Search results for: cricket data analytics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25313

Search results for: cricket data analytics

25313 A Conversational Chatbot for Cricket Analytics

Authors: Kishan Bharadwaj Shridhar

Abstract:

Cricket is a data-rich sport, generating vast amounts of information, much of which is captured as textual commentary. Leading cricket data providers, such as ESPN Cricinfo include valuable Decision Review System (DRS) statistics within these commentaries, often as footnotes. Despite the significance of this data, accessing and analyzing it efficiently remains a challenge. This paper presents the development of a sophisticated chatbot designed to answer queries specifically about DRS in cricket. It supports up to seven distinct query types, including individual player statistics, umpire performance, player vs umpire dynamics, comparisons between batter and bowler, a player’s record at specific venues and more. Additionally, it enables stateful conversations, allowing a user to seamlessly build upon previous queries for a fluid and interactive experience. Leveraging advanced text-to-SQL methodologies and open-source frameworks such as Langgraph, it ensures low latency and robust performance. A distinct prompt engineering module enables the system to accurately interpret query intent, dynamically transitioning to an assisted text-to-SQL approach or a rule-based engine, as needed. This solution is the one of its kind in cricket analytics, offering unparalleled insights in cricket through an intuitive interface. It can be extended to other facets of cricket data and beyond, to other sports that generate textual data.

Keywords: conversational AI, cricket data analytics, text to SQL, large language models, stateful conversations.

Procedia PDF Downloads 0
25312 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks

Authors: Tanu Aneja, Harsha Malaviya

Abstract:

Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.

Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks

Procedia PDF Downloads 19
25311 Advancing in Cricket Analytics: Novel Approaches for Pitch and Ball Detection Employing OpenCV and YOLOV8

Authors: Pratham Madnur, Prathamkumar Shetty, Sneha Varur, Gouri Parashetti

Abstract:

In order to overcome conventional obstacles, this research paper investigates novel approaches for cricket pitch and ball detection that make use of cutting-edge technologies. The research integrates OpenCV for pitch inspection and modifies the YOLOv8 model for cricket ball detection in order to overcome the shortcomings of manual pitch assessment and traditional ball detection techniques. To ensure flexibility in a range of pitch environments, the pitch detection method leverages OpenCV’s color space transformation, contour extraction, and accurate color range defining features. Regarding ball detection, the YOLOv8 model emphasizes the preservation of minor object details to improve accuracy and is specifically trained to the unique properties of cricket balls. The methods are more reliable because of the careful preparation of the datasets, which include novel ball and pitch information. These cutting-edge methods not only improve cricket analytics but also set the stage for flexible methods in more general sports technology applications.

Keywords: OpenCV, YOLOv8, cricket, custom dataset, computer vision, sports

Procedia PDF Downloads 83
25310 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 54
25309 The Backlift Technique among South African Cricket Players

Authors: Habib Noorbhai

Abstract:

This study primarily aimed to investigate the batting backlift technique (BBT) among semi-professional, professional and current international cricket players. A key question was to investigate if the lateral batting backlift technique (LBBT) is more common at the highest levels of the game. The participants in this study sample (n = 130) were South African semi-professional players (SP) (n = 69) and professional players (P) (n = 49) and South African international professional players (SAI) (n = 12). Biomechanical and video analysis were performed on all participant groups. Classifiers were utilised to identify the batting backlift technique type (BBTT) employed by all batsmen. All statistics and wagon wheels (scoring areas of the batsmen on a cricket field) were sourced online. This study found that a LBBT is more common at the highest levels of cricket batsmanship with batsmen at the various levels of cricket having percentages of the LBBT as follows: SP = 37.7%; P = 38.8%; SAI = 75%; p = 0.001. This study also found that SAI batsmen who used the LBBT were more proficient at scoring runs in various areas around the cricket field (according to the wagon wheel analysis). This study found that a LBBT is more common at the highest levels of cricket batsmanship. Cricket coaches should also pay attention to the direction of the backlift with players, especially when correlating the backlift to various scoring areas on the cricket field. Further in-depth research is required to fully investigate the change in batting backlift techniques among cricket players over a long-term period.

Keywords: cricket batting, biomechanical analysis, backlift, performance

Procedia PDF Downloads 261
25308 Effects of Knowledge of Results on Specified Skill Acquisition among Fresh Cricket Players

Authors: Rasheed O. Oloyede, Joseph O. Adelusi, Peter O. Akinbile

Abstract:

This study was conducted to investigate the extent with which knowledge of results influences the performance of cricket players. A sample of 160 fresh students in the Department of Physical and Health Education who are novice in the game were randomly assigned into two groups. The first group of eighty (80) subjects was classified as experimental group while the second group of eighty (80) subjects was the control group. Subjects in both groups were asked to bowl and bat ten times each for a period of six weeks. After the first round, the subjects in the experimental group were allowed feedback on their performance in the first trial while those in the control group were denied feedback. Two null hypotheses generated for the study were tested using percentages and chi-square statistical analysis at 0.05 level of significance. Analysis of data showed that knowledge of results influenced the performance of cricket players. It was concluded that knowledge of results is pertinent for effective skill acquisition and could enhance better performance among unskilled cricket players. Hence, it is suggested that immediate feedback on the level of skill acquisition by the prospective and unskilled cricket players would inspire them for better performance in cricket tournaments.

Keywords: batting, bowling, knowledge of results, performance, skill acquisition

Procedia PDF Downloads 466
25307 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: big data, learning analytics, analytics, big data in education, Hadoop

Procedia PDF Downloads 427
25306 A Machine Learning Decision Support Framework for Industrial Engineering Purposes

Authors: Anli Du Preez, James Bekker

Abstract:

Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.

Keywords: Data analytics, Industrial engineering, Machine learning, Value creation

Procedia PDF Downloads 168
25305 The Impact of Sport Tourism on Small Scale Business Development in Sri Lanka

Authors: Vimuckthi Charika Wickramaratne, Prasansha Kumari

Abstract:

Sport tourism refers to travel which involves either observing or participating in a sporting event apart from their usual environment. Sport tourism in a fast growing sector of the Sri Lankan travelling industry since Cricket are more popular sport game in the country. This study intends to analyze the impact of these popular sport events for creating and developing small scale business in the country. Primary data gathered from 100 small entrepreneurs around Keththarama Cricket Ground in Sri Lanka. Collected data analyzed using descriptive research methods. The study revealed that local and international visitors for cricket games had impacted on small scale business activities such as retail, handicraft, transport, vehicle parking, small restaurant, hotels, foods and beverage industry. In addition, it was identified that these type of small business are sessional income generating activities for the short period.

Keywords: sport tourism, small scale business, cricket, entrepreneurs

Procedia PDF Downloads 300
25304 Quantifying Individual Performance of Pakistani Cricket Players

Authors: Kasif Khan, Azlan Allahwala, Moiz Ali, Hasan Lodhi, Umer Amjad

Abstract:

The number of runs scored by batsmen and wickets taken by bowlers serves as a natural way of quantifying the performance of a cricketer. Traditionally the batsmen and bowlers are rated on their batting or bowling average respectively. However, in a game like Cricket, it is not sufficient to evaluate performance on the basis of average. The biasness in selecting batsman and bowler on the basis of their past performance. The objective is to predict the best player and comparing their performance on the basis of venue, opponent, weather, and particular position. On the basis of predictions and analysis, and comparison the best team is selected for next upcoming series of Pakistan. The system is based and will be built to aid analyst in finding best possible team combination of Pakistan for a particular match and by providing them with advisories so that they can select the best possible team combination. This will also help the team management in identifying a perfect batting order and the bowling order for each match.

Keywords: data analysis, Pakistan cricket players, quantifying individual performance, cricket

Procedia PDF Downloads 297
25303 Leveraging Learning Analytics to Inform Learning Design in Higher Education

Authors: Mingming Jiang

Abstract:

This literature review aims to offer an overview of existing research on learning analytics and learning design, the alignment between the two, and how learning analytics has been leveraged to inform learning design in higher education. Current research suggests a need to create more alignment and integration between learning analytics and learning design in order to not only ground learning analytics on learning sciences but also enable data-driven decisions in learning design to improve learning outcomes. In addition, multiple conceptual frameworks have been proposed to enhance the synergy and alignment between learning analytics and learning design. Future research should explore this synergy further in the unique context of higher education, identifying learning analytics metrics in higher education that can offer insight into learning processes, evaluating the effect of learning analytics outcomes on learning design decision-making in higher education, and designing learning environments in higher education that make the capturing and deployment of learning analytics outcomes more efficient.

Keywords: learning analytics, learning design, big data in higher education, online learning environments

Procedia PDF Downloads 174
25302 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 84
25301 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95
25300 The Modern Era in the Cricket World: How Far Have We Really Come?

Authors: Habib Noorbhai

Abstract:

History of Cricket: Cricket has a known history spanning from the 16th century till present, with international matches having been played since 1844. The game of cricket arrived in Australia as soon as colonization began in 1788. Cricketers started playing on turf wickets in the late 1800’s and dimensions for both the boundary and pitch later became assimilated. As the years evolved, cricket bats and balls, protective equipment, playing surfaces and the three formats of the game adapted to the playing conditions and laws of cricket. Business of Cricket: During the late 1900's, the shorter version of the game (T20) was introduced in order to attract the crowds to stadiums and television viewers for broadcasting rights. One could argue if this was merely a business venture or a platform for enhancing the performance of cricketers. Between the 16th and 20th century, cricket was a common sport played for passion and pure enjoyment. Industries saw a potential in diversified business ventures in the game (as well as other sports played globally) and cricket subsequently became a career for players, administrators and coaches, the media, health professionals, managers and the corporate world. Pros and Cons of Cricket Developments: At present, the game has significantly gained from the use of technology, sports sciences and varied mechanisms to optimize the performances and forecast frameworks for injury prevention in cricket players. Unfortunately, these had not been utilized in the earlier times of cricket and it would prove interesting to observe how the greats of the game would have benefited with such developments. Cricketers in the 21st century are faced with many overwhelming commitments. One of these is playing cricket for 11 months in a year, making it more than 250 days away from home and their families. As the demand of player contracts increase, the supply of commitment and performances from players increase. Way Forward and Future Implications: The questions are: Are such disadvantages contributing to the overload and injury risks of players? How far have we really come in the cricketing world or has everything since the game’s inception become institutionalized with a business model? These are the fundamental questions which need to be addressed and legislation, policies and ethical considerations need to be drafted and implemented. These will ensure that there is equilibrium of effective transitions and management of not only the players, but also the credibility of the wonderful game.

Keywords: enterprising business of cricket, technology, legislation, credibility

Procedia PDF Downloads 449
25299 High Performance Computing and Big Data Analytics

Authors: Branci Sarra, Branci Saadia

Abstract:

Because of the multiplied data growth, many computer science tools have been developed to process and analyze these Big Data. High-performance computing architectures have been designed to meet the treatment needs of Big Data (view transaction processing standpoint, strategic, and tactical analytics). The purpose of this article is to provide a historical and global perspective on the recent trend of high-performance computing architectures especially what has a relation with Analytics and Data Mining.

Keywords: high performance computing, HPC, big data, data analysis

Procedia PDF Downloads 520
25298 Data Management and Analytics for Intelligent Grid

Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh

Abstract:

Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.

Keywords: data management, analytics, energy data analytics, smart grid, smart utilities

Procedia PDF Downloads 780
25297 Antecedents of Sport Commitment among Cricket Players: A Comparison Based on Demographic Factors

Authors: Navodita Mishra, T. J. Kamalanabhan

Abstract:

The primary purpose of this study was to identify the antecedents of sport commitment among cricket players and to understand demographic variables that may impact these factors. Commitment towards one’s sport play a crucial role in determining discipline and efforts of the player. Moreover, demographic variables would seem to play an important role in determining which factors or predictors have the greatest impact on commitment level. This study hypothesized the effect of demographic factors on sport commitment among cricket players. It attempts to examine the extent to which demographic factors can differentially motivate players to exhibit commitment towards their respective sport. Questionnaire survey method was adopted using purposive sampling technique. Using Multiple Regression, ANOVA and t-test, the hypotheses were tested based on a sample of 350 players from Cricket Academy. Our main results from the multivariate analysis indicated that (1) enjoyment and leadership of coach and peer affect the level of commitment to a greater extent whereas (2) personal investment is a significant predictor of commitment among rural background players Moreover, level of sport commitment among players is positively related to household income, the rural background players participate in sports to a greater extent than the urban players, there is no evidence of regional differentials in commitment but age differences (i.e. U-19 vs. U-25) play an important role in the decision to continue the participation in sports.

Keywords: individual sport commitment, social factors, demographic factors, cricket

Procedia PDF Downloads 539
25296 Big Data and Analytics in Higher Education: An Assessment of Its Status, Relevance and Future in the Republic of the Philippines

Authors: Byron Joseph A. Hallar, Annjeannette Alain D. Galang, Maria Visitacion N. Gumabay

Abstract:

One of the unique challenges provided by the twenty-first century to Philippine higher education is the utilization of Big Data. The higher education system in the Philippines is generating burgeoning amounts of data that contains relevant data that can be used to generate the information and knowledge needed for accurate data-driven decision making. This study examines the status, relevance and future of Big Data and Analytics in Philippine higher education. The insights gained from the study may be relevant to other developing nations similarly situated as the Philippines.

Keywords: big data, data analytics, higher education, republic of the philippines, assessment

Procedia PDF Downloads 349
25295 Data Analytics in Hospitality Industry

Authors: Tammy Wee, Detlev Remy, Arif Perdana

Abstract:

In the recent years, data analytics has become the buzzword in the hospitality industry. The hospitality industry is another example of a data-rich industry that has yet fully benefited from the insights of data analytics. Effective use of data analytics can change how hotels operate, market and position themselves competitively in the hospitality industry. However, at the moment, the data obtained by individual hotels remain under-utilized. This research is a preliminary research on data analytics in the hospitality industry, using an in-depth face-to-face interview on one hotel as a start to a multi-level research. The main case study of this research, hotel A, is a chain brand of international hotel that has been systematically gathering and collecting data on its own customer for the past five years. The data collection points begin from the moment a guest book a room until the guest leave the hotel premises, which includes room reservation, spa booking, and catering. Although hotel A has been gathering data intelligence on its customer for some time, they have yet utilized the data to its fullest potential, and they are aware of their limitation as well as the potential of data analytics. Currently, the utilization of data analytics in hotel A is limited in the area of customer service improvement, namely to enhance the personalization of service for each individual customer. Hotel A is able to utilize the data to improve and enhance their service which in turn, encourage repeated customers. According to hotel A, 50% of their guests returned to their hotel, and 70% extended nights because of the personalized service. Apart from using the data analytics for enhancing customer service, hotel A also uses the data in marketing. Hotel A uses the data analytics to predict or forecast the change in consumer behavior and demand, by tracking their guest’s booking preference, payment preference and demand shift between properties. However, hotel A admitted that the data they have been collecting was not fully utilized due to two challenges. The first challenge of using data analytics in hotel A is the data is not clean. At the moment, the data collection of one guest profile is meaningful only for one department in the hotel but meaningless for another department. Cleaning up the data and getting standards correctly for usage by different departments are some of the main concerns of hotel A. The second challenge of using data analytics in hotel A is the non-integral internal system. At the moment, the internal system used by hotel A do not integrate with each other well, limiting the ability to collect data systematically. Hotel A is considering another system to replace the current one for more comprehensive data collection. Hotel proprietors recognized the potential of data analytics as reported in this research, however, the current challenges of implementing a system to collect data come with a cost. This research has identified the current utilization of data analytics and the challenges faced when it comes to implementing data analytics.

Keywords: data analytics, hospitality industry, customer relationship management, hotel marketing

Procedia PDF Downloads 181
25294 Visual Analytics in K 12 Education: Emerging Dimensions of Complexity

Authors: Linnea Stenliden

Abstract:

The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors by Latour. The learning conditions are found to be distinguished by broad complexity characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.

Keywords: analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation

Procedia PDF Downloads 377
25293 Crickets as Social Business Model for Rural Women in Colombia

Authors: Diego Cruz, Helbert Arevalo, Diana Vernot

Abstract:

In 2013, the Food and Agriculture Organization of the United Nations (FAO) said that insect production for food and feed could become an economic opportunity for rural women in developing countries. However, since then, just a few initiatives worldwide had tried to implement this kind of project in zones of tropical countries without previous experience in cricket production and insect human consumption, such as Colombia. In this project, ArthroFood company and the University of La Sabana join efforts to make a holistic multi-perspective analysis from biological, economic, culinary, and social sides of the Gryllodes sigillatus production by rural women of the municipality of La Mesa, Cundinamarca, Colombia. From a biological and economic perspective, G. sigillatus production in a 60m2 greenhouse was evaluated considering the effect of rearing density and substrates on final weight and length, developing time, survival rate, and proximate composition. Additionally, the production cost and labor hours were recorded for five months. On the other hand, from a socio- economic side, the intention of the rural women to implement cricket farms or micro-entrepreneurship around insect production was evaluated after developing ethnographies and empowerment, entrepreneurship, and cricket production workshops. Finally, the results of the elaboration of culinary recipes with cricket powder incorporating cultural aspects of the context of La Mesa, Cundinamarca, will be presented. This project represents Colombia's first attempt to create a social business model of cricket production involving rural women, academies, the private sector, and local authorities.

Keywords: cricket production, developing country, edible insects, entrepreneurship, insect culinary recipes

Procedia PDF Downloads 105
25292 Learning Analytics in a HiFlex Learning Environment

Authors: Matthew Montebello

Abstract:

Student engagement within a virtual learning environment generates masses of data points that can significantly contribute to the learning analytics that lead to decision support. Ideally, similar data is collected during student interaction with a physical learning space, and as a consequence, data is present at a large scale, even in relatively small classes. In this paper, we report of such an occurrence during classes held in a HiFlex modality as we investigate the advantages of adopting such a methodology. We plan to take full advantage of the learner-generated data in an attempt to further enhance the effectiveness of the adopted learning environment. This could shed crucial light on operating modalities that higher education institutions around the world will switch to in a post-COVID era.

Keywords: HiFlex, big data in higher education, learning analytics, virtual learning environment

Procedia PDF Downloads 201
25291 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors

Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde

Abstract:

In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affects the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.

Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance

Procedia PDF Downloads 124
25290 Designing a Cricket Team Selection Method Using Super-Efficient DEA and Semi Variance Approach

Authors: Arnab Adhikari, Adrija Majumdar, Gaurav Gupta, Arnab Bisi

Abstract:

Team formation plays an instrumental role in the sports like cricket. Existing literature reveals that most of the works on player selection focus only on the players’ efficiency and ignore the consistency. It motivates us to design an improved player selection method based on both player’s efficiency and consistency. To measure the players’ efficiency measurement, we employ a modified data envelopment analysis (DEA) technique namely ‘super-efficient DEA model’. We design a modified consistency index based on semi variance approach. Here, we introduce a new parameter called ‘fitness index’ for consistency computation to assess a player’s fitness level. Finally, we devise a single performance score using both efficiency score and consistency score with the help of a linear programming model. To test the robustness of our method, we perform a rigorous numerical analysis to determine the all-time best One Day International (ODI) Cricket XI. Next, we conduct extensive comparative studies regarding efficiency scores, consistency scores, selected team between the existing methods and the proposed method and explain the rationale behind the improvement.

Keywords: decision support systems, sports, super-efficient data envelopment analysis, semi variance approach

Procedia PDF Downloads 399
25289 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries

Authors: Gaurav Kumar Sinha

Abstract:

The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.

Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance

Procedia PDF Downloads 32
25288 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.

Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications

Procedia PDF Downloads 94
25287 Transforming Data into Knowledge: Mathematical and Statistical Innovations in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in various domains has created a pressing need for effective methods to transform this data into meaningful knowledge. In this era of big data, mathematical and statistical innovations play a crucial role in unlocking insights and facilitating informed decision-making in data analytics. This abstract aims to explore the transformative potential of these innovations and their impact on converting raw data into actionable knowledge. Drawing upon a comprehensive review of existing literature, this research investigates the cutting-edge mathematical and statistical techniques that enable the conversion of data into knowledge. By evaluating their underlying principles, strengths, and limitations, we aim to identify the most promising innovations in data analytics. To demonstrate the practical applications of these innovations, real-world datasets will be utilized through case studies or simulations. This empirical approach will showcase how mathematical and statistical innovations can extract patterns, trends, and insights from complex data, enabling evidence-based decision-making across diverse domains. Furthermore, a comparative analysis will be conducted to assess the performance, scalability, interpretability, and adaptability of different innovations. By benchmarking against established techniques, we aim to validate the effectiveness and superiority of the proposed mathematical and statistical innovations in data analytics. Ethical considerations surrounding data analytics, such as privacy, security, bias, and fairness, will be addressed throughout the research. Guidelines and best practices will be developed to ensure the responsible and ethical use of mathematical and statistical innovations in data analytics. The expected contributions of this research include advancements in mathematical and statistical sciences, improved data analysis techniques, enhanced decision-making processes, and practical implications for industries and policymakers. The outcomes will guide the adoption and implementation of mathematical and statistical innovations, empowering stakeholders to transform data into actionable knowledge and drive meaningful outcomes.

Keywords: data analytics, mathematical innovations, knowledge extraction, decision-making

Procedia PDF Downloads 75
25286 Data-driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship

Procedia PDF Downloads 329
25285 Data Analytics in Energy Management

Authors: Sanjivrao Katakam, Thanumoorthi I., Antony Gerald, Ratan Kulkarni, Shaju Nair

Abstract:

With increasing energy costs and its impact on the business, sustainability today has evolved from a social expectation to an economic imperative. Therefore, finding methods to reduce cost has become a critical directive for Industry leaders. Effective energy management is the only way to cut costs. However, Energy Management has been a challenge because it requires a change in old habits and legacy systems followed for decades. Today exorbitant levels of energy and operational data is being captured and stored by Industries, but they are unable to convert these structured and unstructured data sets into meaningful business intelligence. It must be noted that for quick decisions, organizations must learn to cope with large volumes of operational data in different formats. Energy analytics not only helps in extracting inferences from these data sets, but also is instrumental in transformation from old approaches of energy management to new. This in turn assists in effective decision making for implementation. It is the requirement of organizations to have an established corporate strategy for reducing operational costs through visibility and optimization of energy usage. Energy analytics play a key role in optimization of operations. The paper describes how today energy data analytics is extensively used in different scenarios like reducing operational costs, predicting energy demands, optimizing network efficiency, asset maintenance, improving customer insights and device data insights. The paper also highlights how analytics helps transform insights obtained from energy data into sustainable solutions. The paper utilizes data from an array of segments such as retail, transportation, and water sectors.

Keywords: energy analytics, energy management, operational data, business intelligence, optimization

Procedia PDF Downloads 365
25284 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: decision making, human capital analytics, talent management, talent value chain

Procedia PDF Downloads 188