Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 109

Neural Network Related Abstracts

109 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks

Authors: Kais Manai


The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.

Keywords: Neural Network, Particle Identification, Tracking, Nuclear Emulsion

Procedia PDF Downloads 343
108 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri


In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.

Keywords: Neural Network, Heat Flux, bubble diameter, training algorithm

Procedia PDF Downloads 322
107 Knowledge Discovery from Production Databases for Hierarchical Process Control

Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata


The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system, thus, the proposed solution has been verified. The paper documents how it is possible to apply new discovery knowledge to be used in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.

Keywords: Process Control, Neural Network, hierarchical process control, knowledge discovery from databases

Procedia PDF Downloads 213
106 Pattern Identification in Statistical Process Control Using Artificial Neural Networks

Authors: M. Pramila Devi, N. V. N. Indra Kiran


Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed.

Keywords: Neural Network, Generalization, Backpropagation, control chart pattern recognition, early stopping

Procedia PDF Downloads 202
105 Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling

Authors: Kious Mecheri, Hadjadj Abdechafik, Ameur Aissa


The wear of cutting tool degrades the quality of the product in the manufacturing processes. The online monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear online. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions.

Keywords: Signal Processing, Neural Network, flank wear, cutting forces, high speed milling

Procedia PDF Downloads 237
104 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach

Authors: Arbnor Pajaziti, Hasan Cana


In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.

Keywords: Optimization, Neural Network, Genetic Algorithm, robotic arm

Procedia PDF Downloads 352
103 Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra

Authors: M. Khouil, N. Saber, M. Mestari


In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the collision between a point and a polyhedron and then the collision between two convex polyhedra. The aim of this research is to determine through the AMAXNET network a mini maximum point in a fixed time, which allows us to detect the presence of a potential collision.

Keywords: Neural Network, collision identification, fixed time, convex polyhedra, AMAXNET

Procedia PDF Downloads 264
102 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN

Authors: M. P. Nanda Kumar, K. Dheeraj


The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.

Keywords: Neural Network, Controller Design, inverse optimal control, radial basis function

Procedia PDF Downloads 341
101 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour

Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani


In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.

Keywords: Neural Network, Video Tracking, particle filter, greedy snake

Procedia PDF Downloads 193
100 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms

Authors: A. Majidian


The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.

Keywords: Neural Network, Fuzzy Logic, life prediction, condenser tube

Procedia PDF Downloads 218
99 Application of Neural Network on the Loading of Copper onto Clinoptilolite

Authors: John Kabuba


The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ion-exchange.

Keywords: Modeling, Neural Network, clinoptilolite, loading

Procedia PDF Downloads 265
98 Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System

Authors: Mohammad Reza Rahimi Khoygani, Reza Ghasemi


In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results.

Keywords: Adaptive Control, Neural Network, Nonlinear Control, Position Control, RBF, pendulum dynamical system, adaptive neural controller, nonlinear dynamical, driven pendulum

Procedia PDF Downloads 435
97 Designing Intelligent Adaptive Controller for Nonlinear Pendulum Dynamical System

Authors: R. Ghasemi, M. R. Rahimi Khoygani


This paper proposes the designing direct adaptive neural controller to apply for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) neural adaptive controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are importance of this paper. The simulation results show the promising performance of the proposed controller.

Keywords: Neural Network, Position Control, RBF, adaptive neural controller, nonlinear dynamical, driven pendulum

Procedia PDF Downloads 322
96 Intelligent Adaptive Learning in a Changing Environment

Authors: G. Valentis, Q. Berthelot


Nowadays the trend to develop ever more intelligent and autonomous systems often takes its inspiration in the living beings on Earth. Some simple isolated systems are able, once brought together, to form a strong and reliable system. When trying to adapt the idea to man-made systems it is not possible to include in their program everything the system may encounter during its life cycle. It is, thus, necessary to make the system able to take decisions based on other criteria such as its past experience, i.e. to make the system learn on its own. However, at some point the acquired knowledge depends also on environment. So the question is: if system environment is modified, how could the system respond to it quickly and appropriately enough? Here, starting from reinforcement learning to rate its decisions, and using adaptive learning algorithms for gain and loss reward, the system is made able to respond to changing environment and to adapt its knowledge as time passes. Application is made to a robot finding an exit in a labyrinth.

Keywords: Neural Network, Autonomous Systems, Reinforcement Learning, Adaptive Learning, changing environment

Procedia PDF Downloads 281
95 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman


This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: Neural Network, background noise, sound detection, impulsive signal

Procedia PDF Downloads 190
94 Orthogonal Basis Extreme Learning Algorithm and Function Approximation

Authors: Ying Li, Yan Li


A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.

Keywords: Neural Network, orthogonal basis extreme learning, function approximation

Procedia PDF Downloads 355
93 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System

Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov


Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IP-protocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.

Keywords: Neural Network, fuzzy set, quality of communication, IP-telephony, fuzzy implication

Procedia PDF Downloads 286
92 A New Approach to Predicting Physical Biometrics from Behavioural Biometrics

Authors: Raid R. O. Al-Nima, S. S. Dlay, W. L. Woo


A relationship between face and signature biometrics is established in this paper. A new approach is developed to predict faces from signatures by using artificial intelligence. A multilayer perceptron (MLP) neural network is used to generate face details from features extracted from signatures, here face is the physical biometric and signatures is the behavioural biometric. The new method establishes a relationship between the two biometrics and regenerates a visible face image from the signature features. Furthermore, the performance efficiencies of our new technique are demonstrated in terms of minimum error rates compared to published work.

Keywords: Neural Network, behavioural biometric, face biometric, physical biometric, signature biometric

Procedia PDF Downloads 322
91 A Neurosymbolic Learning Method for Uplink LTE-A Channel Estimation

Authors: Lassaad Smirani


In this paper we propose a Neurosymbolic Learning System (NLS) as a channel estimator for Long Term Evolution Advanced (LTE-A) uplink. The proposed system main idea based on Neural Network has modules capable of performing bidirectional information transfer between symbolic module and connectionist module. We demonstrate various strengths of the NLS especially the ability to integrate theoretical knowledge (rules) and experiential knowledge (examples), and to make an initial knowledge base (rules) converted into a connectionist network. Also to use empirical knowledge witch by learning will have the ability to revise the theoretical knowledge and acquire new one and explain it, and finally the ability to improve the performance of symbolic or connectionist systems. Compared with conventional SC-FDMA channel estimation systems, The performance of NLS in terms of complexity and quality is confirmed by theoretical analysis and simulation and shows that this system can make the channel estimation accuracy improved and bit error rate decreased.

Keywords: Neural Network, Hybrid System, Channel Estimation, BER, SC-FDMA, LTE-A

Procedia PDF Downloads 261
90 Prediction of Wind Speed by Artificial Neural Networks for Energy Application

Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui


In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.

Keywords: Wind energy, Neural Network, MATLAB, Wind Speed, power low, vertical extrapolation

Procedia PDF Downloads 500
89 Remote Assessment and Change Detection of GreenLAI of Cotton Crop Using Different Vegetation Indices

Authors: Ganesh B. Shinde, Vijaya B. Musande


Cotton crop identification based on the timely information has significant advantage to the different implications of food, economic and environment. Due to the significant advantages, the accurate detection of cotton crop regions using supervised learning procedure is challenging problem in remote sensing. Here, classifiers on the direct image are played a major role but the results are not much satisfactorily. In order to further improve the effectiveness, variety of vegetation indices are proposed in the literature. But, recently, the major challenge is to find the better vegetation indices for the cotton crop identification through the proposed methodology. Accordingly, fuzzy c-means clustering is combined with neural network algorithm, trained by Levenberg-Marquardt for cotton crop classification. To experiment the proposed method, five LISS-III satellite images was taken and the experimentation was done with six vegetation indices such as Simple Ratio, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Green Atmospherically Resistant Vegetation Index, Wide-Dynamic Range Vegetation Index, Green Chlorophyll Index. Along with these indices, Green Leaf Area Index is also considered for investigation. From the research outcome, Green Atmospherically Resistant Vegetation Index outperformed with all other indices by reaching the average accuracy value of 95.21%.

Keywords: Neural Network, vegetation indices, Fuzzy C-Means clustering (FCM), Levenberg-Marquardt (LM) algorithm

Procedia PDF Downloads 184
88 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan


Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: Data Mining, Neural Network, Decision trees, myocardial infarction

Procedia PDF Downloads 313
87 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil


Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: Neural Network, Load Forecasting, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 436
86 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam

Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee


In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.

Keywords: Neural Network, Finite Element Method, Dam Foundation, seepage, seep 3D model

Procedia PDF Downloads 326
85 Modeling Binomial Dependent Distribution of the Values: Synthesis Tables of Probabilities of Errors of the First and Second Kind of Biometrics-Neural Network Authentication System

Authors: B. S.Akhmetov, S. T. Akhmetova, D. N. Nadeyev, V. Yu. Yegorov, V. V. Smogoonov


Estimated probabilities of errors of the first and second kind for nonideal biometrics-neural transducers 256 outputs, the construction of nomograms based error probability of 'own' and 'alien' from the mathematical expectation and standard deviation of the normalized measures Hamming.

Keywords: Modeling, Probability, Biometrics, Neural Network, Authentication, Errors

Procedia PDF Downloads 348
84 Features of Testing of the Neuronetwork Converter Biometrics-Code with Correlation Communications between Bits of the Output Code

Authors: B. S. Akhmetov, A. I. Ivanov, T. S. Kartbayev, A. Y. Malygin, K. Mukapil, S. D. Tolybayev


The article examines the testing of the neural network converter of biometrics code. Determined the main reasons that prevented the use adopted in the works of foreign researchers classical a Binomial Law when describing distribution of measures of Hamming "Alien" codes-responses.

Keywords: Biometrics, Neural Network, Testing, converter of biometrics-code, Hamming's measure

Procedia PDF Downloads 404
83 New Approach for Load Modeling

Authors: Slim Chokri


Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: Machine Learning, Neural Network, Load Forecasting, fuzzy inference, fuzzy modeling and rule extraction, support vector regression

Procedia PDF Downloads 318
82 Park’s Vector Approach to Detect an Inter Turn Stator Fault in a Doubly Fed Induction Machine by a Neural Network

Authors: Amel Ourici


An electrical machine failure that is not identified in an initial stage may become catastrophic and it may suffer severe damage. Thus, undetected machine faults may cascade in it failure, which in turn may cause production shutdowns. Such shutdowns are costly in terms of lost production time, maintenance costs, and wasted raw materials. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator fault in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect this fault, is based on Park’s Vector Approach, using a neural network.

Keywords: Neural Network, PWM inverter, doubly fed induction machine, inter turn stator fault, Park’s vector approach

Procedia PDF Downloads 410
81 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar


Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: Neural Network, Backpropagation, local minima, fast convergence rate

Procedia PDF Downloads 343
80 Optimisation of the Input Layer Structure for Feedforward Narx Neural Networks

Authors: Zongyan Li, Matt Best


This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: Neural Network, Optimisation, Correlation analysis, MSE, F-ratio, levenberg-marquardt, NARX

Procedia PDF Downloads 205