucocratic quartz-feldspar bearing rock. Petrochemical and geochemical data obtained from the hybrid gabbro and from the inrusive protolith differ from each other. For the identification of petrogenetic model of the orthoclase gabbro intrusive formation LA-ICP-MS- U-Pb zircon dating has been conducted in all three genetic types of gabbro. The zircon age of the protolith – mean 221.4±1.9 Ma and of hybrid K-feldspar gabbro – mean 221.9±2.2 Ma, records crystallization time of the intrusive, but the zircon age of quartz-feldspar bearing rocks – mean 323±2.9 Ma, as well as the inherited age (323±9, 329±8.3, 332±10 and 335±11 Ma) of hybrid K-feldspar gabbro corresponds to the formation age of Late Variscan granitoids widespread in the Dzirula crystalline massif.

Keywords: The Caucasus, isotope dating, orthoclase-bearing gabbro, petrogenetic model

Procedia PDF Downloads 343
6943 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water

Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta

Abstract:

The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.

Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute

Procedia PDF Downloads 118
6942 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: low light image enhancement, deep learning, convolutional neural network, image processing

Procedia PDF Downloads 81
6941 Investigating Secondary Students’ Attitude towards Learning English

Authors: Pinkey Yaqub

Abstract:

The aim of this study was to investigate secondary (grades IX and X) students’ attitudes towards learning the English language based on the medium of instruction of the school, the gender of the students and the grade level in which they studied. A further aim was to determine students’ proficiency in the English language according to their gender, the grade level and the medium of instruction of the school. A survey was used to investigate the attitudes of secondary students towards English language learning. Simple random sampling was employed to obtain a representative sample of the target population for the research study as a comprehensive list of established English medium schools, and newly established English medium schools were available. A questionnaire ‘Attitude towards English Language Learning’ (AtELL) was adapted from a research study on Libyan secondary school students’ attitudes towards learning English language. AtELL was reviewed by experts (n=6) and later piloted on a representative sample of secondary students (n= 160). Subsequently, the questionnaire was modified - based on the reviewers’ feedback and lessons learnt during the piloting phase - and directly administered to students of grades 9 and 10 to gather information regarding their attitudes towards learning the English language. Data collection spanned a month and a half. As the data were not normally distributed, the researcher used Mann-Whitney tests to test the hypotheses formulated to investigate students’ attitudes towards learning English as well as proficiency in the language across the medium of instruction of the school, the gender of the students and the grade level of the respondents. Statistical analyses of the data showed that the students of established English medium schools exhibited a positive outlook towards English language learning in terms of the behavioural, cognitive and emotional aspects of attitude. A significant difference was observed in the attitudes of male and female students towards learning English where females showed a more positive attitude in terms of behavioural, cognitive and emotional aspects as compared to their male counterparts. Moreover, grade 10 students had a more positive attitude towards learning English language in terms of behavioural, cognitive and emotional aspects as compared to grade 9 students. Nonetheless, students of newly established English medium schools were more proficient in English as gauged by their examination scores in this subject as compared to their counterparts studying in established English medium schools. Moreover, female students were more proficient in English while students studying in grade 9 were less proficient in English than their seniors studying in grade 10. The findings of this research provide empirical evidence to future researchers wishing to explore the relationship between attitudes towards learning language and variables such as the medium of instruction of the school, gender and the grade level of the students. Furthermore, policymakers might revisit the English curriculum to formulate specific guidelines that promote a positive and gender-balanced outlook towards learning English for male and female students.

Keywords: attitude, behavioral aspect of attitude, cognitive aspect of attitude, emotional aspect of attitude

Procedia PDF Downloads 228
6940 Machine Learning in Momentum Strategies

Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu

Abstract:

The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.

Keywords: information coefficient, machine learning, momentum, portfolio, return prediction

Procedia PDF Downloads 53
6939 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 127
6938 Cooperative Learning Mechanism in Intelligent Multi-Agent System

Authors: Ayman M. Mansour, Bilal Hawashin, Mohammed A. Mansour

Abstract:

In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.

Keywords: intelligent, multi-agent system, cooperative, fuzzy, learning

Procedia PDF Downloads 685
6937 Learning Materials for Enhancing Sustainable Colour Fading Process of Fashion Products

Authors: C. W. Kan, H. F. Cheung, Y. S. Lee

Abstract:

This study examines the results of colour fading of cotton fabric by plasma-induced ozone treatment, with an aim to provide learning materials for fashion designers when designing colour fading effects in fashion products. Cotton knitted fabrics were dyed with red reactive dye with a colour depth of 1.5% and were subjected to ozone generated by a commercially available plasma machine for colour fading. The plasma-induced ozone treatment was conducted with different parameters: (i) air concentration = 10%, 30%, 50% and 70%; (ii) water content in fabric = 35% and 45%, and (iii) treatment time = 10 minutes, 20 minutes and 30 minutes. Finally, the colour properties of the plasma–induced ozone treated fabric were measured by spectrophotometer under illuminant D65 to obtain the CIE L*, CIE a* and CIE b* values.

Keywords: learning materials, colour fading, colour properties, fashion products

Procedia PDF Downloads 283
6936 Orbiting Intelligence: A Comprehensive Survey of AI Applications and Advancements in Space Exploration

Authors: Somoshree Datta, Chithra A. V., Sandeep Nithyanandan, Smitha K. K.

Abstract:

Space exploration has always been at the forefront of technological innovation, pushing the boundaries of human knowledge and capabilities. In recent years, the integration of Artificial Intelligence (AI) has revolutionized the field, offering unprecedented opportunities to enhance the efficiency, autonomy and intelligence of space missions. This survey paper aims to provide a comprehensive overview of the multifaceted applications of AI in space exploration, exploring the evolution of this synergy and its impact on mission success, scientific discovery, and the future of space endeavors. Indian Space Research Organization (ISRO) has achieved great feats in the recent moon mission (Chandrayaan-3) and sun mission (Aditya L1) by using artificial intelligence to enhance moon navigation as well as help young scientists to study the Sun even before the launch by creating AI-generated image visualizations. Throughout this survey, we will review key advancements, challenges and prospects in the intersection of AI and space exploration. As humanity continues its quest to explore the cosmos, the integration of AI promises to unlock new frontiers, reshape mission architectures, and redefine our understanding of the universe. This survey aims to serve as a comprehensive resource for researchers, engineers and enthusiasts interested in the dynamic and evolving landscape of AI applications in space exploration.

Keywords: artificial intelligence, space exploration, space missions, deep learning

Procedia PDF Downloads 33
6935 Expanding Learning Reach: Innovative VR-Enabled Retention Strategies

Authors: Bilal Ahmed, Muhammad Rafiq, Choongjae Im

Abstract:

The tech-savvy Gen Z's transfer towards interactive concept learning is hammering the demand for online collaborative learning environments, renovating conventional education approaches. The authors propose a novel approach to enhance learning outcomes to improve retention in 3D interactive education by connecting virtual reality (VR) and non-VR devices in the classroom and distance learning. The study evaluates students' experiences with VR interconnectivity devices in human anatomy lectures using real-time 3D interactive data visualization. Utilizing the renowned "Guo & Pooles Inventory" and the "Flow for Presence Questionnaires," it used an experimental research design with a control and experimental group to assess this novel connecting strategy's effectiveness and significant potential for in-person and online educational settings during the sessions. The experimental group's interactions, engagement levels, and usability experiences were assessed using the "Guo & Pooles Inventory" and "Flow for Presence Questionnaires," which measure their sense of presence, engagement, and immersion throughout the learning process using a 5-point Likert scale. At the end of the sessions, we used the "Perceived Usability Scale" to find our proposed system's overall efficiency, effectiveness, and satisfaction. By comparing both groups, the students in the experimental group used the integrated VR environment and VR to non-VR devices, and their sense of presence and attentiveness was significantly improved, allowing for increased engagement by giving students diverse technological access. Furthermore, learners' flow states demonstrated increased absorption and focus levels, improving information retention and Perceived Usability. The findings of this study can help educational institutions optimize their technology-enhanced teaching methods for traditional classroom settings as well as distance-based learning, where building a sense of connection among remote learners is critical. This study will give significant insights into educational technology and its ongoing progress by analyzing engagement, interactivity, usability, satisfaction, and presence.

Keywords: interactive learning environments, human-computer interaction, virtual reality, computer- supported collaborative learning

Procedia PDF Downloads 65
6934 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms

Authors: Alica Höpken, Hergen Pargmann

Abstract:

The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.

Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning

Procedia PDF Downloads 128
6933 The Design Method of Artificial Intelligence Learning Picture: A Case Study of DCAI's New Teaching

Authors: Weichen Chang

Abstract:

To create a guided teaching method for AI generative drawing design, this paper develops a set of teaching models for AI generative drawing (DCAI), which combines learning modes such as problem-solving, thematic inquiry, phenomenon-based, task-oriented, and DFC . Through the information security AI picture book learning guided programs and content, the application of participatory action research (PAR) and interview methods to explore the dual knowledge of Context and ChatGPT (DCAI) for AI to guide the development of students' AI learning skills. In the interviews, the students highlighted five main learning outcomes (self-study, critical thinking, knowledge generation, cognitive development, and presentation of work) as well as the challenges of implementing the model. Through the use of DCAI, students will enhance their consensus awareness of generative mapping analysis and group cooperation, and they will have knowledge that can enhance AI capabilities in DCAI inquiry and future life. From this paper, it is found that the conclusions are (1) The good use of DCAI can assist students in exploring the value of their knowledge through the power of stories and finding the meaning of knowledge communication; (2) Analyze the transformation power of the integrity and coherence of the story through the context so as to achieve the tension of ‘starting and ending’; (3) Use ChatGPT to extract inspiration, arrange story compositions, and make prompts that can communicate with people and convey emotions. Therefore, new knowledge construction methods will be one of the effective methods for AI learning in the face of artificial intelligence, providing new thinking and new expressions for interdisciplinary design and design education practice.

Keywords: artificial intelligence, task-oriented, contextualization, design education

Procedia PDF Downloads 30
6932 Process Performance and Nitrogen Removal Kinetics in Anammox Hybrid Reactor

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a promising and cost effective alternative to conventional treatment systems that facilitates direct oxidation of ammonium nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of any external carbon sources. The present study investigates the process kinetics of laboratory scale anammox hybrid reactor (AHR) which combines the dual advantages of attached and suspended growth. The performance & behaviour of AHR was studied under varying hydraulic retention time (HRTs) and nitrogen loading rate (NLRs). The experimental unit consisted of 4 numbers of 5L capacity anammox hybrid reactor inoculated with mixed seed culture containing anoxic and activated sludge. Pseudo steady state (PSS) ammonium and nitrite removal efficiencies of 90.6% and 95.6%, respectively, were achieved during acclimation phase. After establishment of PSS, the performance of AHR was monitored at seven different HRTs of 3.0, 2.5, 2.0, 1.5, 1.0, 0.5 and 0.25 d with increasing NLR from 0.4 to 4.8 kg N/m3d. The results showed that with increase in NLR and decrease in HRT (3.0 to 0.25 d), AHR registered appreciable decline in nitrogen removal efficiency from 92.9% to 67.4 %, respectively. The HRT of 2.0 d was considered optimal to achieve substantial nitrogen removal of 89%, because on further decrease in HRT below 1.5 days, remarkable decline in the values of nitrogen removal efficiency were observed. Analysis of data indicated that attached growth system contributes an additional 15.4 % ammonium removal and reduced the sludge washout rate (additional 29% reduction). This enhanced performance may be attributed to 25% increase in sludge retention time due to the attached growth media. Three kinetic models, namely, first order, Monod and Modified Stover-Kincannon model were applied to assess the substrate removal kinetics of nitrogen removal in AHR. Validation of the models were carried out by comparing experimental set of data with the predicted values obtained from the respective models. For substrate removal kinetics, model validation revealed that Modified Stover-Kincannon is most precise (R2=0.943) and can be suitably applied to predict the kinetics of nitrogen removal in AHR. Lawrence and McCarty model described the kinetics of bacterial growth. The predicted value of yield coefficient and decay constant were in line with the experimentally observed values.

Keywords: anammox, kinetics, modelling, nitrogen removal, sludge wash out rate, AHR

Procedia PDF Downloads 317
6931 A Theoretical Framework on Using Social Stories with the Creative Arts for Individuals on the Autistic Spectrum

Authors: R. Bawazir, P. Jones

Abstract:

Social Stories are widely used to teach social and communication skills or concepts to individuals on the autistic spectrum. This paper presents a theoretical framework for using Social Stories in conjunction with the creative arts. The paper argues that Bandura’s social learning theory can be used to explain the mechanisms behind Social Stories and the way they influence changes in response, while Gardner’s multiple intelligences theory can be used simultaneously to demonstrate the role of the creative arts in learning. By using Social Stories with the creative arts for individuals on the autistic spectrum, the aim is to meet individual needs and help individuals with autism to develop in different areas of learning and communication.

Keywords: individuals on the autistic spectrum, social stories, the creative arts, theoretical framework

Procedia PDF Downloads 321
6930 Settlement of the Foundation on the Improved Soil: A Case Study

Authors: Morteza Karami, Soheila Dayani

Abstract:

Deep Soil Mixing (DSM) is a soil improvement technique that involves mechanically mixing the soil with a binder material to improve its strength, stiffness, and durability. This technique is typically used in geotechnical engineering applications where weak or unstable soil conditions exist, such as in building foundations, embankment support, or ground improvement projects. In this study, the settlement of the foundation on the improved soil using the wet DSM technique has been analyzed for a case study. Before DSM production, the initial soil mixture has been determined based on the laboratory tests and then, the proper mix designs have been optimized based on the pilot scale tests. The results show that the spacing and depth of the DSM columns depend on the soil properties, the intended loading conditions, and other factors such as the available space and equipment limitations. Moreover, monitoring instruments installed in the pilot area verify that the settlement of the foundation has been placed in an acceptable range to ensure that the soil mixture is providing the required strength and stiffness to support the structure or load. As an important result, if the DSM columns touch or penetrate into the stiff soil layer, the settlement of the foundation can be significantly decreased. Furthermore, the DSM columns should be allowed to cure sufficiently before placing any significant loads on the structure to prevent excessive deformation or settlement.

Keywords: deep soil mixing, soil mixture, settlement, instrumentation, curing age

Procedia PDF Downloads 85
6929 Perception of Nursing Students’ Engagement With Emergency Remote Learning During COVID 19 Pandemic

Authors: Jansirani Natarajan, Mickael Antoinne Joseph

Abstract:

The COVID-19 pandemic has interrupted face-to-face education and forced universities into an emergency remote teaching curriculum over a short duration. This abrupt transition in the Spring 2020 semester left both faculty and students without proper preparation for continuing higher education in an online environment. Online learning took place in different formats, including fully synchronous, fully asynchronous, and blended in our university through the e-learning platform MOODLE. Studies have shown that students’ engagement, is a critical factor for optimal online teaching. Very few studies have assessed online engagement with ERT during the COVID-19 pandemic. Purpose: Therefore, this study, sought to understand how the sudden transition to emergency remote teaching impacted nursing students’ engagement with online courses in a Middle Eastern public university. Method: A cross-sectional descriptive research design was adopted in this study. Data were collected through a self-reported online survey using Dixon’s online students’ engagement questionnaire from a sample of 177 nursing students after the ERT learning semester. Results The maximum possible engagement score was 95, and the maximum scores in the domains of skills engagement, emotional engagement, participation engagement, and performance engagement were 30, 25, 30, and 10 respectively. Dixson (2010) noted that a mean item score of ≥3.5 (total score of ≥66.5) represents a highly engaged student. The majority of the participants were females (71.8%) and 84.2% were regular BSN students. Most of them (32.2%) were second-year students and 52% had a CGPA between 2 and 3. Most participants (56.5%) had low engagement scores with ERT learning during the COVID lockdown. Among the four engagement domains, 78% had low engagement scores for the participation domain. There was no significant association found between the engagement and the demographic characteristics of the participants. Conclusion The findings supported the importance of engaging students in all four categories skill, emotional, performance, and participation. Based on the results, training sessions were organized for faculty on various strategies for engaging nursing students in all domains by using the facilities available in the MOODLE (online e-learning platform). It added value as a dashboard of information regarding ERT for the administrators and nurse educators to introduce numerous active learning strategies to improve the quality of teaching and learning of nursing students in the University.

Keywords: engagement, perception, emergency remote learning, COVID-19

Procedia PDF Downloads 63
6928 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia

Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba

Abstract:

Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of the acquisition of new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used, is the analysis of the dynamics of different areas of the brain during a cognitive activity to find the relationships between the different areas analyzed in order to better understand the functioning of neural networks. Also, the latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neuro-developmental difficulties for their subsequent assessment and cure. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho pedagogical plans that allow obtaining an optimal integral development of the affected people.

Keywords: dyscalculia, neurodevelopment, evoked potentials, Learning disabilities, neural networks

Procedia PDF Downloads 140
6927 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis

Authors: Shriya Shukla, Lachin Fernando

Abstract:

Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.

Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning

Procedia PDF Downloads 126
6926 Hybrid Model of an Increasing Unique Consumer Value on Purchases that Influences the Consumer Loyalty and the Pursuit of a Sustainable Competitive Advantage from the Institutions in Jakarta

Authors: Wilhelmus Hary Susilo

Abstract:

The marketplace would have at least some resources that are unique (e.g., well communication, knowledgeable employees, consumer value, effective transaction, efficient production processes and institutional branding). The institutions should have an advantage in resources and then could lead to positions of competitive advantage. These major challenges focus on increasing unique consumer value on reliable purchases that influence of loyalty and pursuit of a sustainable competitive advantage from the Institutions in Jakarta. Furthermore, a research was conducted with a quantitative method and a confirmatory strategic research design. The research resulted in entire confirmatory factors analysis (1st CFA and 2nd CFA) among variables pertains to; χ2//Df (9.30, 4.38, 6.95, 2.76, 2.97, 2.91, 2.32 and 6.90), GFI (0.72, 0.82, 0.82, 0.81, 0.78, 0.84, 0.89 and 0.70) and CFI (0.90, 0.95, 0.93, 0.92, 0.95, 0.91, 0.96 and 0.89), which indicates a good model. Furthermore, the hybrid model is well fit with, χ2//Df=1.84, P value = 0.00, RMSEA = 0.076, GFI = 0.76, NNFI= 0.95, PNFI= 0.82, IFI= 0.96, RFI= 0.91, AGFI= 0.71 and CFI= 0.96. The result was significant hypothesis, i.e. variables of communitization marketing 3.0 and price perception influenced to unique value of consumer with tvalue =4.46 and 5.89. Furthermore, the consumers value influenced the purchasing with t value = 5.94. Additionally, the loyalty, the ‘communitization’, and the character building marketing 3.0 are affecting the pursuit of a sustainable competitive advantage from institutions with t value = 7.57, -2.12, and 2.04. Finally, the test between the most superior variable dimensions is significantly correlated between INOV and WDES, RESPON and ATT covariance matrix value= 0.72 and 0.71. Thus, ‘communitization’ and character building marketing 3.0 with dimensions of responsibility and technologies would increase a competitive advantage with the dimensions of the innovation and the job design from the institutions.

Keywords: consumer loyalty, marketing 3.0, unique consumer value, purchase, sustainable competitive advantage

Procedia PDF Downloads 285
6925 Machine Learning Approach to Project Control Threshold Reliability Evaluation

Authors: Y. Kim, H. Lee, M. Park, B. Lee

Abstract:

Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.

Keywords: machine learning, project control, project progress monitoring, schedule

Procedia PDF Downloads 244
6924 Learning a Bayesian Network for Situation-Aware Smart Home Service: A Case Study with a Robot Vacuum Cleaner

Authors: Eu Tteum Ha, Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

The smart home environment backed up by IoT (internet of things) technologies enables intelligent services based on the awareness of the situation a user is currently in. One of the convenient sensors for recognizing the situations within a home is the smart meter that can monitor the status of each electrical appliance in real time. This paper aims at learning a Bayesian network that models the causal relationship between the user situations and the status of the electrical appliances. Using such a network, we can infer the current situation based on the observed status of the appliances. However, learning the conditional probability tables (CPTs) of the network requires many training examples that cannot be obtained unless the user situations are closely monitored by any means. This paper proposes a method for learning the CPT entries of the network relying only on the user feedbacks generated occasionally. In our case study with a robot vacuum cleaner, the feedback comes in whenever the user gives an order to the robot adversely from its preprogrammed setting. Given a network with randomly initialized CPT entries, our proposed method uses this feedback information to adjust relevant CPT entries in the direction of increasing the probability of recognizing the desired situations. Simulation experiments show that our method can rapidly improve the recognition performance of the Bayesian network using a relatively small number of feedbacks.

Keywords: Bayesian network, IoT, learning, situation -awareness, smart home

Procedia PDF Downloads 523
6923 Umbrella Reinforcement Learning – A Tool for Hard Problems

Authors: Egor E. Nuzhin, Nikolay V. Brilliantov

Abstract:

We propose an approach for addressing Reinforcement Learning (RL) problems. It combines the ideas of umbrella sampling, borrowed from Monte Carlo technique of computational physics and chemistry, with optimal control methods, and is realized on the base of neural networks. This results in a powerful algorithm, designed to solve hard RL problems – the problems, with long-time delayed reward, state-traps sticking and a lack of terminal states. It outperforms the prominent algorithms, such as PPO, RND, iLQR and VI, which are among the most efficient for the hard problems. The new algorithm deals with a continuous ensemble of agents and expected return, that includes the ensemble entropy. This results in a quick and efficient search of the optimal policy in terms of ”exploration-exploitation trade-off” in the state-action space.

Keywords: umbrella sampling, reinforcement learning, policy gradient, dynamic programming

Procedia PDF Downloads 21
6922 Teaching Buddhist Meditation: An Investigation into Self-Learning Methods

Authors: Petcharat Lovichakorntikul, John Walsh

Abstract:

Meditation is in the process of becoming a globalized practice and its benefits have been widely acknowledged. The first wave of internationalized meditation techniques and practices was represented by Chan and Zen Buddhism and a new wave of practice has arisen in Thailand as part of the Phra Dhammakaya temple movement. This form of meditation is intended to be simple and straightforward so that it can easily be taught to people unfamiliar with the basic procedures and philosophy. This has made Phra Dhammakaya an important means of outreach to the international community. One notable aspect is to encourage adults to become like children to perform it – that is, to return to a naïve state prior to the adoption of ideology as a means of understanding the world. It is said that the Lord Buddha achieved the point of awakening at the age of seven and Phra Dhammakaya has a program to teach meditation to both children and adults. This brings about the research question of how practitioners respond to the practice of meditation and how should they be taught? If a careful understanding of how children behave can be achieved, then it will help in teaching adults how to become like children (albeit idealized children) in their approach to meditation. This paper reports on action research in this regard. Personal interviews and focus groups are held with a view to understanding self-learning methods with respect to Buddhist meditation and understanding and appreciation of the practices involved. The findings are considered in the context of existing knowledge about different learning techniques among people of different ages. The implications for pedagogical practice are discussed and learning methods are outlined.

Keywords: Buddhist meditation, Dhammakaya, meditation technique, pedagogy, self-learning

Procedia PDF Downloads 479
6921 Co₂Fe LDH on Aromatic Acid Functionalized N Doped Graphene: Hybrid Electrocatalyst for Oxygen Evolution Reaction

Authors: Biswaranjan D. Mohapatra, Ipsha Hota, Swarna P. Mantry, Nibedita Behera, Kumar S. K. Varadwaj

Abstract:

Designing highly active and low-cost oxygen evolution (2H₂O → 4H⁺ + 4e⁻ + O₂) electrocatalyst is one of the most active areas of advanced energy research. Some precious metal-based electrocatalysts, such as IrO₂ and RuO₂, have shown excellent performance for oxygen evolution reaction (OER); however, they suffer from high-cost and low abundance which limits their applications. Recently, layered double hydroxides (LDHs), composed of layers of divalent and trivalent transition metal cations coordinated to hydroxide anions, have gathered attention as an alternative OER catalyst. However, LDHs are insulators and coupled with carbon materials for the electrocatalytic applications. Graphene covalently doped with nitrogen has been demonstrated to be an excellent electrocatalyst for energy conversion technologies such as; oxygen reduction reaction (ORR), oxygen evolution reaction (OER) & hydrogen evolution reaction (HER). However, they operate at high overpotentials, significantly above the thermodynamic standard potentials. Recently, we reported remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene towards the ORR in alkaline medium. The molecular and heteroatom co-doping on graphene is expected to tune the electronic structure of graphene. Therefore, an innovative catalyst architecture, in which LDHs are anchored on aromatic acid functionalized ‘N’ doped graphene may presumably boost the OER activity to a new benchmark. Herein, we report fabrication of Co₂Fe-LDH on aromatic acid (AA) functionalized ‘N’ doped reduced graphene oxide (NG) and studied their OER activities in alkaline medium. In the first step, a novel polyol method is applied for synthesis of AA functionalized NG, which is well dispersed in aqueous medium. In the second step, Co₂Fe LDH were grown on AA functionalized NG by co-precipitation method. The hybrid samples are abbreviated as Co₂Fe LDH/AA-NG, where AA is either Benzoic acid or 1, 3-Benzene dicarboxylic acid (BDA) or 1, 3, 5 Benzene tricarboxylic acid (BTA). The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). These studies confirmed the growth of layered single phase LDH. The electrocatalytic OER activity of these hybrid materials was investigated by rotating disc electrode (RDE) technique on a glassy carbon electrode. The linear sweep voltammetry (LSV) on these catalyst samples were taken at 1600rpm. We observed significant OER performance enhancement in terms of onset potential and current density on Co₂Fe LDH/BTA-NG hybrid, indicating the synergic effect. This exploration of molecular functionalization effect in doped graphene and LDH system may provide an excellent platform for innovative design of OER catalysts.

Keywords: π-π functionalization, layered double hydroxide, oxygen evolution reaction, reduced graphene oxide

Procedia PDF Downloads 207
6920 An Implementation of Multi-Media Applications in Teaching Structural Design to Architectural Students

Authors: Wafa Labib

Abstract:

Teaching methods include lectures, workshops and tutorials for the presentation and discussion of ideas have become out of date; were developed outside the discipline of architecture from the college of engineering and do not satisfy the architectural students’ needs and causes them many difficulties in integrating structure into their design. In an attempt to improve structure teaching methods, this paper focused upon proposing a supportive teaching/learning tool using multi-media applications which seeks to better meet the architecture student’s needs and capabilities and improve the understanding and application of basic and intermediate structural engineering and technology principles. Before introducing the use of multi-media as a supportive teaching tool, a questionnaire was distributed to third year students of a structural design course who were selected as a sample to be surveyed forming a sample of 90 cases. The primary aim of the questionnaire was to identify the students’ learning style and to investigate whether the selected method of teaching could make the teaching and learning process more efficient. Students’ reaction on the use of this method was measured using three key elements indicating that this method is an appropriate teaching method for the nature of the students and the course as well.

Keywords: teaching method, architecture, learning style, multi-media

Procedia PDF Downloads 437
6919 Creative Skills Supported by Multidisciplinary Learning: Case Innovation Course at the Seinäjoki University of Applied Sciences

Authors: Satu Lautamäki

Abstract:

This paper presents findings from a multidisciplinary course (bachelor level) implemented at Seinäjoki University of Applied Sciences, Finland. The course aims to develop innovative thinking of students, by having projects given by companies, using design thinking methods as a tool for creativity and by integrating students into multidisciplinary teams working on the given projects. The course is obligatory for all first year bachelor students across four faculties (business and culture, food and agriculture, health care and social work, and technology). The course involves around 800 students and 30 pedagogical coaches, and it is implemented as an intensive one-week course each year. The paper discusses the pedagogy, structure and coordination of the course. Also, reflections on methods for the development of creative skills are given. Experts in contemporary, global context often work in teams, which consist of people who have different areas of expertise and represent various professional backgrounds. That is why there is a strong need for new training methods where multidisciplinary approach is at the heart of learning. Creative learning takes place when different parties bring information to the discussion and learn from each other. When students in different fields are looking for professional growth for themselves and take responsibility for the professional growth of other learners, they form a mutual learning relationship with each other. Multidisciplinary team members make decisions both individually and collectively, which helps them to understand and appreciate other disciplines. Our results show that creative and multidisciplinary project learning can develop diversity of knowledge and competences, for instance, students’ cultural knowledge, teamwork and innovation competences, time management and presentation skills as well as support a student’s personal development as an expert. It is highly recommended that higher education curricula should include various studies for students from different study fields to work in multidisciplinary teams.

Keywords: multidisciplinary learning, creative skills, innovative thinking, project-based learning

Procedia PDF Downloads 108
6918 Designing a Motivated Tangible Multimedia System for Preschoolers

Authors: Kien Tsong Chau, Zarina Samsudin, Wan Ahmad Jaafar Wan Yahaya

Abstract:

The paper examined the capability of a prototype of a tangible multimedia system that was augmented with tangible objects in motivating young preschoolers in learning. Preschoolers’ learning behaviour is highly captivated and motivated by external physical stimuli. Hence, conventional multimedia which solely dependent on digital visual and auditory formats for knowledge delivery could potentially place them in inappropriate state of circumstances that are frustrating, boring, or worse, impede overall learning motivations. This paper begins by discussion with the objectives of the research, followed by research questions, hypotheses, ARCS model of motivation adopted in the process of macro-design, and the research instrumentation, Persuasive Multimedia Motivational Scale was deployed for measuring the level of motivation of subjects towards the experimental tangible multimedia. At the close, a succinct description of the findings of a relevant research is provided. In the research, a total of 248 preschoolers recruited from seven Malaysian kindergartens were examined. Analyses revealed that the tangible multimedia system improved preschoolers’ learning motivation significantly more than conventional multimedia. Overall, the findings led to the conclusion that the tangible multimedia system is a motivation conducive multimedia for preschoolers.

Keywords: tangible multimedia, preschoolers, multimedia, tangible objects

Procedia PDF Downloads 609
6917 Competitive Coordination Strategy Towards Reversible Hybrid Hetero-Homogeneous Oxygen-Evolving Catalyst

Authors: Peikun Zhang, Chunhua Cui

Abstract:

Photoelectrochemical (PEC) water splitting provides a promising pathway to convert solar energy into renewable fuels. However, the main and seemingly insurmountable obstacle is that the sluggish kinetics of oxygen evolution reaction (OER) severely jeopardizes the overall efficiency, thus exploring highly active, stable, and appreciable catalysts is urgently requested. Herein a competitive coordination strategy was demonstrated to form a reversible hybrid homo-heterogeneous catalyst for efficient OER in alkaline media. The dynamic process involves an in-situ anchoring of soluble nickel–bipyridine pre-catalyst to a conductive substrate under OER and a re-dissolution course under open circuit potential, induced by the competitive coordination between nickel–bipyridine and nickel-hydroxyls. This catalyst allows to elaborately self-modulate a charge-transfer layer thickness upon the catalytic on-off operation, which affords substantially increased active sites, yet remains light transparency, and sustains the stability of over 200 hours of continuous operation. The integration of this catalyst with exemplified state-of-the-art Ni-sputtered Si photoanode can facilitate a ~250 mV cathodic shift at a current density of 20 mA cm-2. This finding helps the understanding of catalyst from a “dynamic” perspective, which represents a viable alternative to address remaining hurdles toward solar-driven water oxidation.

Keywords: molecular catalyst, oxygen evolution reaction, solar energy, transition metal complex, water splitting

Procedia PDF Downloads 123
6916 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives

Authors: Chen Guo, Heng Tang, Ben Niu

Abstract:

Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.

Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives

Procedia PDF Downloads 139