Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36

Radiation Related Abstracts

36 Cesium 137 Leaching from Soils of Territories, Polluted by Radionuclides

Authors: S. V. Vasilenkov, O. N. Demina


Chernobyl NPP accident is the biggest in history of nuclear energetic. Bryansk region of Russia was exposed by the most intensive radiation pollution. For that, we made some researches in order to find the methods of soil rehabilitation on territories, polluted by radionuclides with the means of Cesium 137 leaching by watering. For experiments we took the soil from the upper more polluted 10 cm layer of different species. Cesium 137 leaching was made by different methods in washing columns. Washout of Cesium was made by periodical cycles in terms of 4-6 days. In experiments with easy argillaceous soil with start specific radioactivity 4158 bk/kg through 17 cycles the effective reducing was achieved and contained 1512 bk/kg. Besides, results of researches showed, that in the first 6-10 cycles we can see reducing of washing rate but after application of intensificators: ultrasound water processing, aerification, application of fertilizers (KCl), lime, freezing, we can see increasing of Cesium 137 leaching. The experimental investigations in washout of Cesium (Cs) – 137 from the soil were carried out in the field and laboratorial conditions during its freezing and melting. The experiments showed, that washout of Cesium (Cs) – 137 from the soil is rather high after freezing, than non-frozen soil is. And it conforms to washout of Cesium, made under the influence of the intensificaters. This fact allows to recommend chip and easy to construct technically arrangement for regulation of the snow-melt runoff for rehabilitation of the radioactive impoundment.

Keywords: Agriculture, Radiation, Pollution, Cesium 137 leaching

Procedia PDF Downloads 149
35 Hepatoprotective Action of Emblica officinalis Linn. against Radiation and Lead Induced Changes in Swiss Albino Mice

Authors: R. K. Purohit


Ionizing radiation induces cellular damage through direct ionization of DNA and other cellular targets and indirectly via reactive oxygen species which may include effects from epigenetic changes. So there is a need of hour is to search for an ideal radioprotector which could minimize the deleterious and damaging effects caused by ionizing radiation. Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. The aim of this study was to access the efficacy of Emblica officinalis in reducing radiation and lead induced changes in mice liver. For the present experiment, healthy male Swiss albino mice (6-8 weeks) were selected and maintained under standard conditions of temperature and light. Fruit extract of Emblica was fed orally at the dose of 0.01 ml/animal/day. The animal were divided into seven groups according to the treatment i.e. lead acetate solution as drinking water (group-II) or exposed to 3.5 or 7.0 Gy gamma radiation (group-III) or combined treatment of radiation and lead acetate (group-IV). The animals of experimental groups were administered Emblica extract seven days prior to radiation or lead acetate treatment (group V, VI and VII) respectively. The animals from all the groups were sacrificed by cervical dislocation at each post-treatment intervals of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals pieces of liver were taken out and some of them were kept at -20°C for different biochemical parameters. The histopathological changes included cytoplasmic degranulation, vacuolation, hyperaemia, pycnotic and crenated nuclei. The changes observed in the control groups were compared with the respective experimental groups. An increase in the value of total proteins, glycogen, acid phosphtase, alkaline phosphatase activity and RNA was observed up to day-14 in the non drug treated group and day 7 in the Emblica treated groups, thereafter value declined up to day-28 without reaching to normal. The value of cholesterol and DNA showed a decreasing trend up to day -14 in non drug treated groups and day-7 in drug treated groups, thereafter value elevated up to day-28. The biochemical parameters were observed in the form of increase or decrease in the values. The changes were found dose dependent. After combined treatment of radiation and lead acetate synergistic effect were observed. The liver of Emblica treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was also noticed in Emblica pretreated animals. Thus, it appears that Emblica is potent enough to check lead and radiation induced heptic lesion in Swiss albino mice.

Keywords: Radiation, mice, Liver, lead, emblica

Procedia PDF Downloads 192
34 Crosslinking of Unsaturated Elastomers in Presence of Aromatic Chlorine-Containing Compounds

Authors: Shiraz M. Mammadov, Elvin M. Aliyev, Adil A. Garibov


The role of the disulfochloride benzene in unsaturated rubbers (SKIN, SKN-26) which is in the systems of SKIN+disulfochloride benzene and SKN-26+disulfochloride benzene was studied by the radiation exposure. By the usage of physical, chemical and spectral methods the changes in the molecular structure of the rubber were shown after irradiation by y-rays at 300 kGy. The outputs and the emergence of the crosslinking in the elastomers for each system depending on absorbed dose were defined. It is suggested that the mechanism of radiation occurs by the heterogeneous transformation of elastomers in the presence of disulfochloride benzene.

Keywords: Radiation, acrylonitrile-butadiene rubber, crosslinking, polyfunctional monomers, sensitizier, vulcanization

Procedia PDF Downloads 284
33 Heat and Radiation Influence on Granite-Galena Concrete for Nuclear Shielding Applications

Authors: Mohamed A. Safan, Walid Khalil, Amro Fathalla


Advances in concrete technology and implementation of new materials made it possible to produce special types of concrete for different structural applications. In this research, granite and galena were incorporated in different concrete mixes to obtain high performance concrete for shielding against gamma radiations in nuclear facilities. Chemically prepared industrial galena was used to replace different volume fractions of the fine aggregate. The test specimens were exposed to different conditions of heating cycles and irradiation. The exposed specimens and counterpart unexposed specimens were tested to evaluate the density, the compressive strength and the attenuation coefficient. The proposed mixes incorporating galena showed better performance in terms of compressive strength and gamma attenuation capacity, especially after the exposure to different heating cycles.

Keywords: Radiation, Concrete, Attenuation, shielding, galena

Procedia PDF Downloads 238
32 Quality Control Assessment of X-Ray Equipment in Hospitals of Katsina State, Nigeria

Authors: Aminu Yakubu Umar


X-ray is the major contributor to the effective dose of both the patient and the personnel. Because of the radiological risks involved, it is usually recommended that dose to patient from X-ray be kept as low as reasonably achievable (ALARA) with adequate image quality. The implementation of quality assurance in diagnostic radiology can help greatly in achieving that, as it is a technique designed to reduce X-ray doses to patients undergoing radiological examination. In this study, quality control was carried out in six hospitals, which involved KVp test, evaluation of total filtration, test for constancy of radiation output, and check for mA linearity. Equipment used include KVp meter, Rad-check meter, aluminum sheets (0.1–1.0 mm) etc. The results of this study indicate that, the age of the X-ray machines in the hospitals ranges from 3-13 years, GHI and GH2 being the oldest and FMC being the newest. In the evaluation of total filtration, the HVL of the X-ray machines in the hospitals varied, ranging from 2.3-5.2 mm. The HVL was found to be highest in AHC (5.2 mm), while it was lowest in GH3 (2.3 mm). All HVL measurements were done at 80 KVp. The variation in voltage accuracy in the hospitals ranges from 0.3%-127.5%. It was only in GH1 that the % variation was below the allowed limit. The test for constancy of radiation output showed that, the coefficient of variation ranges from 0.005–0.550. In GH3, FMC and AHC, the coefficient of linearity were less than the allowed limit, while in GH1, GH2 and GH4 the coefficient of linearity had exceeded the allowed limit. As regard to mA linearity, FMC and AHC had their coefficients of linearity as 0.12 and 0.10 respectively, which were within the accepted limit, while GH1, GH3 and GH4 had their coefficients as 0.16, 0.69 and 0.98 respectively, which exceeded the allowed limit.

Keywords: Radiation, Quality Control, X-ray output, half-value layer, mA linearity, KVp variation

Procedia PDF Downloads 486
31 Radiological Assessment of Fish Samples Due to Natural Radionuclides in River Yobe, North Eastern Nigeria

Authors: H. T. Abba, Abbas Baba Kura


Assessment of natural radioactivity of some fish samples in river Yobe was conducted, using gamma spectroscopy method with NaI(TI) detector. Radioactivity is phenomenon that leads to production of radiations, whereas radiation is known to trigger or induce cancer. The fish were analyzed to estimate the radioactivity (activity) concentrations due to natural radionuclides (Radium 222(226Ra), Thorium 232 (232Th) and Potassium 40 (40K)). The obtained result show that the activity concentration for (226Ra), in all the fish samples collected ranges from 15.23±2.45 BqKg-1 to 67.39±2.13 BqKg-1 with an average value of 34.13±1.34 BqKg-1. That of 232Th, ranges from 42.66±0.81 BqKg-1 to 201.18±3.82 BqKg-1, and the average value stands at 96.01±3.82 BqKg-1. The activity concentration for 40K, ranges between 243.3±1.56 BqKg-1 to 618.2±2.81 BqKg-1 and the average is 413.92±1.7 BqKg-1. This study indicated that average daily intake due to natural activity from the fish is valued at 0.913 Bq/day, 2.577Bq/day and 11.088 Bq/day for 226Ra, 232Th and 40K respectively. This shows that the activity concentration values for fish, shows a promising result with most of the fish activity concentrations been within the acceptable limits. However locations (F02, F07 and F12) fish, became outliers with significant values of 112.53μSvy-1, 121.11μSvy-1 and 114.32μSvy-1 effective Dose. This could be attributed to variation in geological formations within the river as while as the feeding habits of these fish. The work shows that consumers of fish from River Yobe have no risk of radioactivity ingestion, even though no amount of radiation is assumed to be totally safe.

Keywords: Radiation, Radionuclides, Dose, radio-activity, river Yobe

Procedia PDF Downloads 189
30 A Comparison of Biosorption of Radionuclides Tl-201 on Different Biosorbents and Their Empirical Modelling

Authors: Hayrettin Eroglu, Sinan Yapici


The discharge of the aqueous radionuclides wastes used for the diagnoses of diseases and treatments of patients in nuclear medicine can cause fatal health problems when the radionuclides and its stable daughter component mix with underground water. Tl-201, which is one of the radionuclides commonly used in the nuclear medicine, is a toxic substance and is converted to its stable daughter component Hg-201, which is also a poisonous heavy metal: Tl201 → Hg201 + Gamma Ray [135-167 Kev (12%)] + X Ray [69-83 Kev (88%)]; t1/2 = 73,1 h. The purpose of the present work was to remove Tl-201 radionuclides from aqueous solution by biosorption on the solid bio wastes of food and cosmetic industry as bio sorbents of prina from an olive oil plant, rose residue from a rose oil plant and tea residue from a tea plant, and to make a comparison of the biosorption efficiencies. The effects of the biosorption temperature, initial pH of the aqueous solution, bio sorbent dose, particle size and stirring speed on the biosorption yield were investigated in a batch process. It was observed that the biosorption is a rapid process with an equilibrium time less than 10 minutes for all the bio sorbents. The efficiencies were found to be close to each other and measured maximum efficiencies were 93,30 percent for rose residue, 94,1 for prina and 98,4 for tea residue. In a temperature range of 283 and 313 K, the adsorption decreased with increasing temperature almost in a similar way. In a pH range of 2-10, increasing pH enhanced biosorption efficiency up to pH=7 and then the efficiency remained constant in a similar path for all the biosorbents. Increasing stirring speed from 360 to 720 rpm enhanced slightly the biosorption efficiency almost at the same ratio for all bio sorbents. Increasing particle size decreased the efficiency for all biosorbent; however the most negatively effected biosorbent was prina with a decrease in biosorption efficiency from about 84 percent to 40 with an increase in the nominal particle size 0,181 mm to 1,05 while the least effected one, tea residue, went down from about 97 percent to 87,5. The biosorption efficiencies of all the bio sorbents increased with increasing biosorbent dose in the range of 1,5 to 15,0 g/L in a similar manner. The fit of the experimental results to the adsorption isotherms proved that the biosorption process for all the bio sorbents can be represented best by Freundlich model. The kinetic analysis showed that all the processes fit very well to pseudo second order rate model. The thermodynamics calculations gave ∆G values between -8636 J mol-1 and -5378 for tea residue, -5313 and -3343 for rose residue, and -5701 and -3642 for prina with a ∆H values of -39516 J mol-1, -23660 and -26190, and ∆S values of -108.8 J mol-1 K-1, -64,0, -72,0 respectively, showing spontaneous and exothermic character of the processes. An empirical biosorption model in the following form was derived for each biosorbent as function of the parameters and time, taking into account the form of kinetic model, with regression coefficients over 0.9990 where At is biosorbtion efficiency at any time and Ae is the equilibrium efficiency, t is adsorption period as s, ko a constant, pH the initial acidity of biosorption medium, w the stirring speed as s-1, S the biosorbent dose as g L-1, D the particle size as m, and a, b, c, and e are the powers of the parameters, respectively, E a constant containing activation energy and T the temperature as K.

Keywords: Radiation, diosorption, thallium, empirical modelling

Procedia PDF Downloads 131
29 Assessment of the Efficacy of Routine Medical Tests in Screening Medical Radiation Staff in Shiraz University of Medical Sciences Educational Centers

Authors: Z. Razi, S. M. J. Mortazavi, N. Shokrpour, Z. Shayan, F. Amiri


Long-term exposure to low doses of ionizing radiation occurs in radiation health care workplaces. Although doses in health professions are generally very low, there are still matters of concern. The radiation safety program promotes occupational radiation safety through accurate and reliable monitoring of radiation workers in order to effectively manage radiation protection. To achieve this goal, it has become mandatory to implement health examination periodically. As a result, based on the hematological alterations, working populations with a common occupational radiation history are screened. This paper calls into question the effectiveness of blood component analysis as a screening program which is mandatory for medical radiation workers in some countries. This study details the distribution and trends of changes in blood components, including white blood cells (WBCs), red blood cells (RBCs) and platelets as well as received cumulative doses from occupational radiation exposure. This study was conducted among 199 participants and 100 control subjects at the medical imaging departments at the central hospital of Shiraz University of Medical Sciences during the years 2006–2010. Descriptive and analytical statistics, considering the P-value<0.05 as statistically significance was used for data analysis. The results of this study show that there is no significant difference between the radiation workers and controls regarding WBCs and platelet count during 4 years. Also, we have found no statistically significant difference between the two groups with respect to RBCs. Besides, no statistically significant difference was observed with respect to RBCs with regards to gender, which has been analyzed separately because of the lower reference range for normal RBCs levels in women compared to men and. Moreover, the findings confirm that in a separate evaluation between WBCs count and the personnel’s working experience and their annual exposure dose, results showed no linear correlation between the three variables. Since the hematological findings were within the range of control levels, it can be concluded that the radiation dosage (which was not more than 7.58 mSv in this study) had been too small to stimulate any quantifiable change in medical radiation worker’s blood count. Thus, use of more accurate method for screening program based on the working profile of the radiation workers and their accumulated dose is suggested. In addition, complexity of radiation-induced functions and the influence of various factors on blood count alteration should be taken into account.

Keywords: Radiation, blood cell count, mandatory testing, occupational exposure

Procedia PDF Downloads 349
28 Numerical Modeling of Waves and Currents by Using a Hydro-Sedimentary Model

Authors: Mustapha Kamel Mihoubi, Hocine Dahmani


Over recent years much progress has been achieved in the fields of numerical modeling shoreline processes: waves, currents, waves and current. However, there are still some problems in the existing models to link the on the first, the hydrodynamics of waves and currents and secondly, the sediment transport processes and due to the variability in time, space and interaction and the simultaneous action of wave-current near the shore. This paper is the establishment of a numerical modeling to forecast the sediment transport from development scenarios of harbor structure. It is established on the basis of a numerical simulation of a water-sediment model via a 2D model using a set of codes calculation MIKE 21-DHI software. This is to examine the effect of the sediment transport drivers following the dominant incident wave in the direction to pass input harbor work under different variants planning studies to find the technical and economic limitations to the sediment transport and protection of the harbor structure optimum solution.

Keywords: Radiation, stress, Mesh, Sediment, current, swell, mike21

Procedia PDF Downloads 296
27 In silico Repopulation Model of Various Tumour Cells during Treatment Breaks in Head and Neck Cancer Radiotherapy

Authors: Loredana G. Marcu, David Marcu, Sanda M. Filip


Advanced head and neck cancers are aggressive tumours, which require aggressive treatment. Treatment efficiency is often hindered by cancer cell repopulation during radiotherapy, which is due to various mechanisms triggered by the loss of tumour cells and involves both stem and differentiated cells. The aim of the current paper is to present in silico simulations of radiotherapy schedules on a virtual head and neck tumour grown with biologically realistic kinetic parameters. Using the linear quadratic formalism of cell survival after radiotherapy, altered fractionation schedules employing various treatment breaks for normal tissue recovery are simulated and repopulation mechanism implemented in order to evaluate the impact of various cancer cell contribution on tumour behaviour during irradiation. The model has shown that the timing of treatment breaks is an important factor influencing tumour control in rapidly proliferating tissues such as squamous cell carcinomas of the head and neck. Furthermore, not only stem cells but also differentiated cells, via the mechanism of abortive division, can contribute to malignant cell repopulation during treatment.

Keywords: Radiation, Stem Cell, Squamous Cell Carcinoma, tumour repopulation

Procedia PDF Downloads 148
26 An Investigation about Rate Of Evaporation from the Water Surface and LNG Pool

Authors: Ali Falavand, Farokh Alipour, Neda Beit Saeid


The calculation of the effect of accidental releases of flammable materials such as LNG requires the use of a suitable consequence model. This study is due to providing a planning advice for developments in the vicinity of LNG sites and other sites handling flammable materials. In this paper, an applicable algorithm that is able to model pool fires on water is presented and applied to estimate pool fire damage zone. This procedure can be used to model pool fires on land and could be helpful in consequence modeling and domino effect zone measurements of flammable materials which is needed in site selection and plant layout.

Keywords: Radiation, LNG, pool fire, spill

Procedia PDF Downloads 258
25 Simulation of Hamming Coding and Decoding for Microcontroller Radiation Hardening

Authors: Mazhar B. Tayel, Rehab I. Abdul Rahman


This paper presents a method of hardening the 8051 microcontroller, that able to assure reliable operation in the presence of bit flips caused by radiation. Aiming at avoiding such faults in the 8051 microcontroller, Hamming code protection was used in its SRAM memory and registers. A VHDL code and its simulation have been used for this hamming code protection.

Keywords: Radiation, hardening, bitflip, hamming

Procedia PDF Downloads 341
24 Researches Concerning Photons as Corpuscles with Mass and Negative Electrostatic Charge

Authors: Ioan Rusu


Let us consider that the entire universe is composed of a single hydrogen atom within which the electron is moving around the proton. In this case, according to classical theories of physics, radiation and photons, respectively, should be absorbed by the electron. Depending on the number of photons absorbed, the electron radius of rotation around the proton is established. Until now, the principle of photon absorption by electrons and the electron transition to a new energy level, namely to a higher radius of rotation around the proton, is not clarified in physics. This paper aims to demonstrate that photons have mass and negative electrostatic charge similar to electrons but infinitely smaller. The experiments which demonstrate this theory are simple: thermal expansion, photoelectric effect and thermonuclear reaction.

Keywords: Radiation, photon, electrostatic, electron, proton

Procedia PDF Downloads 283
23 Radiation Induced DNA Damage and Its Modification by Herbal Preparation of Hippophae rhamnoides L. (SBL-1): An in vitro and in vivo Study in Mice

Authors: Anuranjani Kumar, Madhu Bala


Ionising radiation exposure induces generation of free radicals and the oxidative DNA damage. SBL-1, a radioprotective leaf extract prepared from leaves Hippophae rhamnoides L. (Common name; Seabuckthorn), showed > 90% survival in mice population that was treated with lethal dose (10 Gy) of ⁶⁰Co gamma irradiation. In this study, early effects of pre-treatment with or without SBL-1 in blood peripheral blood lymphocytes (PBMCs) were investigated by cell viability assays (trypan blue and MTT). The quantitative in vitro study of Hoescht/PI staining was performed to check the apoptosis/necrosis in PBMCs irradiated at 2 Gy with or without pretreatment of SBL-1 (at different concentrations) up to 24 and 48h. Comet assay was performed in vivo, to detect the DNA strands breaks and its repair mechanism on peripheral blood lymphocytes at lethal dose (10 Gy). For this study, male mice (wt. 28 ± 2g) were administered radioprotective dose (30mg/kg body weight) of SBL-1, 30 min prior to irradiation. Animals were sacrificed at 24h and 48h. Blood was drawn through cardiac puncture, and blood lymphocytes were separated using histopaque column. Both neutral and alkaline comet assay were performed using standardized technique. In irradiated animals, alkaline comet assay revealed single strand breaks (SSBs) that showed significant (p < 0.05) increase in percent DNA in tail and Olive tail moment (OTM) at 24 h while at 48h the percent DNA in tail further increased significantly (p < 0.02). The double strands breaks (DSBs) increased significantly (p < 0.01) at 48 h in neutral assay, in comparison to untreated control. The animals pre-treated with SBL-1 before irradiation showed significantly (p < 0.05) less DSBs at 48 h treatment in comparison to irradiated group of animals. The SBL-1 alone treated group itself showed no toxicity. The antioxidant potential of SBL-1 were also investigated by in vitro biochemical assays such as DPPH (p < 0.05), ABTS, reducing ability (p < 0.09), hydroxyl radical scavenging (p < 0.05), ferric reducing antioxidant power (FRAP), superoxide radical scavenging activity (p < 0.05), hydrogen peroxide scavenging activity (p < 0.05) etc. SBL-1 showed strong free radical scavenging power that plays important role in the studies of radiation-induced injuries. The SBL-1 treated PBMCs showed significant (p < 0.02) viability in trypan blue assay at 24-hour incubation.

Keywords: Radiation, FRAP, SBL-1, SSBs, DSBs, PBMCs

Procedia PDF Downloads 29
22 Comparative Study of Radiation Protection in a Hospital Environment

Authors: Lahoucine Zaama, Sanae Douama


In this work, we present the results of a dosimetry study in a Moroccan radiology department . The results are compared with those of a similar study in France. Furthermore, it determines the coefficient of transmission of the lead sheets of different thicknesses depending on the voltage (KV) in a direct exposure. The objective of this study is to choose the thickness of the radiation means to determine the leaf sample sealed with the smallest percentage value radiation transmission, and that in the context of optimization. Thus the comparison among the studies is essential to consider conduct studies and research in this framework to achieve the goal of optimization.

Keywords: Radiology, Dosimetry, Radiation, Transmission, Dose

Procedia PDF Downloads 364
21 Radiation Emission from Ultra-Relativistic Plasma Electrons in Short-Pulse Laser Light Interactions

Authors: R. Ondarza-Rovira, T. J. M. Boyd


Intense femtosecond laser light incident on over-critical density plasmas has shown to emit a prolific number of high-order harmonics of the driver frequency, with spectra characterized by power-law decays Pm ~ m-p, where m denotes the harmonic order and p the spectral decay index. When the laser pulse is p-polarized, plasma effects do modify the harmonic spectrum, weakening the so-called universal decay with p=8/3 to p=5/3, or below. In this work, appeal is made to a single particle radiation model in support of the predictions from particle-in-cell (PIC) simulations. Using this numerical technique we further show that the emission radiated by electrons -that are relativistically accelerated by the laser field inside the plasma, after being expelled into vacuum, the so-called Brunel electrons is characterized not only by the plasma line but also by ultraviolet harmonic orders described by the 5/3 decay index. Results obtained from these simulations suggest that for ultra-relativistic light intensities, the spectral decay index is further reduced, with p now in the range 2/3 ≤ p ≤ 4/3. This reduction is indicative of a transition from the regime where Brunel-induced plasma radiation influences the spectrum to one dominated by bremsstrahlung emission from the Brunel electrons.

Keywords: Radiation, spectrum, ultra-relativistic, laser-plasma interactions, high-order harmonic emission

Procedia PDF Downloads 322
20 The Effect of Radiation on Unsteady MHD Flow past a Vertical Porous Plate in the Presence of Heat Flux

Authors: Pooja Sharma


In the present paper the effects of radiation is studied on unsteady flow of viscous incompressible electrically conducting fluid past a vertical porous plate embedded in the porous medium in the presence of constant heat flux. A uniform Transverse Magnetic field is considered and induced magnetic field is supposed as negligible. The non-linear governing equations are solved numerically. Numerical results of the velocity and temperature fields are shown through graphs. The results illustrates that the appropriator combination of regulated values of thermo-physical parameters is expedient for controlling the flow system.

Keywords: Heat Transfer, Radiation, porous medium, MHD flow

Procedia PDF Downloads 308
19 Evaluation of a Hybrid Configuration for Active Space Radiation Bio-Shielding

Authors: Jiahui Song, Ravindra P. Joshi


One of the biggest obstacles to human space exploration of the solar system is the risk posed by prolonged exposure to space radiation. It is generally agreed that particles with energies around 1-2 GeV per nucleon are the most damaging to humans. Passive shielding techniques entail using solid material to create a shield that prevents particles from penetrating a given region by absorbing the energy of incident particles. Previous techniques resulted in adding ‘dead mass’ to spacecraft, which is not an economically viable solution. Additionally, collisions of the incoming ionized particles with traditional passive protective material lead to secondary radiation. This study develops an enhanced hybrid active space radiation bio-shielding concept, a combination of the electrostatic and magnetostatic shielding, by varying the size of the magnetic ring, and by having multiple current-carrying rings, to mitigate the biohazards of severe space radiation for the success of deep-space explorations. The simulation results show an unprecedented reduction of 1GeV GCR (Galactic Cosmic Rays) proton transmission to about 15%.

Keywords: Radiation, electrostatic, bio-shielding, magnetostatic

Procedia PDF Downloads 266
18 DNA of Hibiscus sabdariffa Damaged by Radiation from 900 MHz GSM Antenna

Authors: A. O. Oluwajobi, O. A. Falusi, N. A. Zubbair, T. Owoeye, F. Ladejobi, M. C. Dangana, A. Abubakar


The technology of mobile telephony has positively enhanced human life and reports on the bio safety of the radiation from their antennae have been contradictory, leading to serious litigations and violent protests by residents in several parts of the world. The crave for more information, as requested by WHO in order to resolve this issue, formed the basis for this study on the effect of the radiation from 900 MHz GSM antenna on the DNA of Hibiscus sabdariffa. Seeds of H. sabdariffa were raised in pots placed in three replicates at 100, 200, 300 and 400 metres from the GSM antennae in three selected test locations and a control where there was no GSM signal. Temperature (˚C) and the relative humidity (%) of study sites were measured for the period of study (24 weeks). Fresh young leaves were harvested from each plant at two, eight and twenty-four weeks after sowing and the DNA extracts were subjected to RAPD-PCR analyses. There were no significant differences between the weather conditions (temperature and relative humidity) in all the study locations. However, significant differences were observed in the intensities of radiations between the control (less than 0.02 V/m) and the test (0.40-1.01 V/m) locations. Data obtained showed that DNA of samples exposed to rays from GSM antenna had various levels of distortions, estimated at 91.67%. Distortions occurred in 58.33% of the samples between 2-8 weeks of exposure while 33.33% of the samples were distorted between 8-24 weeks exposure. Approximately 8.33% of the samples did not show distortions in DNA while 33.33% of the samples had their DNA damaged twice, both at 8 and at 24 weeks of exposure. The study showed that radiation from the 900 MHz GSM antenna is potent enough to cause distortions to DNA of H. sabdariffa even within 2-8 weeks of exposure. DNA damage was also independent of the distance from the antenna. These observations would qualify emissions from GSM mast as environmental hazard to the existence of plant biodiversities and all life forms in general. These results will trigger efforts to prevent further erosion of plant genetic resources which have been threatening food security and also the risks posed to living organisms, thereby making our environment very safe for our existence while we still continue to enjoy the benefits of the GSM technology.

Keywords: Radiation, Dna, Damage, GSM antenna

Procedia PDF Downloads 220
17 Revealing of the Wave-Like Process in Kinetics of the Structural Steel Radiation Degradation

Authors: E. A. Krasikov


Dependence of the materials properties on neutron irradiation intensity (flux) is a key problem while usage data of the accelerated materials irradiation in test reactors for forecasting of their capacity for work in realistic (practical) circumstances of operation. Investigations of the reactor pressure vessel steel radiation degradation dependence on fast neutron fluence (embrittlement kinetics) at low flux reveal the instability in the form of the scatter of the experimental data and wave-like sections of embrittlement kinetics appearance. Disclosure of the steel degradation oscillating is a sign of the steel structure cyclic self-recovery transformation as it take place in self-organization processes. This assumption has received support through the discovery of the similar ‘anomalous’ data in scientific publications and by means of own additional experiments. Data obtained stimulate looking-for ways to management of the structural steel radiation stability (for example, by means of nano - structure modification for radiation defects annihilation intensification) for creation of the intelligent self-recovering material. Expected results: - radiation degradation theory and mechanisms development, - more adequate models of the radiation embrittlement elaboration, - surveillance specimen programs improvement, - methods and facility development for usage data of the accelerated materials irradiation for forecasting of their capacity for work in realistic (practical) circumstances of operation, - search of the ways for creating of the radiation stable self-recovery intelligent materials.

Keywords: Radiation, steel, degradation, wave-like kinetics

Procedia PDF Downloads 196
16 Radiation Annealing of Radiation Embrittlement of the Reactor Pressure Vessel

Authors: E. A. Krasikov


Influence of neutron irradiation on RPV steel degradation are examined with reference to the possible reasons of the substantial experimental data scatter and furthermore – nonstandard (non-monotonous) and oscillatory embrittlement behavior. In our glance, this phenomenon may be explained by presence of the wavelike component in the embrittlement kinetics. We suppose that the main factor affecting steel anomalous embrittlement is fast neutron intensity (dose rate or flux), flux effect manifestation depends on state-of-the-art fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Data on radiation damage change including through the ex-service RPVs taking into account chemical factor, fast neutron fluence and neutron flux were obtained and analyzed. In our opinion, controversy in the estimation on neutron flux on radiation degradation impact may be explained by presence of the wavelike component in the embrittlement kinetics. Therefore, flux effect manifestation depends on fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Moreover as a hypothesis we suppose that at some stages of irradiation damaged metal have to be partially restored by irradiation i.e. neutron bombardment. Nascent during irradiation structure undergo occurring once or periodically transformation in a direction both degradation and recovery of the initial properties. According to our hypothesis, at some stage(s) of metal structure degradation neutron bombardment became recovering factor. As a result, oscillation arises that in turn leads to enhanced data scatter.

Keywords: Radiation, annealing, embrittlement, RPV steel

Procedia PDF Downloads 204
15 Radiation Stability of Structural Steel in the Presence of Hydrogen

Authors: E. A. Krasikov


As the service life of an operating nuclear power plant (NPP) increases, the potential misunderstanding of the degradation of aging components must receive more attention. Integrity assurance analysis contributes to the effective maintenance of adequate plant safety margins. In essence, the reactor pressure vessel (RPV) is the key structural component determining the NPP lifetime. Environmentally induced cracking in the stainless steel corrosion-preventing cladding of RPV’s has been recognized to be one of the technical problems in the maintenance and development of light-water reactors. Extensive cracking leading to failure of the cladding was found after 13000 net hours of operation in JPDR (Japan Power Demonstration Reactor). Some of the cracks have reached the base metal and further penetrated into the RPV in the form of localized corrosion. Failures of reactor internal components in both boiling water reactors and pressurized water reactors have increased after the accumulation of relatively high neutron fluences (5´1020 cm–2, E>0,5MeV). Therefore, in the case of cladding failure, the problem arises of hydrogen (as a corrosion product) embrittlement of irradiated RPV steel because of exposure to the coolant. At present when notable progress in plasma physics has been obtained practical energy utilization from fusion reactors (FR) is determined by the state of material science problems. The last includes not only the routine problems of nuclear engineering but also a number of entirely new problems connected with extreme conditions of materials operation – irradiation environment, hydrogenation, thermocycling, etc. Limiting data suggest that the combined effect of these factors is more severe than any one of them alone. To clarify the possible influence of the in-service synergistic phenomena on the FR structural materials properties we have studied hydrogen-irradiated steel interaction including alternating hydrogenation and heat treatment (annealing). Available information indicates that the life of the first wall could be expanded by means of periodic in-place annealing. The effects of neutron fluence and irradiation temperature on steel/hydrogen interactions (adsorption, desorption, diffusion, mechanical properties at different loading velocities, post-irradiation annealing) were studied. Experiments clearly reveal that the higher the neutron fluence and the lower the irradiation temperature, the more hydrogen-radiation defects occur, with corresponding effects on the steel mechanical properties. Hydrogen accumulation analyses and thermal desorption investigations were performed to prove the evidence of hydrogen trapping at irradiation defects. Extremely high susceptibility to hydrogen embrittlement was observed with specimens which had been irradiated at relatively low temperature. However, the susceptibility decreases with increasing irradiation temperature. To evaluate methods for the RPV’s residual lifetime evaluation and prediction, more work should be done on the irradiated metal–hydrogen interaction in order to monitor more reliably the status of irradiated materials.

Keywords: Radiation, Stability, Hydrogen, Structural Steel

Procedia PDF Downloads 155
14 Controlling RPV Embrittlement through Wet Annealing in Support of Life Extension

Authors: E. A. Krasikov


As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of NPP safety. Therefore, present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. There are two approaches to annealing. The first one is so-called ‘dry’ high temperature (~475°C) annealing. It allows obtaining practically complete recovery, but requires the removal of the reactor core and internals. External heat source (furnace) is required to carry out RPV heat treatment. The alternative approach is to anneal RPV at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps while operating within the RPV design limits. This low temperature «wet» annealing, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. The first RPV «wet» annealing was done using nuclear heat (US Army SM-1A reactor). The second one was done by means of primary pumps heat (Belgian BR-3 reactor). As a rule, there is no recovery effect up to annealing and irradiation temperature difference of 70°C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore, we have tried to test the possibility to use the effect of radiation-induced ductilization in ‘wet’ annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating PWR at 270°C and following extra irradiation (87 h at 330°C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that «wet » annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long-term operation of PWRs.

Keywords: Radiation, steel, controlling, embrittlement, wet annealing

Procedia PDF Downloads 259
13 Awareness regarding Radiation Protection among the Technicians Practicing in Bharatpur, Chitwan, Nepal

Authors: Jayanti Gyawali, Deepak Adhikari, Mukesh Mallik, Sanjay Sah


Radiation is defined as an emission or transmission of energy in form of waves or particles through space or material medium. The major imaging tools used in diagnostic radiology is based on the use of ionizing radiation. A cross-sectional study was carried out during July- August, 2015 among technicians in 15 different hospitals of Bharatpur, Chitwan, Nepal to assess awareness regarding radiation protection and their current practice. The researcher was directly engaged for data collection using self-administered semi-structured questionnaire. The findings of the study are presented in socio-demographic characteristics of respondents, current practice of respondents and knowledge regarding radiation protection. The result of this study demonstrated that despite the importance of radiation and its consequent hazards, the level of knowledge among technicians is only 60.23% and their current practice is 76.84%. The difference in the mean score of knowledge and practice might have resulted due to technicians’s regular work and lack of updates. The study also revealed that there is no significant (p>0.05) difference in knowledge level of technicians practicing in different hospitals. But the mean difference in practice scores of different hospital is significant (p<0.05) i.e. i.e. the cancer hospital with large volumes of regular radiological cases and radiation therapies for cancer treatment has better practice in comparison to other hospitals. The deficiency in knowledge of technicians might alter the expected benefits, compared to the risk involved, and can cause erroneous medical diagnosis and radiation hazard. Therefore, this study emphasizes the need for all technicians to update themselves with the appropriate knowledge and current practice about ionizing and non-ionizing radiation.

Keywords: Radiation, Knowledge, Nepal, technicians

Procedia PDF Downloads 166
12 Effect of Ionized Plasma Medium on the Radiation of a Rectangular Microstrip Antenna on Ferrite Substrate

Authors: Ayman Al Sawalha


This paper presents theoretical investigations on the radiation of rectangular microstrip antenna printed on a magnetized ferrite substrate Ni0.62Co0.02Fe1.948O4 in the presence of ionized plasma medium. The theoretical study of rectangular microstrip antenna in free space is carried out by applying the transmission line model combining with potential function techniques while hydrodynamic theory is used for it is analysis in plasma medium. By taking the biased and unbiased ferrite cases, far-field radiation patterns in free space and plasma medium are obtained which in turn are applied in computing radiated power, directivity, quality factor and bandwidth of antenna. It is found that the presence of plasma medium affects the performance of rectangular microstrip antenna structure significantly.

Keywords: plasma, Radiation, ferrite, microstrip antenna

Procedia PDF Downloads 186
11 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, neha sharma, Rajni Chahal


This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: Heat Transfer, Radiation, boundary layer flow, nonlinear stretching, Casson fluid

Procedia PDF Downloads 256
10 Thermoluminescent Response of Nanocrystalline BaSO4:Eu to 85 MeV Carbon Beams

Authors: Shaila Bahl, Pratik Kumar, S. P. Lochab


Nanotechnology and nanomaterials have attracted researchers from different fields, especially from the field of luminescence. Recent studies on various luminescent nanomaterials have shown their relevance in dosimetry of ionizing radiations for the measurements of high doses using the Thermoluminescence (TL) technique, where the conventional microcrystalline phosphors saturate. Ion beams have been used for diagnostic and therapeutic purposes due to their favorable profile of dose deposition at the end of the range known as the Bragg peak. While dealing with human beings, doses from these beams need to be measured with great precision and accuracy. Henceforth detailed investigations of suitable thermoluminescent dosimeters (TLD) for dose verification in ion beam irradiation are required. This paper investigates the TL response of nanocrystalline BaSO4 doped with Eu to 85 MeV carbon beam. The synthesis was done using Co-precipitation technique by mixing Barium chloride and ammonium sulphate solutions. To investigate the crystallinity and particle size, analytical techniques such as X-ray diffraction (XRD) and Transmission electron microscopy (TEM) were used which revealed the average particle sizes to 45 nm with orthorhombic structure. Samples in pellet form were irradiated by 85 MeV carbon beam in the fluence range of 1X1010-5X1013. TL glow curves of the irradiated samples show two prominent glow peaks at around 460 K and 495 K. The TL response is linear up to 1X1013 fluence after which saturation was observed. The wider linear TL response of nanocrystalline BaSO4: Eu and low fading make it a superior candidate as a dosimeter to be used for detecting the doses of carbon beam.

Keywords: Dosimetry, Radiation, Thermoluminescence, carbon ions

Procedia PDF Downloads 164
9 Preliminary Study on the Removal of Solid Uranium Compound in Nuclear Fuel Production System

Authors: Bai Zhiwei, Zhang Shuxia


By sealing constraint, the system of nuclear fuel production penetrates a trace of air in during its service. The vapor in the air can react with material in the system and generate solid uranium compounds. These solid uranium compounds continue to accumulate and attached to the production equipment and pipeline of system, which not only affects the operation reliability of production equipment and give off radiation hazard as well after system retired. Therefore, it is necessary to select a reasonable method to remove it. Through the analysis of physicochemical properties of solid uranium compounds, halogenated fluoride compounds are selected as a cleaning agent, which can remove solid uranium compounds effectively. This paper studied the related chemical reaction under the condition of static test and results show that the selection of high fluoride halogen compounds can be removed solid uranium compounds completely. The study on the influence of reaction pressure with the reaction rate discovered a phenomenon that the higher the pressure, the faster the reaction rate.

Keywords: Radiation, remove, fluoride halogen compound, solid uranium compound

Procedia PDF Downloads 176
8 Radiation Usage Impact of on Anti-Nutritional Compounds (Antitrypsin and Phytic Acid) of Livestock and Poultry Foods

Authors: Ali Kiani, Mohammad Khosravi, Behroz Dastar, Parvin Showrang


Review was carried out on important anti-nutritional compounds of livestock and poultry foods and the effect of radiation usage. Nowadays, with advancement in technology, different methods have been considered for the optimum usage of nutrients in livestock and poultry foods. Steaming, extruding, pelleting, and the use of chemicals are the most common and popular methods in food processing. Use of radiation in food processing researches in the livestock and poultry industry is currently highly regarded. Ionizing (electrons, gamma) and non-ionizing beams (microwave and infrared) are the most useable rays in animal food processing. In recent researches, these beams have been used to remove and reduce the anti-nutritional factors and microbial contamination and improve the digestibility of nutrients in poultry and livestock food. The evidence presented will help researchers to recognize techniques of relevance to them. Simplification of some of these techniques, especially in developing countries, must be addressed so that they can be used more widely.

Keywords: Radiation, phytic acid, antitrypsin, gamma anti-nutritional components

Procedia PDF Downloads 219
7 Design and Study of a Parabolic Trough Solar Collector for Generating Electricity

Authors: A. A. A. Aboalnour, Ahmed M. Amasaib, Mohammed-Almujtaba A. Mohammed-Farah, Abdelhakam, A. Noreldien


This paper presents a design and study of Parabolic Trough Solar Collector (PTC). Mathematical models were used in this work to find the direct and reflected solar radiation from the air layer on the surface of the earth per hour based on the total daily solar radiation on a horizontal surface. Also mathematical models had been used to calculate the radiation of the tilted surfaces. Most of the ingredients used in this project as previews data required on several solar energy applications, thermal simulation, and solar power systems. In addition, mathematical models had been used to study the flow of the fluid inside the tube (receiver), and study the effect of direct and reflected solar radiation on the pressure, temperature, speed, kinetic energy and forces of fluid inside the tube. Finally, the mathematical models had been used to study the (PTC) performances and estimate its thermal efficiency.

Keywords: Experimental, Radiation, Mathematical Models, CFD, parabolic trough

Procedia PDF Downloads 133