Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Reservoirs Related Abstracts

2 Well Log Sequences Stratigraphy and Potential Reservoirs of Wells KF-1and KF-2; Kribi Oil Field, Douala-Kribi-Campo Basin, Cameroon

Authors: Nkwanyang L. Takem, Christopher M. Agyingi


Background and aim: An integrated interpretation of wireline logs and lithology of two selected wells (KF-1 and KF-2) of Kribi oil field within the southeastern offshore Douala/Kribi Campo Basin was carried out for sequence stratigraphic analysis of sediments penetrated by the wells. Methods: The stratigraphic units within the wells were subdivided into depositional sequences using characteristic well log patterns that were deposited between Tertiary Miocene to lower Cretaceous. Results: Nine (9) and eight (8) depositional sequences were identified respectively for KF-1 and KF-2. The sequences comprise LST (progradational packages), TSTs (retrogradational packages) and HSTs (aggradational packages), which reflect depositional systems deposited during different phases of base-level changes. The (LST) consists of Basin Floor Fans (BFF), Slope Fans and Channel Sands deposited when sea level was low and accommodation space lower than rate of sediment influx. TST consists of retrogradational marine shales deposited during high relative sea levels and when accommodation space was higher than rate of sediment influx. HST consisted of shoreface sands displaying mostly aggradational to progradational stacking patterns. Conclusion: The rapid facies changes between successive systems tracts provide potential stratigraphic traps. Reservoir stratification and continuity vary greatly between systems tracts and this enhanced development of stratigraphic traps in the area. Basin floor fans comprise sandstone of good reservoir quality, thus huge accumulation of HC can be trapped in this reservoirs.

Keywords: Reservoirs, Douala-Kribi-Campo Basin, sequence strastigraphyy, system tracks

Procedia PDF Downloads 362
1 The Effects of Above-Average Precipitation after Extended Drought on Phytoplankton in Southern California Surface Water Reservoirs

Authors: Margaret K. Spoo-Chupka


The Metropolitan Water District of Southern California (MWDSC) manages surface water reservoirs that are a source of drinking water for more than 19 million people in Southern California. These reservoirs experience periodic planktonic cyanobacteria blooms that can impact water quality. MWDSC imports water from two sources – the Colorado River (CR) and the State Water Project (SWP). The SWP brings supplies from the Sacramento-San Joaquin Delta that are characterized as having higher nutrients than CR water. Above average precipitation in 2017 after five years of drought allowed the majority of the reservoirs to fill. Phytoplankton was analyzed during the drought and after the drought at three reservoirs: Diamond Valley Lake (DVL), which receives SWP water exclusively, Lake Skinner, which can receive a blend of SWP and CR water, and Lake Mathews, which generally receives only CR water. DVL experienced a significant increase in water elevation in 2017 due to large SWP inflows, and there were no significant changes to total phytoplankton biomass, Shannon-Wiener diversity of the phytoplankton, or cyanobacteria biomass in 2017 compared to previous drought years despite the higher nutrient loads. The biomass of cyanobacteria that could potentially impact DVL water quality (Microcystis spp., Aphanizomenon flos-aquae, Dolichospermum spp., and Limnoraphis birgei) did not differ significantly between the heavy precipitation year and drought years. Compared to the other reservoirs, DVL generally has the highest concentration of cyanobacteria due to the water supply having greater nutrients. Lake Mathews’ water levels were similar in drought and wet years due to a reliable supply of CR water and there were no significant changes in the total phytoplankton biomass, phytoplankton diversity, or cyanobacteria biomass in 2017 compared to previous drought years. The biomass of cyanobacteria that could potentially impact water quality at Lake Mathews (L. birgei and Microcystis spp.) did not differ significantly between 2017 and previous drought years. Lake Mathews generally had the lowest cyanobacteria biomass due to the water supply having lower nutrients. The CR supplied most of the water to Lake Skinner during drought years, while the SWP was the primary source during 2017. This change in water source resulted in a significant increase in phytoplankton biomass in 2017, no significant change in diversity, and a significant increase in cyanobacteria biomass. Cyanobacteria that could potentially impact water quality at Skinner included: Microcystis spp., Dolichospermum spp., and A.flos-aquae. There was no significant difference in Microcystis spp. biomass in 2017 compared to previous drought years, but biomass of Dolichospermum spp. and A.flos-aquae were significantly greater in 2017 compared to previous drought years. Dolichospermum sp. and A. flos-aquae are two cyanobacteria that are more sensitive to nutrients than Microcystis spp., which are more sensitive to temperature. Patterns in problem cyanobacteria abundance among Southern California reservoirs as a result of above-average precipitation after more than five years of drought were most closely related to nutrient loading.

Keywords: Reservoirs, Cyanobacteria, Drought, and phytoplankton ecology

Procedia PDF Downloads 170