Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Quality Engineering Related Abstracts

4 The Coexistence of Quality Practices and Frozen Concept in R and D Projects

Authors: Ayala Kobo-Greenhut, Amos Notea, Izhar Ben-Shlomo

Abstract:

In R&D projects, there is no doubt about the need to change a current concept to an alternative one over time (i.e., concept leaping). Concept leaping is required since with most R&D projects uncertainty is present as they take place in dynamic environments. Despite the importance of concept leaping when needed, R&D teams may fail to do so (i.e., frozen concept). This research suggests a possible reason why frozen concept happens in the framework of quality engineering and control engineering. We suggest that frozen concept occurs since concept determines the derived plan and its implementation may be considered as equivalent to a closed-loop process, and is subject to the problem of not recognizing gaps as failures. We suggest that although implementing quality practices into an R&D project’s routine has many advantages, it intensifies the frozen concept problem since working according to quality practices relates to exploitation of learning behavior, while leaping to a new concept relates to exploring learning behavior.

Keywords: Design, Control Engineering, Quality Engineering, closed loop, leaping, frozen concept, quality practices

Procedia PDF Downloads 336
3 Quality Based Approach for Efficient Biologics Manufacturing

Authors: Shigeyuki Haruyama, Takashi Kaminagayoshi

Abstract:

To improve the manufacturing efficiency of biologics, such as antibody drugs, a quality engineering framework was designed. Within this framework, critical steps and parameters in the manufacturing process were studied. Identification of these critical steps and critical parameters allows a deeper understanding of manufacturing capabilities, and suggests to process development department process control standards based on actual manufacturing capabilities as part of a PDCA (plan-do-check-act) cycle. This cycle can be applied to each manufacturing process so that it can be standardized, reducing the time needed to establish each new process.

Keywords: Quality Engineering, Biologics, PDCA cycle, antibody drugs, manufacturing efficiency

Procedia PDF Downloads 194
2 Optimization of Manufacturing Process Parameters: An Empirical Study from Taiwan's Tech Companies

Authors: Chao-Ton Su, Li-Fei Chen

Abstract:

The parameter design is crucial to improving the uniformity of a product or process. In the product design stage, parameter design aims to determine the optimal settings for the parameters of each element in the system, thereby minimizing the functional deviations of the product. In the process design stage, parameter design aims to determine the operating settings of the manufacturing processes so that non-uniformity in manufacturing processes can be minimized. The parameter design, trying to minimize the influence of noise on the manufacturing system, plays an important role in the high-tech companies. Taiwan has many well-known high-tech companies, which show key roles in the global economy. Quality remains the most important factor that enables these companies to sustain their competitive advantage. In Taiwan however, many high-tech companies face various quality problems. A common challenge is related to root causes and defect patterns. In the R&D stage, root causes are often unknown, and defect patterns are difficult to classify. Additionally, data collection is not easy. Even when high-volume data can be collected, data interpretation is difficult. To overcome these challenges, high-tech companies in Taiwan use more advanced quality improvement tools. In addition to traditional statistical methods and quality tools, the new trend is the application of powerful tools, such as neural network, fuzzy theory, data mining, industrial engineering, operations research, and innovation skills. In this study, several examples of optimizing the parameter settings for the manufacturing process in Taiwan’s tech companies will be presented to illustrate proposed approach’s effectiveness. Finally, a discussion of using traditional experimental design versus the proposed approach for process optimization will be made.

Keywords: Neural Network, Quality Engineering, Genetic Algorithm, Experimental Design, parameter design

Procedia PDF Downloads 39
1 Automotive Quality Engineering: A Roadmap for Functional Safety

Authors: Hugo d’Albert, Udo Lindemann

Abstract:

The number of automotive electronic systems that allow realizing new functions, like driver assistance systems, has been increasing extremely in the last decade. Although they bring several benefits, their malfunctions can lead to severe consequences, such as personal injury of road users. Functional safety is an approach to identify these critical malfunctions and arrange technical systems that include only tolerable risk. This approach is– in comparison with other technical areas– relatively new in the automotive sector. For a long time, the automotive systems have based on mechanical components and approved principles, like robust design. With a growing number of electric and electronic components in the modern cars and realizing by software of the system functions, the need for new standards and methods to assure the functional safety has arisen. This paper described the current state of engineering for safety in automotive sector and discusses new directions to meet the challenges of the future.

Keywords: Quality management, Quality Engineering, Automotive Systems, functional safety

Procedia PDF Downloads 113