Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29

Regression analysis Related Abstracts

29 The Relationship between Inventory Management and Profitability: A Comparative Research on Turkish Firms Operated in Weaving Industry, Eatables Industry, Wholesale and Retail Industry

Authors: Gamze Sekeroglu, Mikail Altan

Abstract:

Working capital is identified as firm’s all current assets. Inventories which are one of the working capital elements are very important among current assets for firms. Because, profitability is an indicator for firms’ financial success is provided with minimum cost and optimum inventory quantity. So in this study, it is investigated as comparatively that the effect of inventory management on the profitability of Turkish firms which operated in weaving industry, eatables industry, wholesale and retail industry in between 2003 – 2012 years. Research data consist of profitability ratios and inventory turnovers ratio calculated by using balance sheets and income statements of firms which operated in Borsa Istanbul (BIST). In this research, the relationship between inventories and profitability is investigated by using SPSS-20 software with regression and correlation analysis. The results achieved from three industry departments which exist in study interpreted as comparatively. Accordingly, it is determined that there is a positive relationship between inventory management and profitability in eatables industry. However, it was founded that there is no relationship between inventory management and profitability in weaving industry and wholesale and retail industry.

Keywords: Inventory Management, Profitability, Regression analysis, working capital

Procedia PDF Downloads 155
28 Use of Regression Analysis in Determining the Length of Plastic Hinge in Reinforced Concrete Columns

Authors: Mehmet Alpaslan Köroğlu, Musa Hakan Arslan, Muslu Kazım Körez

Abstract:

Basic objective of this study is to create a regression analysis method that can estimate the length of a plastic hinge which is an important design parameter, by making use of the outcomes of (lateral load-lateral displacement hysteretic curves) the experimental studies conducted for the reinforced square concrete columns. For this aim, 170 different square reinforced concrete column tests results have been collected from the existing literature. The parameters which are thought affecting the plastic hinge length such as cross-section properties, features of material used, axial loading level, confinement of the column, longitudinal reinforcement bars in the columns etc. have been obtained from these 170 different square reinforced concrete column tests. In the study, when determining the length of plastic hinge, using the experimental test results, a regression analysis have been separately tested and compared with each other. In addition, the outcome of mentioned methods on determination of plastic hinge length of the reinforced concrete columns has been compared to other methods available in the literature.

Keywords: Regression analysis, Reinforced Concrete, Columns, plastic hinge length

Procedia PDF Downloads 321
27 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes

Authors: Frank Kuebler, Rolf Steinhilper

Abstract:

Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.

Keywords: design of experiments, Manufacturing Process, Regression analysis, Resource Efficiency, Artificial Neural Network

Procedia PDF Downloads 365
26 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems

Authors: Nermin Sokmen

Abstract:

An effort estimation model is needed for software-intensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.

Keywords: Regression analysis, functional complexity, functional decomposition, development effort, technical difficulty, design team capability

Procedia PDF Downloads 164
25 Travel Delay and Modal Split Analysis: A Case Study

Authors: H. S. Sathish, H. S. Jagadeesh, Skanda Kumar

Abstract:

Journey time and delay study is used to evaluate the quality of service, the travel time and study can also be used to evaluate the quality of traffic movement along the route and to determine the location types and extent of traffic delays. Components of delay are boarding and alighting, issue of tickets, other causes and distance between each stops. This study investigates the total journey time required to travel along the stretch and the influence the delays. The route starts from Kempegowda Bus Station to Yelahanka Satellite Station of Bangalore City. The length of the stretch is 16.5 km. Modal split analysis has been done for this stretch. This stretch has elevated highway connecting to Bangalore International Airport and the extension of metro transit stretch. From the regression analysis of total journey time it is affected by delay due to boarding and alighting moderately, Delay due to issue of tickets affects the journey time to a higher extent. Some of the delay factors affecting significantly the journey time are evident from F-test at 10 percent level of confidence. Along this stretch work trips are more prevalent as indicated by O-D study. Modal shift analysis indicates about 70 percent of commuters are ready to shift from current system to Metro Rail System. Metro Rail System carries maximum number of trips compared to private mode. Hence Metro is a highly viable choice of mode for Bangalore Metropolitan City.

Keywords: Regression analysis, delay, journey time, modal choice

Procedia PDF Downloads 359
24 Detecting Trends in Annual Discharge and Precipitation in the Chott Melghir Basin in Southeastern Algeria

Authors: M. T. Bouziane, A. Benkhaled, B. Achour

Abstract:

In this study, data from 30 catchments in the Chott Melghir basin in the semiarid region of southern East Algeria were analyzed to investigate changes in annual discharge, annual precipitation over the 1965-2005 period. These data were analyzed with the aid of Kendall test trend and regression analysis. The results indicate that the major variations in all catchments discharge in Chott Melghir correspond well to the precipitation. Changes in total annual discharge of Chott Melghir were lower than changes in annual precipitation. Annual precipitation decreased by 66 percent and annual discharge decreased by 4 percent. No significant trend is detected for annual discharge and precipitation at major catchments up to 95% confidence level. The decreasing trend in Chott Melghir discharge is mainly attributed to the decrease of precipitation.

Keywords: Climate Change, Precipitation, Regression analysis, Trends, discharge, Kendall test, Chott Melghir catchments

Procedia PDF Downloads 143
23 Analysis of Ferroresonant Overvoltages in Cable-fed Transformers

Authors: George Eduful, Ebenezer A. Jackson, Kingsford A. Atanga

Abstract:

This paper investigates the impacts of cable length and capacity of transformer on ferroresonant overvoltage in cable-fed transformers. The study was conducted by simulation using the EMTP RV. Results show that ferroresonance can cause dangerous overvoltages ranging from 2 to 5 per unit. These overvoltages impose stress on insulations of transformers and cables and subsequently result in system failures. Undertaking Basic Multiple Regression Analysis (BMR) on the results obtained, a statistical model was obtained in terms of cable length and transformer capacity. The model is useful for ferroresonant prediction and control in cable-fed transformers.

Keywords: Regression analysis, ferroresonance, cable-fed transformers, EMTP RV

Procedia PDF Downloads 345
22 The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite

Authors: S. Sharma, S. Kapoor, U. Batra, A. Dua

Abstract:

In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the as-synthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p < 0.0001, two way Anova), however, these were independent of TEA addition (p > 0.15, two way Anova). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p < 0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance.

Keywords: Regression analysis, hydroxyapatite, sol-gel, capping agent, two-way analysis of variance (ANOVA)

Procedia PDF Downloads 241
21 Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul

Authors: Hamed Rashid Sarand, Kemal Selçuk Öğüt

Abstract:

Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases.

Keywords: Regression analysis, Traffic Flow, maximum speed difference, remote traffic microwave sensor, speed differentiation

Procedia PDF Downloads 231
20 Factors Influencing Bank Profitability of Czech Banks and Their International Parent Companies

Authors: Libena Cernohorska

Abstract:

The goal of this paper is to specify factors influencing the profitability of selected banks. Next, a model will be created to help establish variables that have a demonstrable influence on the development of the selected banks' profitability ratios. Czech banks and their international parent companies were selected for analyzing profitability. Banks categorized as large banks (according to the Czech National Bank's system, which ranks banks according to balance sheet total) were selected to represent the Czech banks. Two ratios, the return on assets ratio (ROA) and the return on equity ratio (ROE) are used to assess bank profitability. Six endogenous and four external indicators were selected from among other factors that influence bank profitability. The data analyzed were for the years 2001 – 2013. First, correlation analysis, which was supposed to eliminate correlated values, was conducted. A large number of correlated values were established on the basis of this analysis. The strongly correlated values were omitted. Despite this, the subsequent regression analysis of profitability for the individual banks that were selected did not confirm that the selected variables influenced their profitability. The studied factors' influence on bank profitability was demonstrated only for Československá Obchodní Banka and Société Générale using regression analysis. For Československá Obchodní Banka, it was demonstrated that inflation level and the amount of the central bank's interest rate influenced the return on assets ratio and that capital adequacy and market concentration influenced the return on equity ratio for Société Générale.

Keywords: Profitability, Regression analysis, banks, ROA, ROE

Procedia PDF Downloads 134
19 Rotor Radial Vent Pumping in Large Synchronous Electrical Machines

Authors: Darren Camilleri, Robert Rolston

Abstract:

Rotor radial vents make use of the pumping effect to increase airflow through the active material thus reduce hotspot temperatures. The effect of rotor radial pumping in synchronous machines has been studied previously. This paper presents the findings of previous studies and builds upon their theories using a parametric numerical approach to investigate the rotor radial pumping effect. The pressure head generated by the poles and radial vent flow-rate were identified as important factors in maximizing the benefits of the pumping effect. The use of Minitab and ANSYS Workbench to investigate the key performance characteristics of radial pumping through a Design of Experiments (DOE) was described. CFD results were compared with theoretical calculations. A correlation for each response variable was derived through a statistical analysis. Findings confirmed the strong dependence of radial vent length on vent pressure head, and radial vent cross-sectional area was proved to be significant in maximising radial vent flow rate.

Keywords: Electrical Machines, CFD, Regression analysis, Cooling

Procedia PDF Downloads 168
18 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography

Authors: Strahinja Z. Kovačević, Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović

Abstract:

This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.

Keywords: Pesticides, Chemometrics, Regression analysis, molecular descriptors, classification analysis

Procedia PDF Downloads 228
17 Prediction of Index-Mechanical Properties of Pyroclastic Rock Utilizing Electrical Resistivity Method

Authors: İsmail İnce

Abstract:

The aim of this study is to determine index and mechanical properties of pyroclastic rock in a practical way by means of electrical resistivity method. For this purpose, electrical resistivity, uniaxial compressive strength, point load strength, P-wave velocity, density and porosity values of 10 different pyroclastic rocks were measured in the laboratory. A simple regression analysis was made among the index-mechanical properties of the samples compatible with electrical resistivity values. A strong exponentially relation was found between index-mechanical properties and electrical resistivity values. The electrical resistivity method can be used to assess the engineering properties of the rock from which it is difficult to obtain regular shaped samples as a non-destructive method.

Keywords: Regression analysis, Electrical Resistivity, index-mechanical properties, pyroclastic rocks

Procedia PDF Downloads 349
16 Development of IDF Curves for Precipitation in Western Watershed of Guwahati, Assam

Authors: Rajarshi Sharma, Rashidul Alam, Visavino Seleyi, Yuvila Sangtam

Abstract:

The Intensity-Duration-Frequency (IDF) relationship of rainfall amounts is one of the most commonly used tools in water resources engineering for planning, design and operation of water resources project, or for various engineering projects against design floods. The establishment of such relationships was reported as early as in 1932 (Bernard). Since then many sets of relationships have been constructed for several parts of the globe. The objective of this research is to derive IDF relationship of rainfall for western watershed of Guwahati, Assam. These relationships are useful in the design of urban drainage works, e.g. storm sewers, culverts and other hydraulic structures. In the study, rainfall depth for 10 years viz. 2001 to 2010 has been collected from the Regional Meteorological Centre Borjhar, Guwahati. Firstly, the data has been used to construct the mass curve for duration of more than 7 hours rainfall to calculate the maximum intensity and to form the intensity duration curves. Gumbel’s frequency analysis technique has been used to calculate the probable maximum rainfall intensities for a period of 2 yr, 5 yr, 10 yr, 50 yr, 100 yr from the maximum intensity. Finally, regression analysis has been used to develop the intensity-duration-frequency (IDF) curve. Thus, from the analysis the values for the constants ‘a’,‘b’ &‘c’ have been found out. The values of ‘a’ for which the sum of the squared deviation is minimum has been found out to be 40 and when the corresponding value of ‘c’ and ‘b’ for the minimum squared deviation of ‘a’ are 0.744 and 1981.527 respectively. The results obtained showed that in all the cases the correlation coefficient is very high indicating the goodness of fit of the formulae to estimate IDF curves in the region of interest.

Keywords: Regression analysis, correlation coefficient, intensity-duration-frequency relationship, mass curve

Procedia PDF Downloads 97
15 Evaluation of Newly Synthesized Steroid Derivatives Using In silico Molecular Descriptors and Chemometric Techniques

Authors: Anamarija I. Mandić, Sanja Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Milica Z. Karadzic, Katarina Penov-Gasi, Andrea R. Nikolic, Aleksandar M. Okljesa

Abstract:

This study considered selection of the in silico molecular descriptors and the models for newly synthesized steroid derivatives description and their characterization using chemometric techniques. Multiple linear regression (MLR) models were established and gave the best molecular descriptors for quantitative structure-retention relationship (QSRR) modeling of the retention of the investigated molecules. MLR models were without multicollinearity among the selected molecular descriptors according to the variance inflation factor (VIF) values. Used molecular descriptors were ranked using generalized pair correlation method (GPCM). In this method, the significant difference between independent variables can be noticed regardless almost equal correlation between dependent variable. Generated MLR models were statistically and cross-validated and the best models were kept. Models were ranked using sum of ranking differences (SRD) method. According to this method, the most consistent QSRR model can be found and similarity or dissimilarity between the models could be noticed. In this study, SRD was performed using average values of experimentally observed data as a golden standard. Chemometric analysis was conducted in order to characterize newly synthesized steroid derivatives for further investigation regarding their potential biological activity and further synthesis. This article is based upon work from COST Action (CM1105), supported by COST (European Cooperation in Science and Technology).

Keywords: Regression analysis, Steroids, molecular descriptors, sum of ranking differences, generalized pair correlation method

Procedia PDF Downloads 187
14 Chemometric Estimation of Phytochemicals Affecting the Antioxidant Potential of Lettuce

Authors: Strahinja Kovačević, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Milica Karadzic, Aleksandra Tepic-Horecki, Zdravko Sumic

Abstract:

In this paper, the influence of six different phytochemical content (phenols, carotenoids, chlorophyll a, chlorophyll b, chlorophyll a + b and vitamin C) on antioxidant potential of Murai and Levistro lettuce varieties was evaluated. Variable selection was made by generalized pair correlation method (GPCM) as a novel ranking method. This method is used for the discrimination between two variables that almost equal correlate to a dependent variable. Fisher’s conditional exact and McNemar’s test were carried out. Established multiple linear (MLR) models were statistically evaluated. As the best phytochemicals for the antioxidant potential prediction, chlorophyll a, chlorophyll a + b and total carotenoids content stand out. This was confirmed through both GPCM and MLR, predictive ability of obtained MLR can be used for antioxidant potential estimation for similar lettuce samples. This article is based upon work from the project of the Provincial Secretariat for Science and Technological Development of Vojvodina (No. 114-451-347/2015-02).

Keywords: Regression analysis, antioxidant activity, lettuce, generalized pair correlation method

Procedia PDF Downloads 193
13 The Effect of User Comments on Traffic Application Usage

Authors: I. Gokasar, G. Bakioglu

Abstract:

With the unprecedented rates of technological improvements, people start to solve their problems with the help of technological tools. According to application stores and websites in which people evaluate and comment on the traffic apps, there are more than 100 traffic applications which have different features with respect to their purpose of usage ranging from the features of traffic apps for public transit modes to the features of traffic apps for private cars. This study focuses on the top 30 traffic applications which were chosen with respect to their download counts. All data about the traffic applications were obtained from related websites. The purpose of this study is to analyze traffic applications in terms of their categorical attributes with the help of developing a regression model. The analysis results suggest that negative interpretations (e.g., being deficient) does not lead to lower star ratings of the applications. However, those negative interpretations result in a smaller increase in star rate. In addition, women use higher star rates than men for the evaluation of traffic applications.

Keywords: Regression analysis, Traffic Congestion, traffic app, real–time information, dummy variables

Procedia PDF Downloads 163
12 Profitability Analysis of Investment in Oil Palm Value Chain in Osun State, Nigeria

Authors: Moyosooore A. Babalola, Ayodeji S. Ogunleye

Abstract:

The main focus of the study was to determine the profitability of investment in the Oil Palm value chain of Osun State, Nigeria in 2015. The specific objectives were to describe the socio-economic characteristics of Oil Palm investors (producers, processors and marketers), to determine the profitability of the investment to investors in the Oil Palm value chain, and to determine the factors affecting the profitability of the investment of the oil palm investors in Osun state. A sample of 100 respondents was selected in this cross-sectional survey. Multiple stage sampling procedure was used for data collection of producers and processors while purposive sampling was used for marketers. Data collected was analyzed using the following analytical tools: descriptive statistics, budgetary analysis and regression analysis. The results of the gross margin showed that the producers and processors were more profitable than the marketers in the oil palm value chain with their benefit-cost ratios as 1.93, 1.82 and 1.11 respectively. The multiple regression analysis showed that education and years of experience were significant among marketers and producers while age and years of experience had significant influence on the gross margin of processors. Based on these findings, improvement on the level of education of oil palm investors is recommended in order to address the relatively low access to post-primary education among the oil palm investors in Osun State. In addition to this, it is important that training be made available to oil palm investors. This will improve the quality of their years of experience, ensuring that it has a positive influence on their gross margin. Low access to credit among processors and producer could be corrected by making extension services available to them. Marketers would also greatly benefit from subsidized prices on oil palm products to increase their gross margin, as the huge percentage of their total cost comes from acquiring palm oil.

Keywords: Regression analysis, Value Chain, profitability analysis, oil palm

Procedia PDF Downloads 218
11 A Method to Identify the Critical Delay Factors for Building Maintenance Projects of Institutional Buildings: Case Study of Eastern India

Authors: Shankha Pratim Bhattacharya

Abstract:

In general building repair and renovation projects are minor in nature. It requires less attention as the primary cost involvement is relatively small. Although the building repair and maintenance projects look simple, it involves much complexity during execution. Many of the present research indicate that few uncertain situations are usually linked with maintenance projects. Those may not be read properly in the planning stage of the projects, and finally, lead to time overrun. Building repair and maintenance become essential and periodical after commissioning of the building. In Institutional buildings, the regular maintenance projects also include addition –alteration, modification activities. Increase in the student admission, new departments, and sections, new laboratories and workshops, up gradation of existing laboratories are very common in the institutional buildings in the developing nations like India. The project becomes very critical because it undergoes space problem, architectural design issues, structural modification, etc. One of the prime factors in the institutional building maintenance and modification project is the time constraint. Mostly it required being executed a specific non-work time period. The present research considered only the institutional buildings of the Eastern part of India to analyse the repair and maintenance project delay. A general survey was conducted among the technical institutes to find the causes and corresponding nature of construction delay factors. Five technical institutes are considered in the present study with repair, renovation, modification and extension type of projects. Construction delay factors are categorically subdivided into four groups namely, material, manpower (works), Contract and Site. The survey data are collected for the nature of delay responsible for a specific project and the absolute amount of delay through proposed and actual duration of work. In the first stage of the paper, a relative importance index (RII) is proposed for the delay factors. The occurrence of the delay factors is also judged by its frequency-severity nature. Finally, the delay factors are then rated and linked with the type of work. In the second stage, a regression analysis is executed to establish an empirical relationship between the actual time of a project and the percentage of delay. It also indicates the impact of the factors for delay responsibility. Ultimately, the present paper makes an effort to identify the critical delay factors for the repair and renovation type project in the Eastern Indian Institutional building.

Keywords: Maintenance, Regression analysis, repair, relative importance index, delay factor, institutional building

Procedia PDF Downloads 125
10 Impact of Trade Cooperation of BRICS Countries on Economic Growth

Authors: Svetlana Gusarova

Abstract:

The essential role in the recent development of world economy has led to the developing countries, notably to BRICS countries (Brazil, Russia, India, China, South Africa). Over the next 50 years the BRICS countries are expected to be the engines of global trade and economic growth. Trade cooperation of BRICS countries can enhance their economic development. BRICS countries were among Top 10 world exporters of office and telecom equipment, of textiles, of clothing, of iron and steel, of chemicals, of agricultural products, of automotive products, of fuel and mining products. China was one of the main trading partners of all BRICS countries, maintaining close relationship with all BRICS countries in the development of trade. Author analyzed trade complementarity of BRICS countries and revealed the high level of complementarity of their trade flows in connection with availability of specialization in different types of goods. The correlation and regression analysis of communication of Intra-BRICS merchandise turnover and their GDP (PPP) revealed very strong impact on the development of their economies.

Keywords: Regression analysis, Complementarity, BRICS countries, trade cooperation

Procedia PDF Downloads 165
9 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning

Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic

Abstract:

Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.

Keywords: Machine Learning, Energy Efficiency, Support Vector Machines, Regression analysis, Logistic Regression, district heating, heat cost allocator, decision tree model, decision trees and random forest method

Procedia PDF Downloads 83
8 Deformation Severity Prediction in Sewer Pipelines

Authors: Ahmed Assad, Tarek Zayed, Khalid Kaddoura

Abstract:

Sewer pipelines are prone to deterioration over-time. In fact, their deterioration does not follow a fixed downward pattern. This is in fact due to the defects that propagate through their service life. Sewer pipeline defects are categorized into distinct groups. However, the main two groups are the structural and operational defects. By definition, the structural defects influence the structural integrity of the sewer pipelines such as deformation, cracks, fractures, holes, etc. However, the operational defects are the ones that affect the flow of the sewer medium in the pipelines such as: roots, debris, attached deposits, infiltration, etc. Yet, the process for each defect to emerge follows a cause and effect relationship. Deformation, which is the change of the sewer pipeline geometry, is one type of an influencing defect that could be found in many sewer pipelines due to many surrounding factors. This defect could lead to collapse if the percentage exceeds 15%. Therefore, it is essential to predict the deformation percentage before confronting such a situation. Accordingly, this study will predict the percentage of the deformation defect in sewer pipelines adopting the multiple regression analysis. Several factors will be considered in establishing the model, which are expected to influence the defamation defect severity. Besides, this study will construct a time-based curve to understand how the defect would evolve overtime. Thus, this study is expected to be an asset for decision-makers as it will provide informative conclusions about the deformation defect severity. As a result, inspections will be minimized and so the budgets.

Keywords: deformation, Regression analysis, prediction, sewer pipelines

Procedia PDF Downloads 60
7 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression

Authors: Amr M. Abdelrazek, Galal Elkobrosy, Bassuny M. Elsouhily, Mohamed E. Khidr

Abstract:

Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.

Keywords: design of experiments, Statistical Modeling, Regression analysis, SI engine

Procedia PDF Downloads 51
6 Effects of Machining Parameters on the Surface Roughness and Vibration of the Milling Tool

Authors: Jui P. Hung, Yung C. Lin, Kung D. Wu, Wei C. Shih

Abstract:

High speed and high precision machining have become the most important technology in manufacturing industry. The surface roughness of high precision components is regarded as the important characteristics of the product quality. However, machining chatter could damage the machined surface and restricts the process efficiency. Therefore, selection of the appropriate cutting conditions is of importance to prevent the occurrence of chatter. In addition, vibration of the spindle tool also affects the surface quality, which implies the surface precision can be controlled by monitoring the vibration of the spindle tool. Based on this concept, this study was aimed to investigate the influence of the machining conditions on the surface roughness and the vibration of the spindle tool. To this end, a series of machining tests were conducted on aluminum alloy. In tests, the vibration of the spindle tool was measured by using the acceleration sensors. The surface roughness of the machined parts was examined using white light interferometer. The response surface methodology (RSM) was employed to establish the mathematical models for predicting surface finish and tool vibration, respectively. The correlation between the surface roughness and spindle tool vibration was also analyzed by ANOVA analysis. According to the machining tests, machined surface with or without chattering was marked on the lobes diagram as the verification of the machining conditions. Using multivariable regression analysis, the mathematical models for predicting the surface roughness and tool vibrations were developed based on the machining parameters, cutting depth (a), feed rate (f) and spindle speed (s). The predicted roughness is shown to agree well with the measured roughness, an average percentage of errors of 10%. The average percentage of errors of the tool vibrations between the measurements and the predictions of mathematical model is about 7.39%. In addition, the tool vibration under various machining conditions has been found to have a positive influence on the surface roughness (r=0.78). As a conclusion from current results, the mathematical models were successfully developed for the predictions of the surface roughness and vibration level of the spindle tool under different cutting condition, which can help to select appropriate cutting parameters and to monitor the machining conditions to achieve high surface quality in milling operation.

Keywords: Regression analysis, surface roughness, machining parameters, machining stability

Procedia PDF Downloads 22
5 The Relationship between Coping Styles and Internet Addiction among High School Students

Authors: Digdem Muge Siyez, Adil Kaval

Abstract:

With the negative effects of internet use in a person's life, the use of the Internet has become an issue. This subject was mostly considered as internet addiction, and it was investigated. In literature, it is noteworthy that some theoretical models have been proposed to explain the reasons for internet addiction. In addition to these theoretical models, it may be thought that the coping style for stressing events can be a predictor of internet addiction. It was aimed to test with logistic regression the effect of high school students' coping styles on internet addiction levels. Sample of the study consisted of 770 Turkish adolescents (471 girls, 299 boys) selected from high schools in the 2017-2018 academic year in İzmir province. Internet Addiction Test, Coping Scale for Child and Adolescents and a demographic information form were used in this study. The results of the logistic regression analysis indicated that the model of coping styles predicted internet addiction provides a statistically significant prediction of internet addiction. Gender does not predict whether or not to be addicted to the internet. The active coping style is not effective on internet addiction levels, while the avoiding and negative coping style are effective on internet addiction levels. With this model, % 79.1 of internet addiction in high school is estimated. The Negelkerke pseudo R2 indicated that the model accounted for %35 of the total variance. The results of this study on Turkish adolescents are similar to the results of other studies in the literature. It can be argued that avoiding and negative coping styles are important risk factors in the development of internet addiction.

Keywords: Adolescents, Regression analysis, Coping, Internet Addiction

Procedia PDF Downloads 37
4 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model

Authors: Susmita Das, Chaudhuri Manoj Kumar Swain

Abstract:

This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.

Keywords: Regression analysis, RSSI, WiMAX, coverage probability, path loss

Procedia PDF Downloads 19
3 Financial Fraud Prediction for Russian Non-Public Firms Using Relational Data

Authors: Natalia Feruleva

Abstract:

The goal of this paper is to develop the fraud risk assessment model basing on both relational and financial data and test the impact of the relationships between Russian non-public companies on the likelihood of financial fraud commitment. Relationships mean various linkages between companies such as parent-subsidiary relationship and person-related relationships. These linkages may provide additional opportunities for committing fraud. Person-related relationships appear when firms share a director, or the director owns another firm. The number of companies belongs to CEO and managed by CEO, the number of subsidiaries was calculated to measure the relationships. Moreover, the dummy variable describing the existence of parent company was also included in model. Control variables such as financial leverage and return on assets were also implemented because they describe the motivating factors of fraud. To check the hypotheses about the influence of the chosen parameters on the likelihood of financial fraud, information about person-related relationships between companies, existence of parent company and subsidiaries, profitability and the level of debt was collected. The resulting sample consists of 160 Russian non-public firms. The sample includes 80 fraudsters and 80 non-fraudsters operating in 2006-2017. The dependent variable is dichotomous, and it takes the value 1 if the firm is engaged in financial crime, otherwise 0. Employing probit model, it was revealed that the number of companies which belong to CEO of the firm or managed by CEO has significant impact on the likelihood of financial fraud. The results obtained indicate that the more companies are affiliated with the CEO, the higher the likelihood that the company will be involved in financial crime. The forecast accuracy of the model is about is 80%. Thus, the model basing on both relational and financial data gives high level of forecast accuracy.

Keywords: Regression analysis, financial fraud, fraud prediction, non-public companies, relational data

Procedia PDF Downloads 1
2 Chemometric Regression Analysis of Radical Scavenging Ability of Kombucha Fermented Kefir-Like Products

Authors: Lidija Jevrić, Sanja Podunavac-Kuzmanović, Milica Karadzic Banjac, Jasmina Vitas, Stefan Vukmanovic, Radomir Malbasa, fttStrahinja Kovacevic

Abstract:

The present study deals with chemometric regression analysis of quality parameters and the radical scavenging ability of kombucha fermented kefir-like products obtained with winter savory (WS), peppermint (P), stinging nettle (SN) and wild thyme tea (WT) kombucha inoculums. Each analyzed sample was described by milk fat content (MF, %), total unsaturated fatty acids content (TUFA, %), monounsaturated fatty acids content (MUFA, %), polyunsaturated fatty acids content (PUFA, %), the ability of free radicals scavenging (RSA Dₚₚₕ, % and RSA.ₒₕ, %) and pH values measured after each hour from the start until the end of fermentation. The aim of the conducted regression analysis was to establish chemometric models which can predict the radical scavenging ability (RSA Dₚₚₕ, % and RSA.ₒₕ, %) of the samples by correlating it with the MF, TUFA, MUFA, PUFA and the pH value at the beginning, in the middle and at the end of fermentation process which lasted between 11 and 17 hours, until pH value of 4.5 was reached. The analysis was carried out applying univariate linear (ULR) and multiple linear regression (MLR) methods on the raw data and the data standardized by the min-max normalization method. The obtained models were characterized by very limited prediction power (poor cross-validation parameters) and weak statistical characteristics. Based on the conducted analysis it can be concluded that the resulting radical scavenging ability cannot be precisely predicted only on the basis of MF, TUFA, MUFA, PUFA content, and pH values, however, other quality parameters should be considered and included in the further modeling. This study is based upon work from project: Kombucha beverages production using alternative substrates from the territory of the Autonomous Province of Vojvodina, 142-451-2400/2019-03, supported by Provincial Secretariat for Higher Education and Scientific Research of AP Vojvodina.

Keywords: Quality Control, Chemometrics, Regression analysis, kombucha

Procedia PDF Downloads 1
1 The Impact of Public Open Space System on Housing Price in Chicago

Authors: Si Chen, Le Zhang, Xian He

Abstract:

The research explored the influences of public open space system on housing price through hedonic models, in order to support better open space plans and economic policies. We have three initial hypotheses: 1) public open space system has an overall positive influence on surrounding housing prices. 2) Different public open space types have different levels of influence on motivating surrounding housing prices. 3) Walking and driving accessibilities from property to public open spaces have different statistical relation with housing prices. Cook County, Illinois, was chosen to be a study area since data availability, sufficient open space types, and long-term open space preservation strategies. We considered the housing attributes, driving and walking accessibility scores from houses to nearby public open spaces, and driving accessibility scores to hospitals as influential features and used real housing sales price in 2010 as a dependent variable in the built hedonic model. Through ordinary least squares (OLS) regression analysis, General Moran’s I analysis and geographically weighted regression analysis, we observed the statistical relations between public open spaces and housing sale prices in the three built hedonic models and confirmed all three hypotheses.

Keywords: Regression analysis, public open space, hedonic model, housing sale price, accessibility score

Procedia PDF Downloads 1