Search results for: acoustic emission (AE) signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2807

Search results for: acoustic emission (AE) signals

2537 Analysis of Noise Environment and Acoustics Material in Residential Building

Authors: Heruanda Alviana Giska Barabah, Hilda Rasnia Hapsari

Abstract:

Acoustic phenomena create an acoustic interpretation condition that describes the characteristics of the environment. In urban areas, the tendency of heterogeneous and simultaneous human activity form a soundscape that is different from other regions, one of the characteristics of urban areas that developing the soundscape is the presence of vertical model houses or residential building. Activities both within the building and surrounding environment are able to make the soundscape with certain characteristics. The acoustics comfort of residential building becomes an important aspect, those demand lead the building features become more diverse. Initial steps in mapping acoustic conditions in a soundscape are important, this is the method to determine uncomfortable condition. Noise generated by road traffic, railway, and plane is an important consideration, especially for urban people, therefore the proper design of the building becomes very important as an effort to bring appropriate acoustics comfort. In this paper the authors developed noise mapping on the location of the residential building. Mapping done by taking some point referring to the noise source. The mapping result become the basis for modeling the acoustics wave interacted with the building model. Material selection is done based on literature study and modeling simulation using Insul by considering the absorption coefficient and Sound Transmission Class. The analysis of acoustics rays is ray tracing method using Comsol simulator software that can show the movement of acoustics rays and their interaction with a boundary. The result of this study can be used to consider boundary material in residential building as well as consideration for improving the acoustic quality in the acoustics zones that are formed.

Keywords: residential building, noise, absorption coefficient, sound transmission class, ray tracing

Procedia PDF Downloads 242
2536 Low Cost Surface Electromyographic Signal Amplifier Based on Arduino Microcontroller

Authors: Igor Luiz Bernardes de Moura, Luan Carlos de Sena Monteiro Ozelim, Fabiano Araujo Soares

Abstract:

The development of a low cost acquisition system of S-EMG signals which are reliable, comfortable for the user and with high mobility shows to be a relevant proposition in modern biomedical engineering scenario. In the study, the sampling capacity of the Arduino microcontroller Atmel Atmega328 with an A/D converter with 10-bit resolution and its reconstructing capability of a signal of surface electromyography are analyzed. An electronic circuit to capture the signal through two differential channels was designed, signals from Biceps Brachialis of a healthy man of 21 years was acquired to test the system prototype. ARV, MDF, MNF and RMS estimators were used to compare de acquired signals with physiological values. The Arduino was configured with a sampling frequency of 1.5 kHz for each channel, and the tests with the circuit designed offered a SNR of 20.57dB.

Keywords: electromyography, Arduino, low-cost, atmel atmega328 microcontroller

Procedia PDF Downloads 360
2535 Effect of Cap and Trade Policies for Carbon Emission Reduction on Delhi Households

Authors: Vikram Singh

Abstract:

This paper aims to take into account carbon tax or cap-and-trade legislation to manage Delhi carbon emissions after a post-Kyoto treaty. This report estimated the influence of the carbon taxes or rebate/compensation cost at the household level. Here, the three possible scenarios will help to comprehend the difference between a straightforward compensation/rebate, and two clearly denoting progressive formula. The straightforward compensation is basically minimizing the regressive applications that will bears on cost. On the other hand, both the progressive formula will generate extra revenue, which will help for feasibility of more efficient, vehicles, appliances and buildings in the low-income household. For the hypothetical case of carbon price $40/tonne, low-income household for both urban and rural region could experience price burden up to 5% and 9% on their income as compared to 3% and 7% for high-income household respectively. The survey report also shown that carbon emission due low-income household are primarily by the substantive requirement like housing and transportation whereas almost 40% emission due to high-income household are by luxurious and non-essential items. The equal distribution of revenue cum incentives will not completely overcome high-income household’s investment in inessential items. However, it will merely help in investing their income in energy efficient and less carbon intensive items. Therefore, the rebate distribution on per capita basis instead on per households will benefit more especially large families at low-income group.

Keywords: household emission, carbon credit, carbon intensity, green house gas emission, carbon generation based insentives

Procedia PDF Downloads 430
2534 Experimental Research on the Effect of Activating Temperature on Combustion and Nox Emission Characteristics of Pulverized Coal in a Novel Purification-combustion Reaction System

Authors: Ziqu Ouyang, Kun Su

Abstract:

A novel efficient and clean coal combustion system, namely the purification-combustion system, was designed by the Institute of Engineering Thermal Physics, Chinese Academy of Science, in 2022. Among them, the purification system was composed of a mesothermal activating unit and a hyperthermal reductive unit, and the combustion system was composed of a mild combustion system. In the purification-combustion system, the deep in-situ removal of coal-N could be realized by matching the temperature and atmosphere in each unit, and thus the NOx emission was controlled effectively. To acquire the methods for realizing the efficient and clean coal combustion, this study investigated the effect of the activating temperature (including 822 °C, 858 °C, 933 °C, 991 °C), which was the key factor affecting the system operation, on combustion and NOx emission characteristics of pulverized coal in a 30 kW purification-combustion test bench. The research result turned out that the activating temperature affected the combustion and NOx emission characteristics significantly. As the activating temperature increased, the temperature increased first and then decreased in the mild combustion unit, and the temperature change in the lower part was much higher than that in the upper part. Moreover, the main combustion region was always located at the top of the unit under different activating temperatures, and the combustion intensity along the unit was weakened gradually. Increasing the activating temperature excessively could destroy the reductive atmosphere early in the upper part of the unit, which wasn’t conducive to the full removal of coal-N in the reductive coal char. As the activating temperature increased, the combustion efficiency increased first and then decreased, while the NOx emission decreased first and then increased, illustrating that increasing the activating temperature properly promoted the efficient and clean coal combustion, but there was a limit to its growth. In this study, the optimal activating temperature was 858 °C. Hence, this research illustrated that increasing the activating temperature properly could realize the mutual matching of improving the combustion efficiency and reducing the NOx emission, and thus guaranteed the clean and efficient coal combustion well.

Keywords: activating temperature, combustion characteristics, nox emission, purification-combustion system

Procedia PDF Downloads 82
2533 Vibration Signals of Small Vertical Axis Wind Turbines

Authors: Aqoul H. H. Alanezy, Ali M. Abdelsalam, Nouby M. Ghazaly

Abstract:

In recent years, progress has been made in increasing the renewable energy share in the power sector particularly in the wind. The experimental study conducted in this paper aims to investigate the effects of number of blades and inflow wind speed on vibration signals of a vertical axis Savonius type wind turbine. The operation of the model of Savonius type wind turbine is conducted to compare two, three and four blades wind turbines to show vibration amplitudes related with wind speed. It is found that the increase of the number of blades leads to decrease of the vibration magnitude. Furthermore, inflow wind speed has reduced effect on the vibration level for higher number of blades.

Keywords: Savonius type wind turbine, number of blades, renewable energy, vibration signals

Procedia PDF Downloads 152
2532 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients

Authors: Subha D. Puthankattil, Paul K. Joseph

Abstract:

Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.

Keywords: EEG, depression, wavelet entropy, approximate entropy, relative wavelet energy, multiresolution decomposition

Procedia PDF Downloads 327
2531 Vehicular Emission Estimation of Islamabad by Using Copert-5 Model

Authors: Muhammad Jahanzaib, Muhammad Z. A. Khan, Junaid Khayyam

Abstract:

Islamabad is the capital of Pakistan with the population of 1.365 million people and with a vehicular fleet size of 0.75 million. The vehicular fleet size is growing annually by the rate of 11%. Vehicular emissions are major source of Black carbon (BC). In developing countries like Pakistan, most of the vehicles consume conventional fuels like Petrol, Diesel, and CNG. These fuels are the major emitters of pollutants like CO, CO2, NOx, CH4, VOCs, and particulate matter (PM10). Carbon dioxide and methane are the leading contributor to the global warming with a global share of 9-26% and 4-9% respectively. NOx is the precursor of nitrates which ultimately form aerosols that are noxious to human health. In this study, COPERT (Computer program to Calculate Emissions from Road Transport) was used for vehicular emission estimation in Islamabad. COPERT is a windows based program which is developed for the calculation of emissions from the road transport sector. The emissions were calculated for the year of 2016 include pollutants like CO, NOx, VOC, and PM and energy consumption. The different variable was input to the model for emission estimation including meteorological parameters, average vehicular trip length and respective time duration, fleet configuration, activity data, degradation factor, and fuel effect. The estimated emissions for CO, CH4, CO2, NOx, and PM10 were found to be 9814.2, 44.9, 279196.7, 3744.2 and 304.5 tons respectively.

Keywords: COPERT Model, emission estimation, PM10, vehicular emission

Procedia PDF Downloads 256
2530 Assessment of the Occupancy’s Effect on Speech Intelligibility in Al-Madinah Holy Mosque

Authors: Wasim Orfali, Hesham Tolba

Abstract:

This research investigates the acoustical characteristics of Al-Madinah Holy Mosque. Extensive field measurements were conducted in different locations of Al-Madinah Holy Mosque to characterize its acoustic characteristics. The acoustical characteristics are usually evaluated by the use of objective parameters in unoccupied rooms due to practical considerations. However, under normal conditions, the room occupancy can vary such characteristics due to the effect of the additional sound absorption present in the room or by the change in signal-to-noise ratio. Based on the acoustic measurements carried out in Al-Madinah Holy Mosque with and without occupancy, and the analysis of such measurements, the existence of acoustical deficiencies has been confirmed.

Keywords: Al-Madinah Holy Mosque, mosque acoustics, speech intelligibility, worship sound

Procedia PDF Downloads 169
2529 EEG Signal Processing Methods to Differentiate Mental States

Authors: Sun H. Hwang, Young E. Lee, Yunhan Ga, Gilwon Yoon

Abstract:

EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering.

Keywords: EEG, focus, mental state, outlier, signal processing

Procedia PDF Downloads 277
2528 Comparison Analysis of Multi-Channel Echo Cancellation Using Adaptive Filters

Authors: Sahar Mobeen, Anam Rafique, Irum Baig

Abstract:

Acoustic echo cancellation in multichannel is a system identification application. In real time environment, signal changes very rapidly which required adaptive algorithms such as Least Mean Square (LMS), Leaky Least Mean Square (LLMS), Normalized Least Mean square (NLMS) and average (AFA) having high convergence rate and stable. LMS and NLMS are widely used adaptive algorithm due to less computational complexity and AFA used of its high convergence rate. This research is based on comparison of acoustic echo (generated in a room) cancellation thorough LMS, LLMS, NLMS, AFA and newly proposed average normalized leaky least mean square (ANLLMS) adaptive filters.

Keywords: LMS, LLMS, NLMS, AFA, ANLLMS

Procedia PDF Downloads 557
2527 A Study of Standing-Wave Thermoacoustic Refrigerator

Authors: Patcharin Saechan, Isares Dhuchakallaya

Abstract:

Thermoacoustic refrigerator is a cooling device which uses the acoustic waves to produce the cooling effect. The aim of this paper is to explore the experimental and numerical feasibility of a standing-wave thermoacoustic refrigerator. The effects of the stack length, position of stack and operating frequency on the cooling performance are carried out. The circular pore stacks are tested under the atmospheric pressure. A low-cost loudspeaker is used as an acoustic driver. The results show that the location of stack installed in resonator tube has a greater effect on the cooling performance than the stack length and operating frequency, respectively. The temperature difference across the ends of the stack can be generated up to 13.7°C, and the temperature of cold-end is dropped down by 5.3°C from the ambient temperature.

Keywords: cooling performance, refrigerator, standing-wave, thermoacoustics

Procedia PDF Downloads 190
2526 THz Phase Extraction Algorithms for a THz Modulating Interferometric Doppler Radar

Authors: Shaolin Allen Liao, Hual-Te Chien

Abstract:

Various THz phase extraction algorithms have been developed for a novel THz Modulating Interferometric Doppler Radar (THz-MIDR) developed recently by the author. The THz-MIDR differs from the well-known FTIR technique in that it introduces a continuously modulating reference branch, compared to the time-consuming discrete FTIR stepping reference branch. Such change allows real-time tracking of a moving object and capturing of its Doppler signature. The working principle of the THz-MIDR is similar to the FTIR technique: the incoming THz emission from the scene is split by a beam splitter/combiner; one of the beams is continuously modulated by a vibrating mirror or phase modulator and the other split beam is reflected by a reflection mirror; finally both the modulated reference beam and reflected beam are combined by the same beam splitter/combiner and detected by a THz intensity detector (for example, a pyroelectric detector). In order to extract THz phase from the single intensity measurement signal, we have derived rigorous mathematical formulas for 3 Frequency Banded (FB) signals: 1) DC Low-Frequency Banded (LFB) signal; 2) Fundamental Frequency Banded (FFB) signal; and 3) Harmonic Frequency Banded (HFB) signal. The THz phase extraction algorithms are then developed based combinations of 2 or all of these 3 FB signals with efficient algorithms such as Levenberg-Marquardt nonlinear fitting algorithm. Numerical simulation has also been performed in Matlab with simulated THz-MIDR interferometric signal of various Signal to Noise Ratio (SNR) to verify the algorithms.

Keywords: algorithm, modulation, THz phase, THz interferometry doppler radar

Procedia PDF Downloads 338
2525 Multiple Approaches for Ultrasonic Cavitation Monitoring of Oxygen-Loaded Nanodroplets

Authors: Simone Galati, Adriano Troia

Abstract:

Ultrasound (US) is widely used in medical field for a variety diagnostic techniques but, in recent years, it has also been creating great interest for therapeutic aims. Regarding drug delivery, the use of US as an activation source provides better spatial delivery confinement and limits the undesired side effects. However, at present there is no complete characterization at a fundamental level of the different signals produced by sono-activated nanocarriers. Therefore, the aim of this study is to obtain a metrological characterization of the cavitation phenomena induced by US through three parallel investigation approaches. US was focused into a channel of a customized phantom in which a solution with oxygen-loaded nanodroplets (OLNDs) was led to flow and the cavitation activity was monitored. Both quantitative and qualitative real-time analysis were performed giving information about the dynamics of bubble formation, oscillation and final implosion with respect to the working acoustic pressure and the type of nanodroplets, compared with pure water. From this analysis a possible interpretation of the observed results is proposed.

Keywords: cavitation, drug delivery, nanodroplets, ultra-sound

Procedia PDF Downloads 102
2524 Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities

Authors: Sayantan Saha, Sambit Supriya Dash, Vinayak Malhotra

Abstract:

Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application.

Keywords: combustion instability, fire safety, improved performance, liquid rocket engines, thermoacoustics

Procedia PDF Downloads 139
2523 Investigation on the Performance of Biodiesel and Natural Gas-Fuelled Diesel Engines for Shipboard Application

Authors: Kelvin Datonye Bob-Manuel

Abstract:

The shipping industry has begun to seriously look at ways of reducing fossil fuel consumption so that current reserves can last longer and operate their ships in a more environmentally friendly way. The concept of Green Shipping or Sustainable Shipping with the use of alternative fuels is now becoming an important issue for ship owners, shipping lines and ship builders globally. This paper provides a critical review of the performance of biodiesel and natural gas-fuelled diesel engines for shipboard application. The emission reduction technique included the use of either neat or emulsified rapeseed methyl ester (RME) for pilot ignition and the emission of NOx, CO2 and SOx were measured at engine speed range of 500 - 1500 r/min. The NOx concentrations were compared with the regulated IMO MARPOL73/78, Annex VI, Tiers I, II, III and United States Environmental Protection Agency (US-EPA) standard. All NOx emissions met Tier I and II levels and the EPA standard for the minimum specification of category 1 engines at higher speed but none met the MARPOL Tier III limit which is for designated Emission Control Areas (ECAs). No trace of soot and SOx emission were observed.

Keywords: dual-fuel, biodiesel, natural gas, NOx, SOx, MARPOL 73/78 Annex VI. USEPA Tier 3, EURO V &VI

Procedia PDF Downloads 408
2522 O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography/Computed Tomography in Patients with Suspicious Recurrent Low and High-Grade Glioma

Authors: Mahkameh Asadi, Habibollah Dadgar

Abstract:

The precise definition margin of high and low-grade glioma is crucial for choosing best treatment approach after surgery and radio-chemotherapy. The aim of the current study was to assess the O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in patients with low (LGG) and high grade glioma (HGG). We retrospectively analyzed 18F-FET PET/CT of 10 patients (age: 33 ± 12 years) with suspicious for recurrent LGG and HGG. The final decision of recurrence was made by magnetic resonance imaging (MRI) and registered clinical data. While response to radio-chemotherapy by MRI is often complex and sophisticated due to the edema, necrosis, and inflammation, emerging amino acid PET leading to better interpretations with more specifically differentiate true tumor boundaries from equivocal lesions. Therefore, integrating amino acid PET in the management of glioma to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.

Keywords: positron emission tomography, amino acid positron emission tomography, magnetic resonance imaging, low and high grade glioma

Procedia PDF Downloads 169
2521 Study of Nanocrystalline Scintillator for Alpha Particles Detection

Authors: Azadeh Farzaneh, Mohammad Reza Abdi, A. Quaranta, Matteo Dalla Palma, Seyedshahram Mortazavi

Abstract:

We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and Scanning Electron Microscope (SEM) Also, optical properties were followed by optical absorption and UV–vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra to alpha particles of sample were monitored.

Keywords: nanoparticles, luminescence, sol gel, scintillator

Procedia PDF Downloads 592
2520 Multi-Level Pulse Width Modulation to Boost the Power Efficiency of Switching Amplifiers for Analog Signals with Very High Crest Factor

Authors: Jan Doutreloigne

Abstract:

The main goal of this paper is to develop a switching amplifier with optimized power efficiency for analog signals with a very high crest factor such as audio or DSL signals. Theoretical calculations show that a switching amplifier architecture based on multi-level pulse width modulation outperforms all other types of linear or switching amplifiers in that respect. Simulations on a 2 W multi-level switching audio amplifier, designed in a 50 V 0.35 mm IC technology, confirm its superior performance in terms of power efficiency. A real silicon implementation of this audio amplifier design is currently underway to provide experimental validation.

Keywords: audio amplifier, multi-level switching amplifier, power efficiency, pulse width modulation, PWM, self-oscillating amplifier

Procedia PDF Downloads 334
2519 Increasing the Frequency of Laser Impulses with Optical Choppers with Rotational Shafts

Authors: Virgil-Florin Duma, Dorin Demian

Abstract:

Optical choppers are among the most common optomechatronic devices, utilized in numerous applications, from radiometry to telescopes and biomedical imaging. The classical configuration has a rotational disk with windows with linear margins. This research points out the laser signals that can be obtained with these classical choppers, as well as with another, novel, patented configuration, of eclipse choppers (i.e., with rotational disks with windows with non-linear margins, oriented outwards or inwards). Approximately triangular laser signals can be obtained with eclipse choppers, in contrast to the approximately sinusoidal – with classical devices. The main topic of this work refers to another, novel device, of choppers with shafts of different shapes and with slits of various profiles (patent pending). A significant improvement which can be obtained (with regard to disk choppers) refers to the chop frequencies of the laser signals. Thus, while 1 kHz is their typical limit for disk choppers, with choppers with shafts, a more than 20 times increase in the chop frequency can be obtained with choppers with shafts. Their transmission functions are also discussed, for different types of laser beams. Acknowledgments: This research is supported by the Romanian National Authority for Scientific Research, through the project PN-III-P2-2.1-BG-2016-0297.

Keywords: laser signals, laser systems, optical choppers, optomechatronics, transfer functions, eclipse choppers, choppers with shafts

Procedia PDF Downloads 186
2518 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing

Authors: Carolina Gouveia, José Vieira, Pedro Pinho

Abstract:

The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.

Keywords: bio-signals, DC component, Doppler effect, ellipse fitting, radar, SDR

Procedia PDF Downloads 134
2517 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 628
2516 Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel

Authors: Pawel Twardowski, Maciej Tabaszewski, Jakub Czyżycki

Abstract:

The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process.

Keywords: milling of hardened steel, tool wear, vibrations, machine learning

Procedia PDF Downloads 48
2515 Sustainable Development of HV Substation in Urban Areas Considering Environmental Aspects

Authors: Mahdi Naeemi Nooghabi, Mohammad Tofiqu Arif

Abstract:

Gas Insulated Switchgears by using an insulation material named SF6 (Sulphur Hexafluoride) and its significant dielectric properties have been the only choice in urban areas and other polluted industries. However, the initial investment of GIS is more than conventional AIS substation, its total life cycle costs caused to reach huge amounts of electrical market share. SF6 environmental impacts on global warming, atmosphere depletion, and decomposing to toxic gases in high temperature situation, and highest rate in Global Warming Potential (GWP) with 23900 times of CO2e and a 3200-year period lifetime was the only undeniable concern of GIS substation. Efforts of international environmental institute and their politic supports have been able to lead SF6 emission reduction legislation. This research targeted to find an appropriate alternative for GIS substations to meet all advantages in land occupation area and to improve SF6 environmental impacts due to its leakage and emission. An innovative new conceptual design named Multi-Storey prepared a new AIS design similar in land occupation, extremely low Sf6 emission, and maximum greenhouse gas emission reduction. Surprisingly, by considering economic benefits due to carbon price saving, it can earn more than $675 million during the 30-year life cycle by replacing of just 25% of total annual worldly additional GIS switchgears.

Keywords: AIS substation, GIS substation, SF6, greenhouse gas, global warming potential, carbon price, emission

Procedia PDF Downloads 301
2514 Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction

Authors: E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto

Abstract:

Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti2O/SiO2), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed.

Keywords: mechanical measurement, nanomaterials, optical coating, thermal noise

Procedia PDF Downloads 418
2513 Experimental Study on the Heat Transfer Characteristics of the 200W Class Woofer Speaker

Authors: Hyung-Jin Kim, Dae-Wan Kim, Moo-Yeon Lee

Abstract:

The objective of this study is to experimentally investigate the heat transfer characteristics of 200 W class woofer speaker units with the input voice signals. The temperature and heat transfer characteristics of the 200 W class woofer speaker unit were experimentally tested with the several input voice signals such as 1500 Hz, 2500 Hz, and 5000 Hz respectively. From the experiments, it can be observed that the temperature of the woofer speaker unit including the voice-coil part increases with a decrease in input voice signals. Also, the temperature difference in measured points of the voice coil is increased with decrease of the input voice signals. In addition, the heat transfer characteristics of the woofer speaker in case of the input voice signal of 1500 Hz is 40% higher than that of the woofer speaker in case of the input voice signal of 5000 Hz at the measuring time of 200 seconds. It can be concluded from the experiments that initially the temperature of the voice signal increases rapidly with time, after a certain period of time it increases exponentially. Also during this time dependent temperature change, it can be observed that high voice signal is stable than low voice signal.

Keywords: heat transfer, temperature, voice coil, woofer speaker

Procedia PDF Downloads 356
2512 Spectroscopic Investigations of Nd³⁺ Doped Lithium Lead Alumino Borate Glasses for 1.06μM Laser Applications

Authors: Nisha Deopa, A. S. Rao

Abstract:

Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li₂O – 10PbO – (10-x) Al₂O₃ – 70B₂O₃ – xNd₂O₃ (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentiality. From the absorption spectra, Judd-Ofelt intensity parameters along with various spectroscopic parameters have been estimated. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions, ⁴F₃/₂→⁴I₁₁/₂ (1063 nm) and ⁴F₃/₂→⁴I₉/₂ (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd³⁺ ion concentration up to 1 mol %, and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd³⁺ ions concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively high values of emission cross-section, branching ratio, lifetimes and quantum efficiency suggest that 1.0 mol% of Nd³⁺ in LiPbAlB glasses is aptly suitable to generate lasing action in NIR region at 1063 nm.

Keywords: energy transfer, glasses, J-O parameters, photoluminescence

Procedia PDF Downloads 184
2511 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model

Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You

Abstract:

The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.

Keywords: DBSCAN, potential function, speech signal, the UBSS model

Procedia PDF Downloads 132
2510 Interpretation of Ultrasonic Backscatter of Linear FM Chirp Pulses from Targets Having Frequency-Dependent Scattering

Authors: Stuart Bradley, Mathew Legg, Lilyan Panton

Abstract:

Ultrasonic remote sensing is a useful tool for assessing the interior structure of complex targets. For these methods, significantly enhanced spatial resolution is obtained if the pulse is coded, for example using a linearly changing frequency during the pulse duration. Such pulses have a time-dependent spectral structure. Interpretation of the backscatter from targets is, therefore, complicated if the scattering is frequency-dependent. While analytic models are well established for steady sinusoidal excitations applied to simple shapes such as spheres, such models do not generally exist for temporally evolving excitations. Therefore, models are developed in the current paper for handling such signals so that the properties of the targets can be quantitatively evaluated while maintaining very high spatial resolution. Laboratory measurements on simple shapes are used to confirm the validity of the models.

Keywords: linear FM chirp, time-dependent acoustic scattering, ultrasonic remote sensing, ultrasonic scattering

Procedia PDF Downloads 309
2509 Beam Coding with Orthogonal Complementary Golay Codes for Signal to Noise Ratio Improvement in Ultrasound Mammography

Authors: Y. Kumru, K. Enhos, H. Köymen

Abstract:

In this paper, we report the experimental results on using complementary Golay coded signals at 7.5 MHz to detect breast microcalcifications of 50 µm size. Simulations using complementary Golay coded signals show perfect consistence with the experimental results, confirming the improved signal to noise ratio for complementary Golay coded signals. For improving the success on detecting the microcalcifications, orthogonal complementary Golay sequences having cross-correlation for minimum interference are used as coded signals and compared to tone burst pulse of equal energy in terms of resolution under weak signal conditions. The measurements are conducted using an experimental ultrasound research scanner, Digital Phased Array System (DiPhAS) having 256 channels, a phased array transducer with 7.5 MHz center frequency and the results obtained through experiments are validated by Field-II simulation software. In addition, to investigate the superiority of coded signals in terms of resolution, multipurpose tissue equivalent phantom containing series of monofilament nylon targets, 240 µm in diameter, and cyst-like objects with attenuation of 0.5 dB/[MHz x cm] is used in the experiments. We obtained ultrasound images of monofilament nylon targets for the evaluation of resolution. Simulation and experimental results show that it is possible to differentiate closely positioned small targets with increased success by using coded excitation in very weak signal conditions.

Keywords: coded excitation, complementary golay codes, DiPhAS, medical ultrasound

Procedia PDF Downloads 256
2508 Electron Spin Resonance of Conduction and Spin Waves Dynamics Investigations in Bi-2223 Superconductor for Decoding Pairing Mechanism

Authors: S. N. Ekbote, G. K. Padam, Manju Arora

Abstract:

Electron spin resonance (ESR) spectroscopic investigations of (Bi, Pb)₂Sr₂Ca₂Cu₃O₁₀₋ₓ (Bi-2223) bulk samples were carried out in both the normal and superconducting states. A broad asymmetric resonance signal with side signals is obtained in the normal state, and all of them disappear in the superconducting state. The temperature and angular orientation effects on these signals suggest that the broad asymmetric signal arises from electron spin resonance of conduction electrons (CESR) and the side signals from exchange interactions as Platzman-Wolff type spin waves. The disappearance of CESR and spin waves in a superconducting state demonstrates the role of exchange interactions in Cooper pair formation.

Keywords: Bi-2223 superconductor, CESR, ESR, exchange interactions, spin waves

Procedia PDF Downloads 121