Search results for: road networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3961

Search results for: road networks

991 Internet of Things Edge Device Power Modelling and Optimization Simulator

Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh

Abstract:

Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.

Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting

Procedia PDF Downloads 130
990 Considering Effect of Wind Turbines in the Distribution System

Authors: Majed Ahmadi

Abstract:

In recent years, the high penetration of different types of renewable energy sources (RESs) has affected most of the available strategies. The main motivations behind the high penetration of RESs are clean energy, modular system and easy installation. Among different types of RESs, wind turbine (WT) is an interesting choice referring to the availability of wind in almost any area. The new technologies of WT can provide energy from residential applications to wide grid connected applications. Regarding the WT, advantages such as reducing the dependence on fossil fuels and enhancing the independence and flexibility of large power grid are the most prominent. Nevertheless, the high volatile nature of wind speed injects much uncertainty in the grid that if not managed optimally can put the analyses far from the reality.the aim of this project is scrutiny and to offer proper ways for renewing distribution networks with envisage the effects of wind power plants and uncertainties related to distribution systems including wind power generating plants output rate and consumers consuming rate and also decrease the incidents of the whole network losses, amount of pollution, voltage refraction and cost extent.to solve this problem we use dual point estimate method.And algorithm used in this paper is reformed bat algorithm, which will be under exact research furthermore the results.

Keywords: order renewal, wind turbines, bat algorithm, outspread production, uncertainty

Procedia PDF Downloads 285
989 Challenges of Ecotourism Destinations in Selected States of South Eastern Nigeria

Authors: Angela Ngozi Okeke

Abstract:

This paper assesses the challenges of ecotourism in selected destinations of south eastern. These destinations include Agulu/Nanka erosion site and Ogbunike caves from Anambra state, Nekede zoo and Urashi river source from Imo state, Oferekpe waterfall and Okposi salt lake from Ebonyi state. Three sets of well-structured questionnaires (A,B and C) were used to collect the data. Questionnaire ‘A’ was administered to 50% of the total number of households in Agulu/Nanka (51), Ogbunike (42), Nekede (48), Dikenafai (54), Oferekpe (40) and Okposi(45), making a total of 280 household respondents. Another set, ‘B’ was administered to 50 tourists from each site and ‘C’ was administered to 100% of staff respondents in Agulu/Nanka (18), Ogbunike (10), Nekede (24), Dikenafai (15), Oferekpe (8) and Okposi (12). Data collected were subjected to simple descriptive analysis. The results show that the highest respondents age (29.24%) fall into the age bracket (36-45) years, while the least (06.30%) were >60 years. The sex ratio was (67.47%) male and (32.53%) female, (46.48%) were married, (50.37%) were unmarried and (03.30%) were divorced. The tourists' reception was warm in Agulu/Nanka erosion site (46.00%), Ogbunike caves (38.00%), Urashi river source (64.00%) and Okposi salt lake (60.00%), while indifference (54.00%) at Nekede zoo and poor (62.00%) at Oferekpe waterfall. Though the facilities were inadequate in all the sites but majority of the tourist indicated interest to repeat visit. The reasons for protecting eco-destination at Agulu/Nanka (44.83%) and Ogbunike (40.38%) site is tourism, Nekede zoo (43.55%) and Okposi salt (38.46%) lake is biodiversity conservation, cultural festival at Urashi (46.88%) and economic value (35.29%) at Oferekpe waterfall. The way of protecting the destination in Agulu/Nanka site is planting trees (52.11%), taring of road (29.63%) at Ogbunike, molding monuments (30.19%) at Nekede zoo, building steps (64.06%) at Urashi river source, bush clearing (50.94%) at Oferekpe waterfall and community rules (40.74%) at Okposi salt lake. The challenges include deforestation at Agulu/Nanka, illegal hunting in Ogbunike caves, empty cages at Nekede zoo, lack of tour guards at Dikenafai, far distance at Oferekpe and crude method of salt production at Okposi salt lake. Also, it suggested publicity as a way of improving sustainable ecotourism in the study destinations.

Keywords: ecotourism destinations, conservation, travel, operations, challenges, development

Procedia PDF Downloads 4
988 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment

Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar

Abstract:

Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.

Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors

Procedia PDF Downloads 11
987 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
986 Building an E-Platform for Virtual Research Teams in Educational Science

Authors: Hanan A. Abdulhameed, Huda Y. Alyami

Abstract:

The study presents a new international direction to conduct collaborative educational research. It follows a qualitative and quantitative methodology in investigating the main requirements to build an e-platform for Virtual Research Teams (VRTs). The e-platform considers three main components: First, the human and cultural structure, second, the institutional/organizational structure, and third, the technological structure. The study mainly focuses on the third component, the technological structure (the e-platform), and studies how to incorporate the other components: The human/cultural structure and the institutional/organizational structure in order to build an effective e-platform. The importance of the study is that it presents a comprehensive study about VRTs in terms of definition, types, structure, and main challenges. In addition, it suggests a practical way that benefits from the information and communication technology to conduct collaborative educational research by building and managing virtual research teams through an effective e-platform. The study draws the main framework to build an e-platform for collaborative educational research teams in Arab World. Thus, it tackles mainly the theoretical aspects, the framework of an effective e-platform. Then, it presents the evaluation of 18 Arab educational experts' to the proposed e-platform.

Keywords: collaborative research, educational science, E-platform, social research networks sites (SRNS), virtual research teams (VRTs)

Procedia PDF Downloads 460
985 Investigating Message Timing Side Channel Attacks on Networks on Chip with Ring Topology

Authors: Mark Davey

Abstract:

Communications on a Network on Chip (NoC) produce timing information, i.e., network injection delays, packet traversal times, throughput metrics, and other attributes relating to the traffic being sent across the chip. The security requirements of a platform encompass each node to operate with confidentiality, integrity, and availability (ISO 27001). Inherently, a shared NoC interconnect is exposed to analysis of timing patterns created by contention for the network components, i.e., links and switches/routers. This phenomenon is defined as information leakage, which represents a ‘side channel’ of sensitive information that can be correlated to platform activity. The key algorithm presented in this paper evaluates how an adversary can control two platform neighbouring nodes of a target node to obtain sensitive information about communication with the target node. The actual information obtained is the period value of a periodic task communication. This enacts a breach of the expected confidentiality of a node operating in a multiprocessor platform. An experimental investigation of the side channel is undertaken to judge the level and significance of inferred information produced by access times to the NoC. Results are presented with a series of expanding task set scenarios to evaluate the efficacy of the side channel detection algorithm as the network load increases.

Keywords: embedded systems, multiprocessor, network on chip, side channel

Procedia PDF Downloads 71
984 Interference Management in Long Term Evolution-Advanced System

Authors: Selma Sbit, Mohamed Bechir Dadi, Belgacem Chibani Rhaimi

Abstract:

Incorporating Home eNodeB (HeNB) in cellular networks, e.g. Long Term Evolution Advanced (LTE-A), is beneficial for extending coverage and enhancing capacity at low price especially within the non-line-of sight (NLOS) environments such as homes. HeNB or femtocell is a small low powered base station which provides radio coverage to the mobile users in an indoor environment. This deployment results in a heterogeneous network where the available spectrum becomes shared between two layers. Therefore, a problem of Inter Cell Interference (ICI) appears. This issue is the main challenge in LTE-A. To deal with this challenge, various techniques based on frequency, time and power control are proposed. This paper deals with the impact of carrier aggregation and higher order MIMO (Multiple Input Multiple Output) schemes on the LTE-Advanced performance. Simulation results show the advantages of these schemes on the system capacity (4.109 b/s/Hz when bandwidth B=100 MHz and when applying MIMO 8x8 for SINR=30 dB), maximum theoretical peak data rate (more than 4 Gbps for B=100 MHz and when MIMO 8x8 is used) and spectral efficiency (15 b/s/Hz and 30b/s/Hz when MIMO 4x4 and MIMO 8x8 are applying respectively for SINR=30 dB).

Keywords: capacity, carrier aggregation, LTE-Advanced, MIMO (Multiple Input Multiple Output), peak data rate, spectral efficiency

Procedia PDF Downloads 256
983 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach

Authors: Apu Kumar Saha, Mrinmoy Majumder

Abstract:

The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.

Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering

Procedia PDF Downloads 549
982 Photocatalytic Active Surface of LWSCC Architectural Concretes

Authors: P. Novosad, L. Osuska, M. Tazky, T. Tazky

Abstract:

Current trends in the building industry are oriented towards the reduction of maintenance costs and the ecological benefits of buildings or building materials. Surface treatment of building materials with photocatalytic active titanium dioxide added into concrete can offer a good solution in this context. Architectural concrete has one disadvantage – dust and fouling keep settling on its surface, diminishing its aesthetic value and increasing maintenance e costs. Concrete surface – silicate material with open porosity – fulfils the conditions of effective photocatalysis, in particular, the self-cleaning properties of surfaces. This modern material is advantageous in particular for direct finishing and architectural concrete applications. If photoactive titanium dioxide is part of the top layers of road concrete on busy roads and the facades of the buildings surrounding these roads, exhaust fumes can be degraded with the aid of sunshine; hence, environmental load will decrease. It is clear that options for removing pollutants like nitrogen oxides (NOx) must be found. Not only do these gases present a health risk, they also cause the degradation of the surfaces of concrete structures. The photocatalytic properties of titanium dioxide can in the long term contribute to the enhanced appearance of surface layers and eliminate harmful pollutants dispersed in the air, and facilitate the conversion of pollutants into less toxic forms (e.g., NOx to HNO3). This paper describes verification of the photocatalytic properties of titanium dioxide and presents the results of mechanical and physical tests on samples of architectural lightweight self-compacting concretes (LWSCC). The very essence of the use of LWSCC is their rheological ability to seep into otherwise extremely hard accessible or inaccessible construction areas, or sections thereof where concrete compacting will be a problem, or where vibration is completely excluded. They are also able to create a solid monolithic element with a large variety of shapes; the concrete will at the same meet the requirements of both chemical aggression and the influences of the surrounding environment. Due to their viscosity, LWSCCs are able to imprint the formwork elements into their structure and thus create high quality lightweight architectural concretes.

Keywords: photocatalytic concretes, titanium dioxide, architectural concretes, Lightweight Self-Compacting Concretes (LWSCC)

Procedia PDF Downloads 295
981 Assessing the Effect of Waste-based Geopolymer on Asphalt Binders

Authors: Amani A. Saleh, Maram M. Saudy, Mohamed N. AbouZeid

Abstract:

Asphalt cement concrete is a very commonly used material in the construction of roads. It has many advantages, such as being easy to use as well as providing high user satisfaction in terms of comfortability and safety on the road. However, there are some problems that come with asphalt cement concrete, such as its high carbon footprint, which makes it environmentally unfriendly. In addition, pavements require frequent maintenance, which could be very costly and uneconomic. The aim of this research is to study the effect of mixing waste-based geopolymers with asphalt binders. Geopolymer mixes were prepared by combining alumino-silicate sources such as fly ash, silica fumes, and metakaolin with alkali activators. The purpose of mixing geopolymers with the asphalt binder is to enhance the rheological and microstructural properties of asphalt. This was done through two phases, where the first phase was developing an optimum mix design of the geopolymer additive itself. The following phase was testing the geopolymer-modified asphalt binder after the addition of the optimum geopolymer mix design to it. The testing of the modified binder is performed according to the Superpave testing procedures, which include the dynamic shear rheometer to measure parameters such as rutting and fatigue cracking, and the rotational viscometer to measure workability. In addition, the microstructural properties of the modified binder is studied using the environmental scanning electron microscopy test (ESEM). In the testing phase, the aim is to observe whether the addition of different geopolymer percentages to the asphalt binder will enhance the properties of the binder and yield desirable results. Furthermore, the tests on the geopolymer-modified binder were carried out at fixed time intervals, therefore, the curing time was the main parameter being tested in this research. It was observed that the addition of geopolymers to asphalt binder has shown an increased performance of asphalt binder with time. It is worth mentioning that carbon emissions are expected to be reduced since geopolymers are environmentally friendly materials that minimize carbon emissions and lead to a more sustainable environment. Additionally, the use of industrial by-products such as fly ash and silica fumes is beneficial in the sense that they are recycled into producing geopolymers instead of being accumulated in landfills and therefore wasting space.

Keywords: geopolymer, rutting, superpave, fatigue cracking, sustainability, waste

Procedia PDF Downloads 129
980 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 446
979 Modeling the Philippine Stock Exchange Index Closing Value Using Artificial Neural Network

Authors: Frankie Burgos, Emely Munar, Conrado Basa

Abstract:

This paper aimed at developing an artificial neural network (ANN) model specifically for the Philippine Stock Exchange index closing value. The inputs to the ANN are US Dollar and Philippine Peso(USD-PHP) exchange rate, GDP growth of the country, quarterly inflation rate, 10-year bond yield, credit rating of the country, previous open, high, low, close values and volume of trade of the Philippine Stock Exchange Index (PSEi), gold price of the previous day, National Association of Securities Dealers Automated Quotations (NASDAQ), Standard and Poor’s 500 (S & P 500) and the iShares MSCI Philippines ETF (EPHE) previous closing value. The target is composed of the closing value of the PSEi during the 627 trading days from November 3, 2011, to May 30, 2014. MATLAB’s Neural Network toolbox was employed to create, train and simulate the network using multi-layer feed forward neural network with back-propagation algorithm. The results satisfactorily show that the neural network developed has the ability to model the PSEi, which is affected by both internal and external economic factors. It was found out that the inputs used are the main factors that influence the movement of the PSEi closing value.

Keywords: artificial neural networks, artificial intelligence, philippine stocks exchange index, stocks trading

Procedia PDF Downloads 297
978 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 16
977 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains

Authors: Christian Angerer, Markus Lienkamp

Abstract:

Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.

Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx

Procedia PDF Downloads 417
976 Analyzing Perceptions of Leadership Capacities After a Year-Long Leadership Development Training: An Exploratory Study of School Leaders in South Africa

Authors: Norma Kok, Diemo Masuko, Thandokazi Dlongwana, Komala Pillay

Abstract:

CONTEXT: While many school principals have been outstanding teachers and have inherent leadership potential, many have not had access to the quality of leadership development or support that empowers them to produce high-quality education outcomes in extremely challenging circumstances. Further, school leaders in under-served communities face formidable challenges arising from insufficient infrastructure, overcrowded classrooms, socio-economic challenges within the community, and insufficient parental involvement, all of which put a strain on principals’ ability to lead their schools effectively. In addition few school leaders have access to other supportive networks, and many do not know how to build and leverage social capital to create opportunities for their schools and learners. Moreover, we know that fostering parental involvement in their children’s learning improves a child’s morale, attitude, and academic achievement across all subject areas, and promotes better behaviour and social adjustment. Citizen Leader Lab facilitates the Partners for Possibility (PfP) programme to provide leadership development and support to school leaders serving under-resourced communities in South Africa to create effective environments of learning. This is done by creating partnerships between school leaders and private-sector business leaders over a 12-month period. (185) OBJECTIVES: To explore school leaders’ perceptions of their leadership capacities and changes at their schools after being exposed to a year-long leadership development training programme. METHODS: School leaders gained new leadership capacities e.g. resilience, improved confidence, communication and conflict resolution skills - catalysing into improved cultures of collaborative decision-making and environments for enhanced teaching and learningprogramme based on the 70:20:10 model whereby: 10% of learning comes from workshops, 20% of learning takes place through peer learning and 70% of learning occurs through experiential learning as partnerships work together to identify and tackle challenges in targeted schools. Participants completed a post-programme questionnaire consisting of structured and unstructured questions and semi-structured interviews were conducted with them and their business leader. The interviews were audio-recorded, transcribed and thematic content analysis was undertaken. The analysis was inductive and emerging themes were identified. A code list was generated after coding was undertaken using computer software (Dedoose). Quantitative data gathered from surveys was aggregated and analysed. RESULTS: School leadership found the programme interesting and rewarding. They gained new leadership capacities such as resilience, improved confidence, communication and conflict resolution skills - catalyzing into improved cultures of collaborative decision-making and environments for enhanced teaching and learning. New networks resulted in tangible outcomes such as upgrades to school infrastructure, water and sanitation, vegetable gardens at schools resulting in nutrition for learners and/or intangible outcomes such as skills for members of school management teams (SMTs). Collaborative leadership led to SMTs being more aligned, efficient, and cohesive; and teachers being more engaged and motivated. Notable positive changes at the school inspired parents and community members to become more actively involved in the school and in their children’s education. CONCLUSION: The PfP programme leads to improved leadership capacities and improved school culture which leads to improved teaching and learning and new resources for schools.

Keywords: collaborative decision-making, collaborative leadership, community involvement, confidence

Procedia PDF Downloads 91
975 Exploring the Role of Humorous Dialogues in Advertisements of Pakistani Network Companies: Analysis of Discourses through Multi-Modal Critical Approach

Authors: Jane E. Alam Solangi

Abstract:

The contribution of the study is to explore the important part of humorous dialogues in cellular network advertisements. This promotes the message of valuable construction and promotion of network companies in Pakistan that employ different and broad techniques to give promotion to selling products. It merely instigates the consumers to buy it. The results of the study after analysis of its collected data gives a vision that advertisers of network advertisements use humorous dialogues as a significant device to the greater level. The source of entertainment in the advertisement is accompanied by the texts and humorous discourses to influence buying decisions of the consumers. Therefore, it tends to neutralize personal and social based values. The earlier contribution of scholars presented that the technical employment of humorous devices leads to the successful market of the relevant products. In order to analyze the humorous discourse devices, the approach of multi-modality of Fairclough (1989) is used. It is accompanied by the framework of Kress and van Leeuwen’s (1996). It analyzes the visual graph of the grammar. The overall findings in the study verified the role of humorous devices in the captivation of consumers’ decision to buy the product that interests them. Therefore, the role of humor acts as a breaker of the monotonous rhythm of advertisements.

Keywords: advertisements, devices, humorous, multi-modality, networks, Pakistan

Procedia PDF Downloads 103
974 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits

Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.

Abstract:

With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.

Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme

Procedia PDF Downloads 134
973 Developing Cause-effect Model of Urban Resilience versus Flood in Karaj City using TOPSIS and Shannon Entropy Techniques

Authors: Mohammad Saber Eslamlou, Manouchehr Tabibian, Mahta Mirmoghtadaei

Abstract:

The history of urban development and the increasing complexities of urban life have long been intertwined with different natural and man-made disasters. Sometimes, these unpleasant events have destroyed the cities forever. The growth of the urban population and the increase of social and economic resources in the cities increased the importance of developing a holistic approach to dealing with unknown urban disasters. As a result, the interest in resilience has increased in most of the scientific fields, and the urban planning literature has been enriched with the studies of the social, economic, infrastructural, and physical abilities of the cities. In this regard, different conceptual frameworks and patterns have been developed focusing on dimensions of resilience and different kinds of disasters. As the most frequent and likely natural disaster in Iran is flooding, the present study aims to develop a cause-effect model of urban resilience against flood in Karaj City. In this theoretical study, desk research and documentary studies were used to find the elements and dimensions of urban resilience. In this regard, 6 dimensions and 32 elements were found for urban resilience and a questionnaire was made by considering the requirements of TOPSIS techniques (pairwise comparison). The sample of the research consisted of 10 participants who were faculty members, academicians, board members of research centers, managers of the Ministry of Road and Urban Development, board members of New Towns Development Company, experts, and practitioners of consulting companies who had scientific and research backgrounds. The gathered data in this survey were analyzed using TOPSIS and Shannon Entropy techniques. The results show that Infrastructure/Physical, Social, Organizational/ Institutional, Structural/Physical, Economic, and Environmental dimensions are the most effective factors in urban resilience against floods in Karaj, respectively. Finally, a comprehensive model and a systematic framework of factors that affect the urban resilience of Karaj against floods was developed. This cause – effect model shows how different factors are related and influence each other, based on their connected structure and preferences.

Keywords: urban resilience, TOPSIS, Shannon entropy, cause-effect model of resilience, flood

Procedia PDF Downloads 58
972 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: acoustic sensor, diaphragm based, lumped element modeling (LEM), natural frequency, piezoelectric

Procedia PDF Downloads 442
971 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System

Authors: Qian Liu, Steve Furber

Abstract:

To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.

Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system

Procedia PDF Downloads 472
970 JaCoText: A Pretrained Model for Java Code-Text Generation

Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract:

Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.

Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks

Procedia PDF Downloads 286
969 Impacts of Urban Morphologies on Air Pollutants Dispersion in Porto's Urban Area

Authors: Sandra Rafael, Bruno Vicente, Vera Rodrigues, Carlos Borrego, Myriam Lopes

Abstract:

Air pollution is an environmental and social issue at different spatial scales, especially in a climate change context, with an expected decrease of air quality. Air pollution is a combination of high emissions and unfavourable weather conditions, where wind speed and wind direction play a key role. The urban design (location and structure of buildings and trees) can both promote the air pollutants dispersion as well as promote their retention within the urban area. Today, most of the urban areas are applying measures to adapt to future extreme climatic events. Most of these measures are grounded on nature-based solutions, namely green roofs and green areas. In this sense, studies are required to evaluate how the implementation of these actions will influence the wind flow within the urban area and, consequently, how this will influence air pollutants' dispersion. The main goal of this study was to evaluate the influence of a set of urban morphologies in the wind conditions and in the dispersion of air pollutants, in a built-up area in Portugal. For that, two pollutants were analysed (NOx and PM10) and four scenarios were developed: i) a baseline scenario, which characterizes the current status of the study area, ii) an urban green scenario, which implies the implementation of a green area inside the domain, iii) a green roof scenario, which consists in the implementation of green roofs in a specific area of the domain; iv) a 'grey' scenario, which consists in a scenario with absence of vegetation. For that, two models were used, namely the Weather Research and Forecasting model (WRF) and the CFD model VADIS (pollutant dispersion in the atmosphere under variable wind conditions). The WRF model was used to initialize the CFD model, while the last was used to perform the set of numerical simulations, on an hourly basis. The implementation of the green urban area promoted a reduction of air pollutants' concentrations, 16% on average, related to the increase in the wind flow, which promotes air pollutants dispersion; while the application of green roofs showed an increase of concentrations (reaching 60% during specific time periods). Overall the results showed that a strategic placement of vegetation in cities has the potential to make an important contribution to increase air pollutants dispersion and so promote the improvement of air quality and sustainability of urban environments.

Keywords: air pollutants dispersion, wind conditions, urban morphologies, road traffic emissions

Procedia PDF Downloads 346
968 Potential of Tourism Logistic Service Business in the Border Areas of Chong Anma, Chong Sa-Ngam, and Chong Jom Checkpoints in Thailand to Increase Competitive Efficiency among the ASEAN Community

Authors: Pariwat Somnuek

Abstract:

This study focused on tourism logistic services in the border areas of Thailand by an analysis and comparison of the opinions of tourists, villagers, and entrepreneurs of these services. Sample representatives of this study were a total of 600 villagers and 15 entrepreneurs in the three border areas consisting of Chong Anma, Chong Sa-Ngam, and Chong Jom checkpoints. For methodology, survey questionnaires, situation analysis, TOWS matrix, and focus group discussions were used for data collection, as well as descriptive analysis and statistics such as arithmetic means and standard deviations, were employed for data analysis. The findings revealed that business potential was at the medium level and entrepreneurs were satisfied with their turnovers. However, perspectives of transportation and tourism services provided for tourists need to be immediately improved. Recommendations for the potential development included promotion of border tourism destinations and foreign investments into accommodation, restaurants, and transport, as well as the establishment of business networks between Thailand and Cambodia, along with the introduction of new tourism destinations by co-operation between entrepreneurs in both countries. These initiatives may lead to increased visitors, collaboration of security offices, and an improved image of tourism security.

Keywords: business potential, potential development, tourism logistics, services

Procedia PDF Downloads 308
967 Dynamic Risk Model for Offshore Decommissioning Using Bayesian Belief Network

Authors: Ahmed O. Babaleye, Rafet E. Kurt

Abstract:

The global oil and gas industry is beginning to witness an increase in the number of installations moving towards decommissioning. Decommissioning of offshore installations is a complex, costly and hazardous activity, making safety one of the major concerns. Among existing removal options, complete and partial removal options pose the highest risks. Therefore, a dynamic risk model of the accidents from the two options is important to assess the risks on an overall basis. In this study, a risk-based safety model is developed to conduct quantitative risk analysis (QRA) for jacket structure systems failure. Firstly, bow-tie (BT) technique is utilised to model the causal relationship between the system failure and potential accident scenarios. Subsequently, to relax the shortcomings of BT, Bayesian Belief Networks (BBNs) were established to dynamically assess associated uncertainties and conditional dependencies. The BBN is developed through a similitude mapping of the developed bow-tie. The BBN is used to update the failure probabilities of the contributing elements through diagnostic analysis, thus, providing a case-specific and realistic safety analysis method when compared to a bow-tie. This paper presents the application of dynamic safety analysis to guide the allocation of risk control measures and consequently, drive down the avoidable cost of remediation.

Keywords: Bayesian belief network, offshore decommissioning, dynamic safety model, quantitative risk analysis

Procedia PDF Downloads 280
966 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing

Authors: Abdullah Bal, Sevdenur Bal

Abstract:

This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.

Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware

Procedia PDF Downloads 506
965 Urban Logistics Dynamics: A User-Centric Approach to Traffic Modelling and Kinetic Parameter Analysis

Authors: Emilienne Lardy, Eric Ballot, Mariam Lafkihi

Abstract:

Efficient urban logistics requires a comprehensive understanding of traffic dynamics, particularly as it pertains to kinetic parameters influencing energy consumption and trip duration estimations. While real-time traffic information is increasingly accessible, current high-precision forecasting services embedded in route planning often function as opaque 'black boxes' for users. These services, typically relying on AI-processed counting data, fall short in accommodating open design parameters essential for management studies, notably within Supply Chain Management. This work revisits the modelling of traffic conditions in the context of city logistics, emphasizing its significance from the user’s point of view, with two focuses. Firstly, the focus is not on the vehicle flow but on the vehicles themselves and the impact of the traffic conditions on their driving behaviour. This means opening the range of studied indicators beyond vehicle speed, to describe extensively the kinetic and dynamic aspects of the driving behaviour. To achieve this, we leverage the Art. Kinema parameters are designed to characterize driving cycles. Secondly, this study examines how the driving context (i.e., exogenous factors to the traffic flow) determines the mentioned driving behaviour. Specifically, we explore how accurately the kinetic behaviour of a vehicle can be predicted based on a limited set of exogenous factors, such as time, day, road type, orientation, slope, and weather conditions. To answer this question, statistical analysis was conducted on real-world driving data, which includes high-frequency measurements of vehicle speed. A Factor Analysis and a Generalized Linear Model have been established to link kinetic parameters with independent categorical contextual variables. The results include an assessment of the adjustment quality and the robustness of the models, as well as an overview of the model’s outputs.

Keywords: factor analysis, generalised linear model, real world driving data, traffic congestion, urban logistics, vehicle kinematics

Procedia PDF Downloads 67
964 Preparation and Struggle of Two Generations for Future Care: A Study of Intergenerational Care Planning among Mainland Immigrant Ageing Families in Hong Kong

Authors: Xue Bai, Ranran He, Chang Liu

Abstract:

Care planning before the onset of intensive care needs can benefit older adults’ psychological well-being and increases families’ ability to manage caregiving crises and cope with care transitions. Effective care planning requires collaborative ‘team-work’ in families. However, future care planning has not been substantially examined in intergenerational or family contexts, let alone among immigrant families who have to face particular challenges in parental caregiving. From a family systems perspective, this study intends to explore the extent, processes, and contents of intergenerational care planning of Mainland immigrant ageing families in Hong Kong and to examine the intergenerational congruence and discrepancies in the care planning process. Adopting a qualitative research design, semi-structured in-depth interviews were conducted with 17 adult child-older parent pairs and another 33 adult children. In total, 50 adult children who migrated to Hong Kong after the age of 18 with more than three years’ work experience in Hong Kong had at least one parent aged over 55 years old who was not a Hong Kong resident and considered his/herself as the primary caregiver of the parent were recruited. Seventeen ageing parents of the recruited adult children were invited for dyadic interviews. Scarcity of caregiving resources in the context of cross-border migration, intergenerational discrepancies in care planning stages, both generations’ struggle and ambivalence toward filial care, intergenerational transmission of care values, and facilitating role of accumulated family capital in care preparation were primary themes concluded from participants’ narratives. Compared with ageing parents, immigrant adult children generally displayed lower levels of care planning. Although with a strong awareness of parents’ future care needs, few adult children were found engaged in concrete planning activities. This is largely due to their uncertainties toward future life and career, huge work and living pressure, the relatively good health status of their parents, and restrictions of public welfare policies in the receiving society. By contrast, children’s cross-border migration encouraged ageing parents to have early and clear preparation for future care. Ageing parents mostly expressed low filial care expectations when realizing the scarcity of family caregiving resources in the cross-border context. Even though they prefer in-person support from children, most of them prepare themselves for independent ageing to prioritize the next generation’s needs or choose to utilize paid services, welfare systems, friend networks, or extended family networks in their sending society. Adult children were frequently found caught in the dilemma of desiring to provide high quality and in-person support for their parents but lacking sufficient resources. Notably, a salient pattern of intergenerational transmission in terms of family and care values and ideal care arrangement emerged from intergenerational care preparation. Moreover, the positive role of accumulated family capital generated by a reunion in care preparation and joint decision-making were also identified. The findings of the current study will enhance professionals’ and service providers’ awareness of intergenerational care planning in cross-border migration contexts, inform services to alleviate unpreparedness for elderly care and intergenerational discrepancies concerning care arrangements and broaden family services to encompass intergenerational care planning interventions. Acknowledgment: This study is supported by a General Research Grant from the Research Grants Council of the HKSAR, China (Project Number: 15603818).

Keywords: intergenerational care planning, mainland immigrants in Hong Kong, migrant family, older adults

Procedia PDF Downloads 126
963 Design and Control of a Knee Rehabilitation Device Using an MR-Fluid Brake

Authors: Mina Beheshti, Vida Shams, Mojtaba Esfandiari, Farzaneh Abdollahi, Abdolreza Ohadi

Abstract:

Most of the people who survive a stroke need rehabilitation tools to regain their mobility. The core function of these devices is a brake actuator. The goal of this study is to design and control a magnetorheological brake which can be used as a rehabilitation tool. In fact, the fluid used in this brake is called magnetorheological fluid or MR that properties can change by variation of the magnetic field. The braking properties can be set as control by using this feature of the fluid. In this research, different MR brake designs are first introduced in each design, and the dimensions of the brake have been determined based on the required torque for foot movement. To calculate the brake dimensions, it is assumed that the shear stress distribution in the fluid is uniform and the fluid is in its saturated state. After designing the rehabilitation brake, the mathematical model of the healthy movement of a healthy person is extracted. Due to the nonlinear nature of the system and its variability, various adaptive controllers, neural networks, and robust have been implemented to estimate the parameters and control the system. After calculating torque and control current, the best type of controller in terms of error and control current has been selected. Finally, this controller is implemented on the experimental data of the patient's movements, and the control current is calculated to achieve the desired torque and motion.

Keywords: rehabilitation, magnetorheological fluid, knee, brake, adaptive control, robust control, neural network control, torque control

Procedia PDF Downloads 151
962 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification

Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang

Abstract:

One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.

Keywords: malware detection, network security, targeted attack, computational intelligence

Procedia PDF Downloads 264