Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

predictive analysis Related Abstracts

5 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally


The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: Social Media, Knowledge Discovery, Machine Learning, Text Mining, predictive analysis

Procedia PDF Downloads 316
4 A Configurational Approach to Understand the Effect of Organizational Structure on Absorptive Capacity: Results from PLS and fsQCA

Authors: Murad Ali, Anderson Konan Seny Kan, Khalid A. Maimani


Based on the theory of organizational design and the theory of knowledge, this study uses complexity theory to explain and better understand the causal impacts of various patterns of organizational structural factors stimulating absorptive capacity (ACAP). Organizational structure can be thought of as heterogeneous configurations where various components are often intertwined. This study argues that impact of the traditional variables which define a firm’s organizational structure (centralization, formalization, complexity and integration) on ACAP is better understood in terms of set-theoretic relations rather than correlations. This study uses a data sample of 347 from a multiple industrial sector in South Korea. The results from PLS-SEM support all the hypothetical relationships among the variables. However, fsQCA results suggest the possible configurations of centralization, formalization, complexity, integration, age, size, industry and revenue factors that contribute to high level of ACAP. The results from fsQCA demonstrate the usefulness of configurational approaches in helping understand equifinality in the field of knowledge management. A recent fsQCA procedure based on a modeling subsample and holdout subsample is use in this study to assess the predictive validity of the model under investigation. The same type predictive analysis is also made through PLS-SEM. These analyses reveal a good relevance of causal solutions leading to high level of ACAP. In overall, the results obtained from combining PLS-SEM and fsQCA are very insightful. In particular, they could help managers to link internal organizational structural with ACAP. In other words, managers may comprehend finely how different components of organizational structure can increase the level of ACAP. The configurational approach may trigger new insights that could help managers prioritize selection criteria and understand the interactions between organizational structure and ACAP. The paper also discusses theoretical and managerial implications arising from these findings.

Keywords: Organizational structure, PLS-SEM, predictive analysis, absorptive capacity, fsQCA, modeling subsample, holdout subsample

Procedia PDF Downloads 212
3 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida


Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Big Data, predictive analysis, CART algorithm, predictive analysis algorithms

Procedia PDF Downloads 3
2 Islamic Extremist Groups' Usage of Populism in Social Media to Radicalize Muslim Migrants in Europe

Authors: Muhammad Irfan


The rise of radicalization within Islam has spawned a new era of global terror. The battlefield Successes of ISIS and the Taliban are fuelled by an ideological war waged, largely and successfully, in the media arena. This research will examine how Islamic extremist groups are using media modalities and populist narratives to influence migrant Muslim populations in Europe towards extremism. In 2014, ISIS shocked the world in exporting horrifically graphic forms of violence on social media. Their Muslim support base was largely disgusted and reviled. In response, they reconfigured their narrative by introducing populist 'hooks', astutely portraying the Muslim populous as oppressed and exploited by unjust, corrupt autocratic regimes and Western power structures. Within this crucible of real and perceived oppression, hundreds of thousands of the most desperate, vulnerable and abused migrants left their homelands, risking their lives in the hope of finding peace, justice, and prosperity in Europe. Instead, many encountered social stigmatization, detention and/or discrimination for being illegal migrants, for lacking resources and for simply being Muslim. This research will examine how Islamic extremist groups are exploiting the disenfranchisement of these migrant populations and using populist messaging on social media to influence them towards violent extremism. ISIS, in particular, formulates specific encoded messages for newly-arriving Muslims in Europe, preying upon their vulnerability. Violence is posited, as a populist response, to the tyranny of European oppression. This research will analyze the factors and indicators which propel Muslim migrants along the spectrum from resilience to violence extremism. Expected outcomes are identification of factors which influence vulnerability towards violent extremism; an early-warning detection framework; predictive analysis models; and de-radicalization frameworks. This research will provide valuable tools (practical and policy level) for European governments, security stakeholders, communities, policy-makers, and educators; it is anticipated to contribute to a de-escalation of Islamic extremism globally.

Keywords: Social Media, Islam, Terrorism, Political Communication, Refugees, Models, Europe, Extremism, migrants, Jihad, Radicalization, Islamic Extremism, Strategic Communication, Populism, predictive analysis, Taliban, Shariah, ISIS, de-radicalization, global terror, early warning detection, populist narratives

Procedia PDF Downloads 3
1 Customer Acquisition through Time-Aware Marketing Campaign Analysis in Banking Industry

Authors: Harneet Walia, Morteza Zihayat


Customer acquisition has become one of the critical issues of any business in the 21st century; having a healthy customer base is the essential asset of the bank business. Term deposits act as a major source of cheap funds for the banks to invest and benefit from interest rate arbitrage. To attract customers, the marketing campaigns at most financial institutions consist of multiple outbound telephonic calls with more than one contact to a customer which is a very time-consuming process. Therefore, customized direct marketing has become more critical than ever for attracting new clients. As customer acquisition is becoming more difficult to archive, having an intelligent and redefined list is necessary to sell a product smartly. Our aim of this research is to increase the effectiveness of campaigns by predicting customers who will most likely subscribe to the fixed deposit and suggest the most suitable month to reach out to customers. We design a Time Aware Upsell Prediction Framework (TAUPF) using two different approaches, with an aim to find the best approach and technique to build the prediction model. TAUPF is implemented using Upsell Prediction Approach (UPA) and Clustered Upsell Prediction Approach (CUPA). We also address the data imbalance problem by examining and comparing different methods of sampling (Up-sampling and down-sampling). Our results have shown building such a model is quite feasible and profitable for the financial institutions. The Time Aware Upsell Prediction Framework (TAUPF) can be easily used in any industry such as telecom, automobile, tourism, etc. where the TAUPF (Clustered Upsell Prediction Approach (CUPA) or Upsell Prediction Approach (UPA)) holds valid. In our case, CUPA books more reliable. As proven in our research, one of the most important challenges is to define measures which have enough predictive power as the subscription to a fixed deposit depends on highly ambiguous situations and cannot be easily isolated. While we have shown the practicality of time-aware upsell prediction model where financial institutions can benefit from contacting the customers at the specified month, further research needs to be done to understand the specific time of the day. In addition, a further empirical/pilot study on real live customer needs to be conducted to prove the effectiveness of the model in the real world.

Keywords: predictive analysis, customer acquisition, targeted marketing, time-aware analysis

Procedia PDF Downloads 9