**Authors:**
Mohammed Seaid,
Alia Alghosoun,
Nabil El Moçayd

**Abstract:**

Modeling dam-break flows over non-flat beds requires
an accurate representation of the topography which is the main
source of uncertainty in the model. Therefore, developing robust
and accurate techniques for reconstructing topography in this class
of problems would reduce the uncertainty in the flow system. In
many hydraulic applications, experimental techniques have been
widely used to measure the bed topography. In practice, experimental
work in hydraulics may be very demanding in both time and cost.
Meanwhile, computational hydraulics have served as an alternative
for laboratory and field experiments. Unlike the forward problem,
the inverse problem is used to identify the bed parameters from the
given experimental data. In this case, the shallow water equations
used for modeling the hydraulics need to be rearranged in a way
that the model parameters can be evaluated from measured data.
However, this approach is not always possible and it suffers from
stability restrictions. In the present work, we propose an adaptive
optimal control technique to numerically identify the underlying bed
topography from a given set of free-surface observation data. In this
approach, a minimization function is defined to iteratively determine
the model parameters. The proposed technique can be interpreted
as a fractional-stage scheme. In the first stage, the forward problem
is solved to determine the measurable parameters from known data.
In the second stage, the adaptive control Ensemble Kalman Filter is
implemented to combine the optimality of observation data in order to
obtain the accurate estimation of the topography. The main features
of this method are on one hand, the ability to solve for different
complex geometries with no need for any rearrangements in the
original model to rewrite it in an explicit form. On the other hand, its
achievement of strong stability for simulations of flows in different
regimes containing shocks or discontinuities over any geometry.
Numerical results are presented for a dam-break flow problem over
non-flat bed using different solvers for the shallow water equations.
The robustness of the proposed method is investigated using different
numbers of loops, sensitivity parameters, initial samples and location
of observations. The obtained results demonstrate high reliability and
accuracy of the proposed techniques.

**Keywords:**
Finite Element Method,
finite volume method,
shallow water equations,
nonlinear elasticity,
erodible beds,
stresses in soil

Procedia
PDF
Downloads 1