Search results for: computational analysis
28812 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management
Authors: Thewodros K. Geberemariam
Abstract:
The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space
Procedia PDF Downloads 15228811 CFD Analysis of Passive Cooling Building by Using Solar Chimney for Mild or Warm Climates
Authors: Naci Kalkan, Ihsan Dagtekin
Abstract:
This research presents the design and analysis of solar air-conditioning systems particularly solar chimney which is a passive strategy for natural ventilation, and demonstrates the structures of these systems’ using Computational Fluid Dynamic (CFD) and finally compares the results with several examples, which have been studied experimentally and carried out previously. In order to improve the performance of solar chimney system, highly efficient sub-system components are considered for the design. The general purpose of the research is to understand how efficiently solar chimney systems generate cooling, and is to improve the efficient of such systems for integration with existing and future domestic buildings.Keywords: active and passive solar technologies, solar cooling system, solar chimney, natural ventilation, cavity depth, CFD models for solar chimney
Procedia PDF Downloads 57428810 CFD Simulation for Air-Borne Infection Analysis in AII-Room
Authors: Young Kwon Yang, In Sung Kang, Jung Ha Hwang, Jin Chul Park
Abstract:
The present study is a foundational study for performance improvements on isolation wards to prevent proliferation of secondary infection of infectious diseases such as SARS, H1N1, and MERS inside hospitals. Accordingly, the present study conducted an analysis of the effect of sealing mechanisms and filling of openings on ensuring air tightness performance in isolation wards as well as simulation on air currents in improved isolation wards. The study method is as follows. First, previous studies on aerial infection type and mechanism were reviewed, and the review results were utilized as basic data of analysis on simulation of air current. Second, national and international legislations and regulations in relation to isolation wards as well as case studies on developed nations were investigated in order to identify the problems in isolation wards in Korea and improvement plans. Third, construction and facility plans were compared and analyzed between general and isolation wards focusing on large general hospitals in Korea, thereby conducting comparison and analysis on the performance and effects of air-tightness of general and isolation wards through CFD simulations. The study results showed that isolation wards had better air-tightness performance than that of general wards.Keywords: AII Room, air-borne infection, CFD, computational fluid dynamics
Procedia PDF Downloads 28728809 A Computational Model of the Thermal Grill Illusion: Simulating the Perceived Pain Using Neuronal Activity in Pain-Sensitive Nerve Fibers
Authors: Subhankar Karmakar, Madhan Kumar Vasudevan, Manivannan Muniyandi
Abstract:
Thermal Grill Illusion (TGI) elicits a strong and often painful sensation of burn when interlacing warm and cold stimuli that are individually non-painful, excites thermoreceptors beneath the skin. Among several theories of TGI, the “disinhibition” theory is the most widely accepted in the literature. According to this theory, TGI is the result of the disinhibition or unmasking of the pain-sensitive HPC (Heat-Pinch-Cold) nerve fibers due to the inhibition of cold-sensitive nerve fibers that are responsible for masking HPC nerve fibers. Although researchers focused on understanding TGI throughexperiments and models, none of them investigated the prediction of TGI pain intensity through a computational model. Furthermore, the comparison of psychophysically perceived TGI intensity with neurophysiological models has not yet been studied. The prediction of pain intensity through a computational model of TGI can help inoptimizing thermal displays and understanding pathological conditions related to temperature perception. The current studyfocuses on developing a computational model to predict the intensity of TGI pain and experimentally observe the perceived TGI pain. The computational model is developed based on the disinhibition theory and by utilizing the existing popular models of warm and cold receptors in the skin. The model aims to predict the neuronal activity of the HPC nerve fibers. With a temperature-controlled thermal grill setup, fifteen participants (ten males and five females) were presented with five temperature differences between warm and cold grills (each repeated three times). All the participants rated the perceived TGI pain sensation on a scale of one to ten. For the range of temperature differences, the experimentally observed perceived intensity of TGI is compared with the neuronal activity of pain-sensitive HPC nerve fibers. The simulation results show a monotonically increasing relationship between the temperature differences and the neuronal activity of the HPC nerve fibers. Moreover, a similar monotonically increasing relationship is experimentally observed between temperature differences and the perceived TGI intensity. This shows the potential comparison of TGI pain intensity observed through the experimental study with the neuronal activity predicted through the model. The proposed model intends to bridge the theoretical understanding of the TGI and the experimental results obtained through psychophysics. Further studies in pain perception are needed to develop a more accurate version of the current model.Keywords: thermal grill Illusion, computational modelling, simulation, psychophysics, haptics
Procedia PDF Downloads 17128808 Methodology of Preliminary Design and Performance of a Axial-Flow Fan through CFD
Authors: Ramiro Gustavo Ramirez Camacho, Waldir De Oliveira, Eraldo Cruz Dos Santos, Edna Raimunda Da Silva, Tania Marie Arispe Angulo, Carlos Eduardo Alves Da Costa, Tânia Cristina Alves Dos Reis
Abstract:
It presents a preliminary design methodology of an axial fan based on the lift wing theory and the potential vortex hypothesis. The literature considers a study of acoustic and engineering expertise to model a fan with low noise. Axial fans with inadequate intake geometry, often suffer poor condition of the flow at the entrance, varying from velocity profiles spatially asymmetric to swirl floating with respect to time, this produces random forces acting on the blades. This produces broadband gust noise which in most cases triggers the tonal noise. The analysis of the axial flow fan will be conducted for the solution of the Navier-Stokes equations and models of turbulence in steady and transitory (RANS - URANS) 3-D, in order to find an efficient aerodynamic design, with low noise and suitable for industrial installation. Therefore, the process will require the use of computational optimization methods, aerodynamic design methodologies, and numerical methods as CFD- Computational Fluid Dynamics. The objective is the development of the methodology of the construction axial fan, provide of design the geometry of the blade, and evaluate aerodynamic performanceKeywords: Axial fan design, CFD, Preliminary Design, Optimization
Procedia PDF Downloads 39528807 A Numerical Hybrid Finite Element Model for Lattice Structures Using 3D/Beam Elements
Authors: Ahmadali Tahmasebimoradi, Chetra Mang, Xavier Lorang
Abstract:
Thanks to the additive manufacturing process, lattice structures are replacing the traditional structures in aeronautical and automobile industries. In order to evaluate the mechanical response of the lattice structures, one has to resort to numerical techniques. Ansys is a globally well-known and trusted commercial software that allows us to model the lattice structures and analyze their mechanical responses using either solid or beam elements. In this software, a script may be used to systematically generate the lattice structures for any size. On the one hand, solid elements allow us to correctly model the contact between the substrates (the supports of the lattice structure) and the lattice structure, the local plasticity, and the junctions of the microbeams. However, their computational cost increases rapidly with the size of the lattice structure. On the other hand, although beam elements reduce the computational cost drastically, it doesn’t correctly model the contact between the lattice structures and the substrates nor the junctions of the microbeams. Also, the notion of local plasticity is not valid anymore. Moreover, the deformed shape of the lattice structure doesn’t correspond to the deformed shape of the lattice structure using 3D solid elements. In this work, motivated by the pros and cons of the 3D and beam models, a numerically hybrid model is presented for the lattice structures to reduce the computational cost of the simulations while avoiding the aforementioned drawbacks of the beam elements. This approach consists of the utilization of solid elements for the junctions and beam elements for the microbeams connecting the corresponding junctions to each other. When the global response of the structure is linear, the results from the hybrid models are in good agreement with the ones from the 3D models for body-centered cubic with z-struts (BCCZ) and body-centered cubic without z-struts (BCC) lattice structures. However, the hybrid models have difficulty to converge when the effect of large deformation and local plasticity are considerable in the BCCZ structures. Furthermore, the effect of the junction’s size of the hybrid models on the results is investigated. For BCCZ lattice structures, the results are not affected by the junction’s size. This is also valid for BCC lattice structures as long as the ratio of the junction’s size to the diameter of the microbeams is greater than 2. The hybrid model can take into account the geometric defects. As a demonstration, the point clouds of two lattice structures are parametrized in a platform called LATANA (LATtice ANAlysis) developed by IRT-SystemX. In this process, for each microbeam of the lattice structures, an ellipse is fitted to capture the effect of shape variation and roughness. Each ellipse is represented by three parameters; semi-major axis, semi-minor axis, and angle of rotation. Having the parameters of the ellipses, the lattice structures are constructed in Spaceclaim (ANSYS) using the geometrical hybrid approach. The results show a negligible discrepancy between the hybrid and 3D models, while the computational cost of the hybrid model is lower than the computational cost of the 3D model.Keywords: additive manufacturing, Ansys, geometric defects, hybrid finite element model, lattice structure
Procedia PDF Downloads 11228806 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization
Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman
Abstract:
In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization
Procedia PDF Downloads 24028805 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model
Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao
Abstract:
Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization
Procedia PDF Downloads 12828804 Compressive Stresses near Crack Tip Induced by Thermo-Electric Field
Authors: Thomas Jin-Chee Liu
Abstract:
In this paper, the thermo-electro-structural coupled-field in a cracked metal plate is studied using the finite element analysis. From the computational results, the compressive stresses reveal near the crack tip. This conclusion agrees with the past reference. Furthermore, the compressive condition can retard and stop the crack growth during the Joule heating process.Keywords: compressive stress, crack tip, Joule heating, finite element
Procedia PDF Downloads 40728803 Computational Fluid Dynamics (CFD) Modeling of Local with a Hot Temperature in Sahara
Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum
Abstract:
This paper reports concept was used into the computational fluid dynamics (CFD) code cfx through user-defined functions to assess ventilation efficiency inside (forced-ventilation local). CFX is a simulation tool which uses powerful computer and applied mathematics, to model fluid flow situations for the prediction of heat, mass and momentum transfer and optimal design in various heat transfer and fluid flow processes to evaluate thermal comfort in a room ventilated (highly-glazed). The quality of the solutions obtained from CFD simulations is an effective tool for predicting the behavior and performance indoor thermo-aéraulique comfort.Keywords: ventilation, thermal comfort, CFD, indoor environment, solar air heater
Procedia PDF Downloads 63428802 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach
Authors: Nwachukwu Ifeanyi
Abstract:
Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.Keywords: computation, robotics, mathematics, simulation
Procedia PDF Downloads 5828801 Hybrid Finite Element Analysis of Expansion Joints for Piping Systems in Aircraft Engine External Configurations and Nuclear Power Plants
Authors: Dong Wook Lee
Abstract:
This paper presents a method to analyze the stiffness of the expansion joint with structural support using a hybrid method combining computational and analytical methods. Many expansion joints found in tubes and ducts of mechanical structures are designed to absorb thermal expansion mismatch between their structural members and deal with misalignments introduced from the assembly/manufacturing processes. One of the important design perspectives is the system’s vibrational characteristics. We calculate the stiffness as a characterization parameter for structural joint systems using a combined Finite Element Analysis (FEA) and an analytical method. We apply the methods to two sample applications: external configurations of aircraft engines and nuclear power plant structures.Keywords: expansion joint, expansion joint stiffness, finite element analysis, nuclear power plants, aircraft engine external configurations
Procedia PDF Downloads 11128800 Computational Study of Composite Films
Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova
Abstract:
Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.Keywords: composite films, computer modelling, image analysis, nanocomposite films
Procedia PDF Downloads 39328799 CFD Modeling of Insect Flight at Low Reynolds Numbers
Authors: Wu Di, Yeo Khoon Seng, Lim Tee Tai
Abstract:
The typical insects employ a flapping-wing mode of flight. The numerical simulations on free flight of a model fruit fly (Re=143) including hovering and are presented in this paper. Unsteady aerodynamics around a flapping insect is studied by solving the three-dimensional Newtonian dynamics of the flyer coupled with Navier-Stokes equations. A hybrid-grid scheme (Generalized Finite Difference Method) that combines great geometry flexibility and accuracy of moving boundary definition is employed for obtaining flow dynamics. The results show good points of agreement and consistency with the outcomes and analyses of other researchers, which validate the computational model and demonstrate the feasibility of this computational approach on analyzing fluid phenomena in insect flight. The present modeling approach also offers a promising route of investigation that could complement as well as overcome some of the limitations of physical experiments in the study of free flight aerodynamics of insects. The results are potentially useful for the design of biomimetic flapping-wing flyers.Keywords: free hovering flight, flapping wings, fruit fly, insect aerodynamics, leading edge vortex (LEV), computational fluid dynamics (CFD), Navier-Stokes equations (N-S), fluid structure interaction (FSI), generalized finite-difference method (GFD)
Procedia PDF Downloads 41028798 Thermoelastic Analysis of a Tube Subjected to Internal Heating with Temperature Dependent Material Properties
Authors: Yasemin Kaya, Ahmet N. Eraslan
Abstract:
In this study, the thermoelastic behavior of a long tube is studied by taking into account the temperature dependency of all mechanical and thermal properties. As the tube is heated slowly, an uncoupled solution procedure is adopted under free and radially constrained boundary conditions. The nonlinear heat conduction equation is solved by a finite element collocation procedure and the corresponding distributions of stress and strain are computed by shooting iterations. The computational model is verified in comparison to the analytical solution by shutting down the temperature dependency of physical properties. In the analysis, experimental data available in the literature is used to describe the coefficient of thermal expansion $\alpha$, the thermal conductivity $k$, the modulus of rigidity $G$, the yield strength $\sigma_{0}$, and the Poisson's ratio $\nu$ of Nickel. Results of the analysis are presented in comparison to those having constant physical properties. As a result of the calculations, the temperature dependency of the material properties should be taken into account at higher temperature ranges.Keywords: thermoelasticity, long tube, temperature-dependent properties, internal heating
Procedia PDF Downloads 61328797 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing
Authors: Paramvir Singh
Abstract:
The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles
Procedia PDF Downloads 8928796 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study
Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi
Abstract:
The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations
Procedia PDF Downloads 17528795 Documenting the 15th Century Prints with RTI
Authors: Peter Fornaro, Lothar Schmitt
Abstract:
The Digital Humanities Lab and the Institute of Art History at the University of Basel are collaborating in the SNSF research project ‘Digital Materiality’. Its goal is to develop and enhance existing methods for the digital reproduction of cultural heritage objects in order to support art historical research. One part of the project focuses on the visualization of a small eye-catching group of early prints that are noteworthy for their subtle reliefs and glossy surfaces. Additionally, this group of objects – known as ‘paste prints’ – is characterized by its fragile state of preservation. Because of the brittle substances that were used for their production, most paste prints are heavily damaged and thus very hard to examine. These specific material properties make a photographic reproduction extremely difficult. To obtain better results we are working with Reflectance Transformation Imaging (RTI), a computational photographic method that is already used in archaeological and cultural heritage research. This technique allows documenting how three-dimensional surfaces respond to changing lighting situations. Our first results show that RTI can capture the material properties of paste prints and their current state of preservation more accurately than conventional photographs, although there are limitations with glossy surfaces because the mathematical models that are included in RTI are kept simple in order to keep the software robust and easy to use. To improve the method, we are currently developing tools for a more detailed analysis and simulation of the reflectance behavior. An enhanced analytical model for the representation and visualization of gloss will increase the significance of digital representations of cultural heritage objects. For collaborative efforts, we are working on a web-based viewer application for RTI images based on WebGL in order to make acquired data accessible to a broader international research community. At the ICDH Conference, we would like to present unpublished results of our work and discuss the implications of our concept for art history, computational photography and heritage science.Keywords: art history, computational photography, paste prints, reflectance transformation imaging
Procedia PDF Downloads 27528794 Performance Evaluation of Using Genetic Programming Based Surrogate Models for Approximating Simulation Complex Geochemical Transport Processes
Authors: Hamed K. Esfahani, Bithin Datta
Abstract:
Transport of reactive chemical contaminant species in groundwater aquifers is a complex and highly non-linear physical and geochemical process especially for real life scenarios. Simulating this transport process involves solving complex nonlinear equations and generally requires huge computational time for a given aquifer study area. Development of optimal remediation strategies in aquifers may require repeated solution of such complex numerical simulation models. To overcome this computational limitation and improve the computational feasibility of large number of repeated simulations, Genetic Programming based trained surrogate models are developed to approximately simulate such complex transport processes. Transport process of acid mine drainage, a hazardous pollutant is first simulated using a numerical simulated model: HYDROGEOCHEM 5.0 for a contaminated aquifer in a historic mine site. Simulation model solution results for an illustrative contaminated aquifer site is then approximated by training and testing a Genetic Programming (GP) based surrogate model. Performance evaluation of the ensemble GP models as surrogate models for the reactive species transport in groundwater demonstrates the feasibility of its use and the associated computational advantages. The results show the efficiency and feasibility of using ensemble GP surrogate models as approximate simulators of complex hydrogeologic and geochemical processes in a contaminated groundwater aquifer incorporating uncertainties in historic mine site.Keywords: geochemical transport simulation, acid mine drainage, surrogate models, ensemble genetic programming, contaminated aquifers, mine sites
Procedia PDF Downloads 27628793 A New Computational Method for the Solution of Nonlinear Burgers' Equation Arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media
Authors: Olayiwola Moruf Oyedunsi
Abstract:
This paper discusses the Modified Variational Iteration Method (MVIM) for the solution of nonlinear Burgers’ equation arising in longitudinal dispersion phenomena in fluid flow through porous media. The method is an elegant combination of Taylor’s series and the variational iteration method (VIM). Using Maple 18 for implementation, it is observed that the procedure provides rapidly convergent approximation with less computational efforts. The result shows that the concentration C(x,t) of the contaminated water decreases as distance x increases for the given time t.Keywords: modified variational iteration method, Burger’s equation, porous media, partial differential equation
Procedia PDF Downloads 32128792 A Comparative Analysis of Lexical Bundles in Academic Writing: Insights from Persian and Native English Writers in Applied Linguistics
Authors: Elham Shahrjooi Haghighi
Abstract:
This research explores how lexical bundles are utilized in writing in the field of linguistics by comparing professional Persian writers with native English writers using corpus-based studies and advanced computational techniques to examine the occurrence and characteristics of lexical bundles in academic writings. The review of literature emphasizes how important lexical bundles are, in organizing discussions and conveying opinions in both spoken and written language contexts across genres and proficiency levels in fields of study. Previous research has indicated that native English writers tend to employ an array and diversity of bundles than non-native writers do; these bundles are essential elements in academic writing. In this study’s methodology section, the research utilizes a corpus-based method to analyze a collection of writings such as research papers and advanced theses at the doctoral and masters’ levels. The examination uncovers variances in the utilization of groupings between writers who are native speakers of Persian and those who are native English speakers with the latter group displaying a greater occurrence and variety, in types of groupings. Furthermore, the research delves into how these groupings contribute to aspects classifying them into categories based on their relevance to research text structure and individuals as outlined in Hyland’s framework. The results show that Persian authors employ phrases and demonstrate distinct structural and functional tendencies in comparison to native English writers. This variation is linked to differing language skills, levels, disciplinary norms and cultural factors. The study also highlights the pedagogical implications of these findings, suggesting that targeted instruction on the use of lexical bundles could enhance the academic writing skills of non-native speakers. In conclusion, this research contributes to the understanding of lexical bundles in academic writing by providing a detailed comparative analysis of their use by Persian and native English writers. The insights from this study have important implications for language education and the development of effective writing strategies for non-native English speakers in academic contexts.Keywords: lexical bundles, academic writing, comparative analysis, computational techniques
Procedia PDF Downloads 2128791 A Review Of Blended Wing Body And Slender Delta Wing Performance Utilizing Experimental Techniques And Computational Fluid Dynamics
Authors: Abhiyan Paudel, Maheshwaran M Pillai
Abstract:
This paper deals with the optimization and comparison of slender delta wing and blended wing body. The objective is to study the difference between the two wing types and analyze the various aerodynamic characteristics of both of these types.The blended-wing body is an aircraft configuration that has the potential to be more efficient than conventional large transport aircraft configurations with the same capability. The purported advantages of the BWB approach are efficient high-lift wings and a wide airfoil-shaped body. Similarly, symmetric separation vortices over slender delta wing may become asymmetric as the angle of attack is increased beyond a certain value, causing asymmetric forces even at symmetric flight conditions. The transition of the vortex pattern from being symmetric to asymmetric over symmetric bodies under symmetric flow conditions is a fascinating fluid dynamics problem and of major importance for the performance and control of high-maneuverability flight vehicles that favor the use of slender bodies. With the use of Star CCM, we analyze both the fluid properties. The CL, CD and CM were investigated in steady state CFD of BWB at Mach 0.3 and through wind tunnel experiments on 1/6th model of BWB at Mach 0.1. From CFD analysis pressure variation, Mach number contours and turbulence area was observed.Keywords: Coefficient of Lift, Coefficient of Drag, CFD=Computational Fluid Dynamics, BWB=Blended Wing Body, slender delta wing
Procedia PDF Downloads 53128790 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.Keywords: erosion, prediction, elbow, computational fluid dynamics
Procedia PDF Downloads 15728789 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients
Authors: Enes Yasa, Guven Fidan
Abstract:
Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling
Procedia PDF Downloads 42128788 An Improved Approach to Solve Two-Level Hierarchical Time Minimization Transportation Problem
Authors: Kalpana Dahiya
Abstract:
This paper discusses a two-level hierarchical time minimization transportation problem, which is an important class of transportation problems arising in industries. This problem has been studied by various researchers, and a number of polynomial time iterative algorithms are available to find its solution. All the existing algorithms, though efficient, have some shortcomings. The current study proposes an alternate solution algorithm for the problem that is more efficient in terms of computational time than the existing algorithms. The results justifying the underlying theory of the proposed algorithm are given. Further, a detailed comparison of the computational behaviour of all the algorithms for randomly generated instances of this problem of different sizes validates the efficiency of the proposed algorithm.Keywords: global optimization, hierarchical optimization, transportation problem, concave minimization
Procedia PDF Downloads 16228787 Pressure Surge Analysis for Al Gardabiya Pump Station Phase III of the Man-Made River Project
Authors: Ahmed Bensreti, Mohamed Gouarsha
Abstract:
This paper presents a review of the pressure surge simulations carried out for Phase III of the Man Made River project in Libya with particular emphasis on the transient generated by simultaneous pump trips at Al Gardabiya Pump Station. The omission of the surge vessel check valve and bypass system on the grounds of cost, ease of design, and construction will result in, as expected, increased surge fluctuations as the damping effect in the form was removed. From the hydraulic and control requirements, it is recommended for Al Gardabiya Pump station that the check valve and check valve bypass be included in the final surge vessel design.Keywords: computational fluid dynamics, surge vessel design, transient surge analysis, water pipe hydraulics
Procedia PDF Downloads 7428786 The Feasibility of Glycerol Steam Reforming in an Industrial Sized Fixed Bed Reactor Using Computational Fluid Dynamic (CFD) Simulations
Authors: Mahendra Singh, Narasimhareddy Ravuru
Abstract:
For the past decade, the production of biodiesel has significantly increased along with its by-product, glycerol. Biodiesel-derived glycerol massive entry into the glycerol market has caused its value to plummet. Newer ways to utilize the glycerol by-product must be implemented or the biodiesel industry will face serious economic problems. The biodiesel industry should consider steam reforming glycerol to produce hydrogen gas. Steam reforming is the most efficient way of producing hydrogen and there is a lot of demand for it in the petroleum and chemical industries. This study investigates the feasibility of glycerol steam reforming in an industrial sized fixed bed reactor. In this paper, using computational fluid dynamic (CFD) simulations, the extent of the transport resistances that would occur in an industrial sized reactor can be visualized. An important parameter in reactor design is the size of the catalyst particle. The size of the catalyst cannot be too large where transport resistances are too high, but also not too small where an extraordinary amount of pressure drop occurs. The goal of this paper is to find the best catalyst size under various flow rates that will result in the highest conversion. Computational fluid dynamics simulated the transport resistances and a pseudo-homogenous reactor model was used to evaluate the pressure drop and conversion. CFD simulations showed that glycerol steam reforming has strong internal diffusion resistances resulting in extremely low effectiveness factors. In the pseudo-homogenous reactor model, the highest conversion obtained with a Reynolds number of 100 (29.5 kg/h) was 9.14% using a 1/6 inch catalyst diameter. Due to the low effectiveness factors and high carbon deposition rates, a fluidized bed is recommended as the appropriate reactor to carry out glycerol steam reforming.Keywords: computational fluid dynamic, fixed bed reactor, glycerol, steam reforming, biodiesel
Procedia PDF Downloads 30828785 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder
Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen
Abstract:
Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.Keywords: count data, meta-analytic prior, negative binomial, poisson
Procedia PDF Downloads 11728784 Modeling Continuous Flow in a Curved Channel Using Smoothed Particle Hydrodynamics
Authors: Indri Mahadiraka Rumamby, R. R. Dwinanti Rika Marthanty, Jessica Sjah
Abstract:
Smoothed particle hydrodynamics (SPH) was originally created to simulate nonaxisymmetric phenomena in astrophysics. However, this method still has several shortcomings, namely the high computational cost required to model values with high resolution and problems with boundary conditions. The difficulty of modeling boundary conditions occurs because the SPH method is influenced by particle deficiency due to the integral of the kernel function being truncated by boundary conditions. This research aims to answer if SPH modeling with a focus on boundary layer interactions and continuous flow can produce quantifiably accurate values with low computational cost. This research will combine algorithms and coding in the main program of meandering river, continuous flow algorithm, and solid-fluid algorithm with the aim of obtaining quantitatively accurate results on solid-fluid interactions with the continuous flow on a meandering channel using the SPH method. This study uses the Fortran programming language for modeling the SPH (Smoothed Particle Hydrodynamics) numerical method; the model is conducted in the form of a U-shaped meandering open channel in 3D, where the channel walls are soil particles and uses a continuous flow with a limited number of particles.Keywords: smoothed particle hydrodynamics, computational fluid dynamics, numerical simulation, fluid mechanics
Procedia PDF Downloads 13028783 Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation
Authors: Aymen Laadhari, Gábor Székely
Abstract:
In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets’ movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation.Keywords: hemodynamics, simulations, stagnation, valve
Procedia PDF Downloads 291