Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 56

Principal Component Analysis Related Abstracts

56 Marine Phytoplankton and Zooplankton from the North-Eastern Bay of Bengal, Bangladesh

Authors: Mahmudur Rahman Khan, Saima Sharif Nilla, Kawser Ahmed, Abdul Aziz


The marine phyto and zooplankton of the extreme north-eastern part of the Bay of Bengal, off the coast of Bangladesh have been studied. Relative occurrence of phyto and zooplankton and their relationship with physico-chemical conditions (f.e. temperature, salinity, dissolved oxygen, carbonate, phosphate, and sulphate) of the water and Shannon-Weiber diversity indices were also studied. The phytoplankton communities represented by 25 genera with 69 species of Bacillariophyceae, 5 genera with 12 species of Dinophyceae and 6 genera with 16 species of Chlorophyceae have been found. A total of 24 genera of 25 species belonging to Protozoa, Coelenterata, Chaetognatha, Nematoda, Cladocera, Copepoda, and decapoda have been recorded. In addition, the average phytoplankton was 80% of all collections, whereas the zooplankton was 20%, Z ratio of about 4:1. The total numbers of plankton individuals per liter were generally higher during low tide than those of high one. Shannon-Weiber diversity indices were highest (3.675 for phytoplankton and 3.021 for zooplankton) in the north-east part and lowest (1.516 for phytoplankton and 1.302 for zooplankton) in the south-east part of the study area. Principal Component Analysis (PCA) showed the relationship between pH and some species of phyto and zooplankton where all diatoms and copepods have showed positive correlation and dinoflagellates showed negative correlation with pH.

Keywords: Principal Component Analysis, plankton presence, shannon-weiber diversity index, Bay of Bengal

Procedia PDF Downloads 495
55 Leaf Image Processing: Review

Authors: T. Vijayashree, A. Gopal


The aim of the work is to classify and authenticate medicinal plant materials and herbs widely used for Indian herbal medicinal preparation. The quality and authenticity of these raw materials are to be ensured for the preparation of herbal medicines. These raw materials are to be carefully screened, analyzed and documented due to mistaken of look-alike materials which do not have medicinal characteristics.

Keywords: Signal Processing, Principal Component Analysis, standardization, Authenticity, Imaging Processing

Procedia PDF Downloads 106
54 Study of Functional Relevant Conformational Mobility of β-2 Adrenoreceptor by Means of Molecular Dynamics Simulation

Authors: G. V. Novikov, V. S. Sivozhelezov, S. S. Kolesnikov, K. V. Shaitan


The study reports about the influence of binding of orthosteric ligands as well as point mutations on the conformational dynamics of β-2-adrenoreceptor. Using molecular dynamics simulation we found that there was a little fraction of active states of the receptor in its apo (ligand free) ensemble corresponded to its constitutive activity. Analysis of MD trajectories indicated that such spontaneous activation of the receptor is accompanied by the motion in intracellular part of its alpha-helices. Thus receptor’s constitutive activity directly results from its conformational dynamics. On the other hand the binding of a full agonist resulted in a significant shift of the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized the receptor in its inactive state. It is likely that the binding of inverse agonists might be a universal way of constitutive activity inhibition in vivo. Our results indicate that ligand binding redistribute pre-existing conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux-Model) of the receptor rather than cause induced fit in it. Therefore, the ensemble of biologically relevant receptor conformations is encoded in its spatial structure, and individual conformations from that ensemble might be used by the cell in conformity with the physiological behaviour.

Keywords: Principal Component Analysis, X-Ray Crystallography, seven-transmembrane receptors, constitutive activity, activation, molecular dynamics simulation

Procedia PDF Downloads 103
53 Application of FT-NIR Spectroscopy and Electronic Nose in On-line Monitoring of Dough Proofing

Authors: Madhuresh Dwivedi, Navneet Singh Deora, Aastha Deswal, H. N. Mishra


FT-NIR spectroscopy and electronic nose was used to study the kinetics of dough proofing. Spectroscopy was conducted with an optic probe in the diffuse reflectance mode. The dough leavening was carried out at different temperatures (25 and 35°C) and constant RH (80%). Spectra were collected in the range of wave numbers from 12,000 to 4,000 cm-1 directly on the samples, every 5 min during proofing, up to 2 hours. NIR spectra were corrected for scatter effect and second order derivatization was done to transform the spectra. Principal component analysis (PCA) was applied for the leavening process and process kinetics was calculated. PCA was performed on data set and loadings were calculated. For leavening, four absorption zones (8,950-8,850, 7,200-6,800, 5,250-5,150 and 4,700-4,250 cm-1) were involved in describing the process. Simultaneously electronic nose was also used for understanding the development of odour compounds during fermentation. The electronic nose was able to differential the sample on the basis of aroma generation at different time during fermentation. In order to rapidly differentiate samples based on odor, a Principal component analysis is performed and successfully demonstrated in this study. The result suggests that electronic nose and FT-NIR spectroscopy can be utilized for the online quality control of the fermentation process during leavening of bread dough.

Keywords: Principal Component Analysis, e-nose, FT-NIR, dough, proofing

Procedia PDF Downloads 251
52 Chemometric Determination of the Geographical Origin of Milk Samples in Malaysia

Authors: Shima Behkami, Nor Shahirul Umirah Idris, Sharifuddin Md. Zain, Kah Hin Low, Mehrdad Gholami, Nima A. Behkami, Ahmad Firdaus Kamaruddin


In this work, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Isotopic Ratio Mass Spectrometry (IRMS) and Ultrasound Milko Tester were used to study milk samples obtained from various geographical locations in Malaysia. ICP-MS was used to determine the concentration of trace elements in milk, water and soil samples obtained from seven dairy farms at different geographical locations in peninsular Malaysia. IRMS was used to analyze the milk samples for isotopic ratios of δ13C, 15N and 18O. Nutritional parameters in the milk samples were determined using an ultrasound milko tester. Data obtained from these measurements were evaluated by Principal Component Analysis (PCA) and Hierarchical Analysis (HA) as a preliminary step in determining geographical origin of these milk samples. It is observed that the isotopic ratios and a number of the nutritional parameters are responsible for the discrimination of the samples. It was also observed that it is possible to determine the geographical origin of these milk samples solely by the isotopic ratios of δ13C, 15N and 18O. The accuracy of the geographical discrimination is demonstrated when several milk samples from a milk factory taken from one of the regions under study were appropriately assigned to the correct PCA cluster.

Keywords: Ultrasound, Principal Component Analysis, Milk, inductively coupled plasma mass spectroscopy ICP-MS, isotope ratio mass spectroscopy IRMS, hierarchical analysis, geographical origin

Procedia PDF Downloads 210
51 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh


The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: Pattern Recognition, Principal Component Analysis, discrete wavelet transform, support vector machine, electroencephalogram

Procedia PDF Downloads 387
50 Assessment of Social Vulnerability of Urban Population to Floods – a Case Study of Mumbai

Authors: Sherly M. A., Varsha Vijaykumar, Subhankar Karmakar, Terence Chan, Christian Rau


This study aims at proposing an indicator-based framework for assessing social vulnerability of any coastal megacity to floods. The final set of indicators of social vulnerability are chosen from a set of feasible and available indicators which are prepared using a Geographic Information System (GIS) framework on a smaller scale considering 1-km grid cell to provide an insight into the spatial variability of vulnerability. The optimal weight for each individual indicator is assigned using data envelopment analysis (DEA) as it avoids subjective weights and improves the confidence on the results obtained. In order to de-correlate and reduce the dimension of multivariate data, principal component analysis (PCA) has been applied. The proposed methodology is demonstrated on twenty four wards of Mumbai under the jurisdiction of Municipal Corporation of Greater Mumbai (MCGM). This framework of vulnerability assessment is not limited to the present study area, and may be applied to other urban damage centers.

Keywords: Data Envelopment Analysis, Vulnerability, Principal Component Analysis, urban floods

Procedia PDF Downloads 169
49 Principal Components Analysis of the Causes of High Blood Pressure at Komfo Anokye Teaching Hospital, Ghana

Authors: Joseph K. A. Johnson


Hypertension affects 20 percent of the people within the ages 55 upward in Ghana. Of these, almost one-third are unaware of their condition. Also at the age of 55, more men turned to have hypertension than women. After that age, the condition becomes more prevalent with women. Hypertension is significantly more common in African Americans of both sexes than the racial or ethnic groups. This study was conducted to determine the causes of high blood pressure in Ashanti Region, Ghana. The study employed One Hundred and Seventy (170) respondents. The sample population for the study was all the available respondents at the time of the data collection. The research was conducted using primary data where convenience sampling was used to locate the respondents. A set of questionnaire were used to gather the data for the study. The gathered data was analysed using principal component analysis. The study revealed that, personal description, lifestyle behavior and risk awareness as some of the causes of high blood pressure in Ashanti Region. The study therefore recommend that people must be advice to see to their personal characteristics that may contribute to high blood pressure such as controlling of their temper and how to react perfectly to stressful situations. They must be educated on the factors that may increase the level of their blood pressure such as the essence of seeing a medical doctor before taking in any drug. People must also be made known by the public health officers to those lifestyles behaviour such as smoking and drinking of alcohol which are major contributors of high blood pressure.

Keywords: Public Health, Hypertension, Principal Component Analysis, High Blood Pressure

Procedia PDF Downloads 374
48 Parameter Estimation via Metamodeling

Authors: Sergio Haram Sarmiento, Arcady Ponosov


Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.

Keywords: Principal Component Analysis, Metamodels, Parameter Estimation, generalized law of mass action

Procedia PDF Downloads 361
47 Investigating the Demand of Short-Shelf Life Food Products for SME Wholesalers

Authors: Yamini Raju, Parminder S. Kang, Adam Moroz, Ross Clement, Alistair Duffy, Ashley Hopwell


Accurate prediction of fresh produce demand is one the challenges faced by Small Medium Enterprise (SME) wholesalers. Current research in this area focused on limited number of factors specific to a single product or a business type. This paper gives an overview of the current literature on the variability factors used to predict demand and the existing forecasting techniques of short shelf life products. It then extends it by adding new factors and investigating if there is a time lag and possibility of noise in the orders. It also identifies the most important factors using correlation and Principal Component Analysis (PCA).

Keywords: Demand forecasting, Principal Component Analysis, deteriorating products, food wholesalers, variability factors

Procedia PDF Downloads 349
46 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach

Authors: M. Taheri Tehrani, H. Ajorloo


In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.

Keywords: Reinforcement Learning, Principal Component Analysis, buffer allocation, multi- agent systems

Procedia PDF Downloads 341
45 The Effect of Incorporation of Inulin as a Fat Replacer on the Quality of Milk Products Vis-À-Vis Ice Cream

Authors: Harish Kumar Sharma


The influence of different levels of inulin as a fat replacer on the quality of ice cream was investigated. The physicochemical, rheological and textural properties of control ice cream and ice cream prepared with inulin in different proportions were determined and correlated to the different parameters using Pearson correlation and Principle Component Analysis (PCA). Based on the overall acepectability, ice cream with 4% inulin was found best and was selected for preparation of ice cream with inulin:SPI in different proportions. Compared with control ice cream, Inulin:SPI showed different rheological properties, resulting in significantly higher apparent viscosities, consistency coefficient and greater deviations from Newtonian flow. In addition, both hardness and melting resistance significantly increased with increase in the SPI content in ice cream prepared with inulin: SPI. Also hardness value increased for inulin based ice cream compared to control ice cream but it melted significantly faster than the latter. Colour value significantly decreased in both the cases compared to the control sample. The deliberation shall focus on the effect of incorporation of inulin on the quality of ice-cream.

Keywords: viscosity, Principal Component Analysis, ice cream, inulin, fat replacer

Procedia PDF Downloads 239
44 On the Estimation of Crime Rate in the Southwest of Nigeria: Principal Component Analysis Approach

Authors: Kayode Balogun, Femi Ayoola


Crime is at alarming rate in this part of world and there are many factors that are contributing to this antisocietal behaviour both among the youths and old. In this work, principal component analysis (PCA) was used as a tool to reduce the dimensionality and to really know those variables that were crime prone in the study region. Data were collected on twenty-eight crime variables from National Bureau of Statistics (NBS) databank for a period of fifteen years, while retaining as much of the information as possible. We use PCA in this study to know the number of major variables and contributors to the crime in the Southwest Nigeria. The results of our analysis revealed that there were eight principal variables have been retained using the Scree plot and Loading plot which implies an eight-equation solution will be appropriate for the data. The eight components explained 93.81% of the total variation in the data set. We also found that the highest and commonly committed crimes in the Southwestern Nigeria were: Assault, Grievous Harm and Wounding, theft/stealing, burglary, house breaking, false pretence, unlawful arms possession and breach of public peace.

Keywords: Data, Principal Component Analysis, Variables, crime rates, Southwest Nigeria

Procedia PDF Downloads 263
43 Modeling Karachi Dengue Outbreak and Exploration of Climate Structure

Authors: Syed Afrozuddin Ahmed, Junaid Saghir Siddiqi, Sabah Quaiser


Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times.

Keywords: Principal Component Analysis, dengue fever, negative binomial regression model, poisson regression model

Procedia PDF Downloads 309
42 Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay


During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving the army, moving convoys etc. The radar operator selects one of the promising targets into single target tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper, we present a technique using mathematical and statistical methods like fast fourier transformation (FFT) and principal component analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: Principal Component Analysis, dsp, FFT, eigenvector, radar target, octave-notes

Procedia PDF Downloads 266
41 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay


During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: Principal Component Analysis, dsp, FFT, eigenvector, radar target, octave-notes

Procedia PDF Downloads 223
40 Rural Households’ Resilience to Food Insecurity in Niger

Authors: Aboubakr Gambo, Adama Diaw, Tobias Wunscher


This study attempts to identify factors affecting rural households’ resilience to food insecurity in Niger. For this, we first create a resilience index by using Principal Component Analysis on the following five variables at the household level: income, food expenditure, duration of grain held in stock, livestock in Tropical Livestock Units and number of farms exploited and second apply Structural Equation Modelling to identify the determinants. Data from the 2010 National Survey on Households’ Vulnerability to Food Insecurity done by the National Institute of Statistics is used. The study shows that asset and social safety nets indicators are significant and have a positive impact on households’ resilience. Climate change approximated by long-term mean rainfall has a negative and significant effect on households’ resilience to food insecurity. The results indicate that to strengthen households’ resilience to food insecurity, there is a need to increase assistance to households through social safety nets and to help them gather more resources in order to acquire more assets. Furthermore, early warning of climatic events could alert households especially farmers to be prepared and avoid important losses that they experience anytime an uneven climatic event occur.

Keywords: Resilience, Principal Component Analysis, food insecurity, structural equation modelling

Procedia PDF Downloads 225
39 Distribution, Source Apportionment and Assessment of Pollution Level of Trace Metals in Water and Sediment of a Riverine Wetland of the Brahmaputra Valley

Authors: Kali Prasad Sarma, Sanghita Dutta


Deepor Beel (DB), the lone Ramsar site and an important wetland of the Brahmaputra valley in the state of Assam. The local people from fourteen peripheral villages traditionally utilize the wetland for harvesting vegetables, flowers, aquatic seeds, medicinal plants, fish, molluscs, fodder for domestic cattle etc. Therefore, it is of great importance to understand the concentration and distribution of trace metals in water-sediment system of the beel in order to protect its ecological environment. DB lies between26°05′26′′N to 26°09′26′′N latitudes and 90°36′39′′E to 91°41′25′′E longitudes. Water samples from the surface layer of water up to 40cm deep and sediment samples from the top 5cm layer of surface sediments were collected. The trace metals in waters and sediments were analysed using ICP-OES. The organic Carbon was analysed using the TOC analyser. The different mineral present in the sediments were confirmed by X-ray diffraction method (XRD). SEM images were recorded for the samples using SEM, attached with energy dispersive X-ray unit, with an accelerating voltage of 20 kv. All the statistical analyses were performed using SPSS20.0 for windows. In the present research, distribution, source apportionment, temporal and spatial variability, extent of pollution and the ecological risk of eight toxic trace metals in sediments and water of DB were investigated. The average concentrations of chromium(Cr) (both the seasons), copper(Cu) and lead(Pb) (pre-monsoon) and zinc(Zn) and cadmium(Cd) (post-monsoon) in sediments were higher than the consensus based threshold concentration(TEC). The persistent exposure of toxic trace metals in sediments pose a potential threat, especially to sediment dwelling organisms. The degree of pollution in DB sediments for Pb, Cobalt (Co) Zn, Cd, Cr, Cu and arsenic (As) was assessed using Enrichment Factor (EF), Geo-accumulation index (Igeo) and Pollution Load Index (PLI). The results indicated that contamination of surface sediments in DB is dominated by Pb and Cd and to a lesser extent by Co, Fe, Cu, Cr, As and Zn. A significant positive correlation among the pairs of element Co/Fe, Zn/As in water, and Cr/Zn, Fe/As in sediments indicates similar source of origin of these metals. The effects of interaction among trace metals between water and sediments shows significant variations (F =94.02, P < 0.001), suggesting maximum mobility of trace metals in DB sediments and water. The source apportionment of the heavy metals was carried out using Principal Component Analysis (PCA). SEM-EDS detects the presence of Cd, Cu, Cr, Zn, Pb, As and Fe in the sediment sample. The average concentration of Cd, Zn, Pb and As in the bed sediments of DB are found to be higher than the crustal abundance. The EF values indicate that Cd and Pb are significantly enriched. From source apportionment studies of the eight metals using PCA revealed that Cd was anthropogenic in origin; Pb, As, Cr, and Zn had mixed sources; whereas Co, Cu and Fe were natural in origin.

Keywords: Principal Component Analysis, Trace Metals, Deepor Beel, enrichment factor

Procedia PDF Downloads 189
38 Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Rural and Urban of Central Taiwan

Authors: Shih Yu Pan, Pao Chen Hung, Chuan Yao Lin, Charles C.-K. Chou, Yu Chi Lin, Kai Hsien Chi


This study analyzed 16 atmospheric PAHs species which were controlled by USEPA and IARC. To measure the concentration of PAHs, four rural sampling sites and two urban sampling sites were selected in Central Taiwan during spring and summer. In central Taiwan, the rural sampling stations were located in the downstream of Da-An River, Da-Jang River, Wu River and Chuo-shui River. On the other hand, the urban sampling sites were located in Taichung district and close to the roadside. Ambient air samples of both vapor phase and particle phase of PAHs compounds were collected using high volume sampling trains (Analitica). The sampling media were polyurethane foam (PUF) with XAD2 and quartz fiber filters. Diagnostic ratio, Principal component analysis (PCA), Positive Matrix Factorization (PMF) models were used to evaluate the apportionment of PAHs in the atmosphere and speculate the relative contribution of various emission sources. Because of the high temperature and low wind speed, high PAHs concentration in the atmosphere was observed. The total PAHs concentration, especially in vapor phase, had significant change during summer. During the sampling periods the total PAHs concentration of atmospheric at four rural and two urban sampling sites in spring and summer were 3.70±0.40 ng/m3,3.40±0.63 ng/m3,5.22±1.24 ng/m3,7.23±0.37 ng/m3,7.46±2.36 ng/m3,6.21±0.55 ng/m3 ; 15.0± 0.14 ng/m3,18.8±8.05 ng/m3,20.2±8.58 ng/m3,16.1±3.75 ng/m3,29.8±10.4 ng/m3,35.3±11.8 ng/m3, respectively. In order to identify PAHs sources, we used diagnostic ratio to classify the emission sources. The potential sources were diesel combustion and gasoline combustion in spring and summer, respectively. According to the principal component analysis (PCA), the PC1 and PC2 had 23.8%, 20.4% variance and 21.3%, 17.1% variance in spring and summer, respectively. Especially high molecular weight PAHs (BaP, IND, BghiP, Flu, Phe, Flt, Pyr) were dominated in spring when low molecular weight PAHs (AcPy, Ant, Acp, Flu) because of the dominating high temperatures were dominated in the summer. Analysis by using PMF model found the sources of PAHs in spring were stationary sources (34%), vehicle emissions (24%), coal combustion (23%) and petrochemical fuel gas (19%), while in summer the emission sources were petrochemical fuel gas (34%), the natural environment of volatile organic compounds (29%), coal combustion (19%) and stationary sources (18%).

Keywords: Principal Component Analysis, PAHs, source identification, diagnostic ratio, positive matrix factorization

Procedia PDF Downloads 151
37 Performance of the Cmip5 Models in Simulation of the Present and Future Precipitation over the Lake Victoria Basin

Authors: M. A. Wanzala, L. A. Ogallo, F. J. Opijah, J. N. Mutemi


The usefulness and limitations in climate information are due to uncertainty inherent in the climate system. For any given region to have sustainable development it is important to apply climate information into its socio-economic strategic plans. The overall objective of the study was to assess the performance of the Coupled Model Inter-comparison Project (CMIP5) over the Lake Victoria Basin. The datasets used included the observed point station data, gridded rainfall data from Climate Research Unit (CRU) and hindcast data from eight CMIP5. The methodology included trend analysis, spatial analysis, correlation analysis, Principal Component Analysis (PCA) regression analysis, and categorical statistical skill score. Analysis of the trends in the observed rainfall records indicated an increase in rainfall variability both in space and time for all the seasons. The spatial patterns of the individual models output from the models of MPI, MIROC, EC-EARTH and CNRM were closest to the observed rainfall patterns.

Keywords: Principal Component Analysis, statistical downscaling, categorical statistics, coupled model inter-comparison project

Procedia PDF Downloads 224
36 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis

Authors: Akinola Ikudayisi, Josiah Adeyemo


The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.

Keywords: irrigation, Principal Component Analysis, reference evapotranspiration, Vaalharts

Procedia PDF Downloads 114
35 Quantitative Ranking Evaluation of Wine Quality

Authors: A. Brunel, A. Kernevez, F. Leclere, J. Trenteseaux


Today, wine quality is only evaluated by wine experts with their own different personal tastes, even if they may agree on some common features. So producers do not have any unbiased way to independently assess the quality of their products. A tool is here proposed to evaluate wine quality by an objective ranking based upon the variables entering wine elaboration, and analysed through principal component analysis (PCA) method. Actual climatic data are compared by measuring the relative distance between each considered wine, out of which the general ranking is performed.

Keywords: Climate, Principal Component Analysis, Wine, Grape, rating, weather conditions, metric analysis

Procedia PDF Downloads 96
34 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014

Authors: Alexiou Dimitra, Fragkaki Maria


The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.

Keywords: Principal Component Analysis, Factor Analysis, Multiple Factorial Correspondence Analysis, E.U.-28 countries, Statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Statistics

Procedia PDF Downloads 296
33 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis

Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio


Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.

Keywords: Principal Component Analysis, Failure Detection, solvent extraction, abnormal process behavior

Procedia PDF Downloads 192
32 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Authors: Bin Mu, Site Li, Shijin Yuan


Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Keywords: Genetic Algorithm, Principal Component Analysis, AQI forecast, back propagation neural network model

Procedia PDF Downloads 103
31 Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients

Authors: Denis Jordan, Daniel Golkowski, Mathias Lukas, Katharina Merz, Caroline Mlynarcik, Max Maurer, Valentin Riedl, Stefan Foerster, Eberhard F. Kochs, Andreas Bender, Ruediger Ilg


Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA.

Keywords: Machine Learning, Entropy, Principal Component Analysis, Positron Emission Tomography, electroencephalogram, coma states and prognosis, functional magnetic resonance imaging

Procedia PDF Downloads 149
30 Assessing Environmental Urban Sustainability Using Multivariate Analysis: A Case of Nagpur, India

Authors: Anusha Vaddiraj Pallapu


Measuring urban sustainable development is at the forefront in contributing to overall sustainability, and it refers to attaining social equity, environmental protection and minimizing the impacts of urbanization. Assessing performance of urban issues ranging from larger consumption of natural resources by humans in terms of lifestyle to creating a polluted nearby environment, social and even economic dimensions of sustainability major issues observed such as water quality, transportation, management of solid waste and traffic pollution. However, relying on the framework of the project to do the goals of sustainable development or minimization of urban impacts through management practices is not enough to deal with the present urban issues. The aim of the sustainability is to know how severely the resources are depleted because of human consumption and how issues are characterized. The paper aims to assign benchmarks for the selected sustainability indicators for research, and analysis is done through multivariate analysis in Indian context a case of Nagpur city to identify the play role of each urban issues in the overall sustainability. The main objectives of this paper are to examine the indicators over by time basis on various scenarios and how benchmarking is used, what and which categories of values should be considered as the performance of indicators function.

Keywords: Benchmarking, Urban Sustainability, Principal Component Analysis, environmental sustainability indicators, urban clusters

Procedia PDF Downloads 222
29 Disparities in the Levels of Economic Development in Uttar Pradesh: A Regional Analysis

Authors: Naushaba Naseem Ahmed


Economic development does not merely depend upon the level of development but also on its distributive aspect. As it is a serious issue, the fruit of development is not equally distributed among the different section of peoples and different part of the country this cause the regional disparities in the levels of social economic development. Different part of the country has different resource endowments in term of natural, human and capital. If there is the uniform condition to grow, these areas that have better resources, are favourably placed grow comparatively faster as other areas. Thus with the very stage of development, gap between resourceful and less resourceful area goes on widening. This paper is an attempt to highlight the levels of disparities in term of economic development with the help of selected variables. Principal component analysis, correlation, and coefficient of variation are the techniques which were used in paper and employed published data for analysis. The result shows that Western region of Uttar Pradesh is more developed followed by Central Region. There will be urgent need in investment and developmental policies for the backward region like Bundelkhand region of Uttar Pradesh.

Keywords: Economic Development, correlation, Principal Component Analysis, coefficient of variation

Procedia PDF Downloads 130
28 Implementation and Comparative Analysis of PET and CT Image Fusion Algorithms

Authors: S. Guruprasad, M. Z. Kurian, H. N. Suma


Medical imaging modalities are becoming life saving components. These modalities are very much essential to doctors for proper diagnosis, treatment planning and follow up. Some modalities provide anatomical information such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), X-rays and some provides only functional information such as Positron Emission Tomography (PET). Therefore, single modality image does not give complete information. This paper presents the fusion of structural information in CT and functional information present in PET image. This fused image is very much essential in detecting the stages and location of abnormalities and in particular very much needed in oncology for improved diagnosis and treatment. We have implemented and compared image fusion techniques like pyramid, wavelet, and principal components fusion methods along with hybrid method of DWT and PCA. The performances of the algorithms are evaluated quantitatively and qualitatively. The system is implemented and tested by using MATLAB software. Based on the MSE, PSNR and ENTROPY analysis, PCA and DWT-PCA methods showed best results over all experiments.

Keywords: Image Fusion, Principal Component Analysis, Wavelets, pyramid

Procedia PDF Downloads 168
27 Sensitivity of Credit Default Swaps Premium to Global Risk Factor: Evidence from Emerging Markets

Authors: Oguzhan Cepni, Doruk Kucuksarac, M. Hasan Yilmaz


Risk premium of emerging markets are moving altogether depending on the momentum and shifts in the global risk appetite. However, the magnitudes of these changes in the risk premium of emerging market economies might vary. In this paper, we focus on how global risk factor affects credit default swaps (CDS) premiums of emerging markets using principal component analysis (PCA) and rolling regressions. PCA results indicate that the first common component accounts for almost 76% of common variation in CDS premiums of emerging markets. Additionally, the explanatory power of the first factor seems to be high over sample period. However, the sensitivity to the global risk factor tends to change over time and across countries. In this regard, fixed effects panel regressions are employed to identify the macroeconomic factors driving the heterogeneity across emerging markets. There are two main macroeconomic variables that affect the sensitivity; government debt to GDP and international reserves to GDP. The countries with lower government debt and higher reserves tend to be less subject to the variations in the global risk appetite.

Keywords: Emerging Markets, Sovereign risk, Principal Component Analysis, credit default swaps

Procedia PDF Downloads 235