Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

oscillatory Related Abstracts

2 Steady and Oscillatory States of Swirling Flows under an Axial Magnetic Field

Authors: Brahim Mahfoud, Rachid Bessaïh

Abstract:

In this paper, a numerical study of steady and oscillatory flows with heat transfer submitted to an axial magnetic field is studied. The governing Navier-Stokes, energy, and potential equations along with appropriate boundary conditions are solved by using the finite-volume method. The flow and temperature fields are presented by stream function and isotherms, respectively. The flow between counter-rotating end disks is very unstable and reveals a great richness of structures. The results are presented for various values of the Hartmann number, Ha=5, 10, 20, and 30, and Richardson numbers , Ri=0, 0.5, 1, 2, and 4, in order to see their effects on the value of the critical Reynolds number, Recr. Stability diagrams are established according to the numerical results of this investigation. These diagrams put in evidence the dependence of Recr with the increase of Ha for various values of Ri.

Keywords: Magnetic Field, cylinder, swirling, counter-rotating end disks, oscillatory

Procedia PDF Downloads 194
1 The Influence of the Moving Speeds of DNA Droplet on Polymerase Chain Reaction

Authors: Fu H. Yang, Jyh Jyh Chen, Chen W. Wang, Yu M. Lin

Abstract:

In this work, a reaction chamber is reciprocated among three temperature regions by using an oscillatory thermal cycling machine. Three cartridge heaters are collocated to heat three aluminum blocks in order to achieve PCR requirements in the reaction chamber. The effects of various chamber moving speeds among different temperature regions on the chamber temperature profiles are presented. To solve the evaporation effect of the sample in the PCR experiment, the mineral oil and the cover lid are used. The influences of various extension times on DNA amplification are also demonstrated. The target fragments of the amplification are 385-bp and 420-bp. The results show when the forward speed is set at 6 mm/s and the backward speed is 2.4 mm/s, the temperature required for the experiment can be achieved. It is successful to perform the amplification of DNA fragments in our device.

Keywords: Polymerase chain reaction, oscillatory, reaction chamber, thermal cycling machine

Procedia PDF Downloads 281