Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25

Nanostructures Related Abstracts

25 Structural, Optical, And Ferroelectric Properties Of BaTiO3 Sintered At Different Temperatures

Authors: neha sharma, Anurag Gaur

Abstract:

In this work, we have synthesized BaTiO3 via sol gel method by sintering at different temperatures (600-1000 0C) and studied their structural, optical and ferroelectric properties through X-Ray diffraction (XRD), UV-Vis spectrophotometer and PE Loop Tracer. X-Ray diffraction patterns of barium titanate samples show that the peaks of the diffractogram are successfully indexed with the tetragonal structure of BaTiO3 along with some minor impurities of BaCO3. The optical band gap calculated through UV Visible spectrophotometer varies from 4.37 to 3.80 eV for the samples sintered at 600 to 1000 0 C, respectively. The particle size calculated through transmission electron microscopy varies from 20 to 60 nm for the samples sintered at 600 to 1000 0C, respectively. Moreover, it has been observed that the ferroelectricity reduces as we increase the sintering temperature.

Keywords: Nanostructures, Sol-Gel Method, Ferroelectricity, diffractogram

Procedia PDF Downloads 251
24 Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition

Authors: Nong-Moon Hwang, Jin-Woo Park, Sung-Soo Lee

Abstract:

The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR.

Keywords: Nanostructures, chemical vapour deposition, charged cluster model, generation of charged nanoparticles, deposition behaviour, gan, charged transfer rate

Procedia PDF Downloads 268
23 Thermomechanical Effects and Nanoscale Ripples in Graphene

Authors: Roderick Melnik, Sanjay Prabhakar

Abstract:

The relaxed state of graphene nanostructures due to externally applied tensile stress along both the armchair and zigzag directions are analyzed in detail. The results, obtained with the Finite Element Method (FEM), demonstrate that the amplitude of ripple waves in such nanostructures increases with temperature. Details of the multi-scale multi-physics computational procedure developed for this analysis are also provided.

Keywords: Modeling, Nanostructures, Computer-aided Design, Coupled Processes, nanotechnological applications

Procedia PDF Downloads 159
22 A Novel Model for Saturation Velocity Region of Graphene Nanoribbon Transistor

Authors: Mehdi Saeidmanesh, Razali Ismail, Mohsen Khaledian, Mahdiar Hosseinghadiry

Abstract:

A semi-analytical model for impact ionization coefficient of graphene nanoribbon (GNR) is presented. The model is derived by calculating probability of electrons reaching ionization threshold energy Et and the distance traveled by electron gaining Et. In addition, ionization threshold energy is semi-analytically modeled for GNR. We justify our assumptions using analytic modeling and comparison with simulation results. Gaussian simulator together with analytical modeling is used in order to calculate ionization threshold energy and Kinetic Monte Carlo is employed to calculate ionization coefficient and verify the analytical results. Finally, the profile of ionization is presented using the proposed models and simulation and the results are compared with that of silicon.

Keywords: Systems Engineering, Nanostructures, electronic transport, semiconductor modeling

Procedia PDF Downloads 299
21 Formation of Nanostructured Surface Layers of a Material with TiNi-Based Shape Memory by Diffusion Metallization

Authors: Zh. M. Blednova, P. O. Rusinov

Abstract:

Results of research on the formation of the surface layers of a material with shape memory effect (SME) based on TiNi diffusion metallization in molten Pb-Bi under isothermal conditions in an argon atmosphere are presented. It is shown that this method allows obtaining of uniform surface layers in nanostructured state of internal surfaces on the articles of complex shapes with stress concentrators. Structure, chemical and phase composition of the surface layers provide a manifestation of TiNi shape memory. The average grain size of TiNi coatings ranges between 60 ÷ 160 nm.

Keywords: Nanostructures, diffusion metallization, nikelid titanium surface layers, shape memory effect

Procedia PDF Downloads 179
20 Synthesis of Flower-Like Silver Nanoarchitectures in Special Shapes and Their Applications in Surface-Enhanced Raman Scattering

Authors: Ales Panacek, Libor Kvítek, Radek Zbořil, Radka Králová, Václav Ranc

Abstract:

Surface–Enhanced Raman Scattering (SERS) is an optical spectroscopic technique with very good potential for sensitive detection of substances. In this research, active substrates with high enhancement were provided. Novel silver particles (nanostructures) with high roughened, flower–like morphology were prepared by reduction of cation complex [Ag(NH3)2]+ in presence of sodium borohydride as reducing agent and stabilized polyacrylic acid. The products were characterized by UV/VIS absorption spectrophotometry. Special shapes of silver particles were determined by scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM). Dispersions of this particle were put on fixed substrate to producing suitable layer for SERS. Adenine was applied as basic substance whose effect of enhancement on the layer of silver nanostructures was studied. By comparison with our work, the important influence of stabilizers, polyacrylic acid with various molecular weight and concentration, on the transfer of particles and formation of new structure was confirmed.

Keywords: Metals, Nanostructures, Raman spectroscopy, Optical Properties, chemical reduction

Procedia PDF Downloads 248
19 Morphological and Optical Properties of (Al, In) Doped ZnO Thin ‎Films Textured (103) by Sol-Gel Method

Authors: S. Benzitouni, M. Zaabat, A. Mahdjoub, A. Benaboud, T.Saidani ‎

Abstract:

To improve the physical properties of ZnO nanostructures textured (103) by sol-gel ‎dip coating method, Al and In are used as dopant with different weight ratios (5%, 10%). ‎The comparative study between Al doped ZnO thin films (AZO) and In doped ZnO (IZO) ‎are made by different analysis technic. XRD showed that the films are Pollycristallins with ‎hexagonal wûrtzite structure and preferred orientation (002) and (103). UV-Vis ‎spectroscopy showed that all films have a high transmission (> 85%); the interference ‎fringes are only observed for IZO. The optical gap is reduced due to the introduction of In ‎‎(minimum value is 3.12 eV), but increased in the presence of Al (maximum value is 3.34 ‎eV). The thickness of the layers was obtained by modeling (using Forouhi Bloomer ‎method). AFM used to observe the surface texture of the films and determined grain size ‎and surface roughness (RMS) which varies in a small range [3.14 to 1.25] nm‎.

Keywords: Nanostructures, ZnO, optical gap, roughness (RMS)

Procedia PDF Downloads 230
18 Morphology and Electrical Conductivity of a Non-Symmetrical NiO-SDC/SDC Anode through a Microwave-Assisted Route

Authors: Mohadeseh Seyednezhad, Armin Rajabi, Andanastui Muchtar, Mahendra Rao Somalu

Abstract:

This work investigates the electrical properties of NiO-SDC/SDC anode sintered at about 1200 ○C for 1h through a relatively new approach, namely the microwave method. Nano powders Sm0.2Ce0.8O1.9 (SDC) and NiO were mixed by using a high-energy ball-mill and subsequent co-pressed at three different compaction pressures 200, 300 and 400 MPa. The novelty of this study consists in the effect of compaction pressure on the electrochemical performance of Ni-SDC/SDC anode, with no binder used between layers. The electrical behavior of the prepared anode has been studied by electrochemical impedance spectra (EIS) in controlled atmospheres, operating at high temperatures (600-800 °C).

Keywords: Nanostructures, sintering, Ceramics, Impedance spectroscopy, Fuel Cell, Electrical Conductivity

Procedia PDF Downloads 335
17 Influence of Preparation, Characterisation and Application of Carbon Nano Tube

Authors: Dhaivat S. Soni, Snehal Thakor, Afroz Bhatti

Abstract:

The prepare CNTs in bulk quantity by as easiest as possible method with highly pure and small diameter. Prepared CNTs first charactered its structural parameter for the conformation of CNTs and purity. Surface morphology of CNTs stured by using various instruments finally study application of prepared CNTs in various field. Carbon nanotubes (CNTs) were synthesized in large scale by pyrolyzing activated carbon in sealed autoclaves.

Keywords: Nanostructures, nanotubes, Carbon, pyrolysis

Procedia PDF Downloads 246
16 Investigation of Atomic Adsorption on the Surface of BC3 Nanotubes

Authors: S. V. Boroznin, I. V. Zaporotskova, N. P. Polikarpova

Abstract:

Studing of nanotubes sorption properties is very important for researching. These processes for carbon and boron nanotubes described in the high number of papers. But the sorption properties of boron containing nanotubes, susch as BC3-nanotubes haven’t been studied sufficiently yet. In this paper we present the results of theoretical research into the mechanism of atomic surface adsorption on the two types of boron-carbon nanotubes (BCNTs) within the framework of an ionic-built covalent-cyclic cluster model and an appropriately modified MNDO quantum chemical scheme and DFT method using B3LYP functional with 6-31G basis. These methods are well-known and the results, obtained using them, were in good agreement with the experiment. Also we studied three position of atom location above the nanotube surface. These facts suggest us to use them for our research and quantum-chemical calculations. We studied the mechanism of sorption of Cl, O and F atoms on the external surface of single-walled BC3 arm-chair nanotubes. We defined the optimal geometry of the sorption complexes and obtained the values of the sorption energies. Analysis of the band structure suggests that the band gap is insensitive to adsorption process. The electron density is located near atoms of the surface of the tube. Also we compared our results with others, which have been obtained earlier for pure carbon and boron nanotubes. The most stable adsorption complex has been between boron-carbon nanotube and oxygen atom. So, it suggests us to make a research of oxygen molecule adsorption on the BC3 nanotube surface. We modeled five variants of molecule orientation above the nanotube surface. The most stable sorption complex has been defined between the oxygen molecule and nanotube when the oxygen molecule is located above the nanotube surface perpendicular to the axis of the tube.

Keywords: Nanostructures, Nanoengineering, Boron-carbon nanotubes, nanolayers, quantum-chemical calculations

Procedia PDF Downloads 188
15 Monte Carlo Simulation of Magnetic Properties in Bit Patterned Media

Authors: O. D. Arbeláez-Echeverri, E. Restrepo-Parra, J. C. Riano-Rojas

Abstract:

A two dimensional geometric model of Bit Patterned Media is proposed, the model is based on the crystal structure of the materials commonly used to produce the nano islands in bit patterned materials and the possible defects that may arise from the interaction between the nano islands and the matrix material. The dynamic magnetic properties of the material are then computed using time aware integration methods for the multi spin Hamiltonian. The Hamiltonian takes into account both the spatial and topological disorder of the sample as well as the high perpendicular anisotropy that is pursued when building bit patterned media. The main finding of the research was the possibility of replicating the results of previous experiments on similar materials and the ability of computing the switching field distribution given the geometry of the material and the parameters required by the model.

Keywords: Nanostructures, Magnetic Properties, Monte Carlo, pattern media

Procedia PDF Downloads 374
14 Nanoarchitectures Cu2S Functions as Effective Surface-Enhanced Raman Scattering Substrates for Molecular Detection Application

Authors: Yu-Kuei Hsu, Yan-Gu Lin, Ying-Chu Chen

Abstract:

The hierarchical Cu2S nano structural film is successfully fabricated via an electroplated ZnO nanorod array as a template and subsequently chemical solution process for the growth of Cu2S in the application of surface-enhanced Raman scattering (SERS) detection. The as-grown Cu2S nano structures were thermally treated at temperature of 150-300 oC under nitrogen atmosphere to improve the crystal quality and unexpectedly induce the Cu nano particles on surface of Cu2S. The structure and composition of thermally treated Cu2S nano structures were carefully analyzed by SEM, XRD, XPS, and XAS. Using 4-aminothiophenol (4-ATP) as probing molecules, the SERS experiments showed that the thermally treated Cu2S nano structures exhibit excellent detecting performance, which could be used as active and cost-effective SERS substrate for ultra sensitive detecting. Additionally, this novel hierarchical SERS substrates show good reproducibility and a linear dependence between analyte concentrations and intensities, revealing the advantage of this method for easily scale-up production.

Keywords: Nanostructures, Copper, cuprous sulfide, surface-enhanced raman scattering

Procedia PDF Downloads 303
13 Silver Grating for Strong and Reproducible SERS Response

Authors: V. Svorcik, Y. Kalachyova, O. Lyutakov

Abstract:

One of the most significant obstacles for the application of surface enhanced Raman spectroscopy (SERS) is the poor reproducibility of SERS active substrates: SERS intensity can be varied from one substrate to another and moreover along the one substrate surface. High enhancement of the near-field intensity is the key factor for ultrasensitive SERS realization. SERS substrate can be prepared through introduction of highly ordered metal array, where light focusing is achieved through excitation of surface plasmon-polaritons (SPPs). In this work, we report the preparation of silver nanostructures with plasmon absorption peaks tuned by the metal arrangement. Excimer laser modification of poly(methyl methacrylate) followed by silver evaporation is proposed as an effective way for the creation of reproducible and effective surface plasmon-polaritons (SPP)-based SERS substrate. Theoretical and experimental studies were performed to optimize structure parameter for effective SPP excitation. It was found that the narrow range of grating periodicity and metal thickness exist, where SPPs can be most efficiently excited. In spite of the fact, that SERS response was almost always achieved, the enhancement factor was found to vary more with the effectivity of SPP excitation. When the real structure parameters were set to optimal for SPP excitation, a SERS enhancement factor was achieved up to four times. Theoretical and experimental investigation of SPP excitation on the two-dimensional periodical silver array was performed with the aim to make SERS response as high as possible.

Keywords: Nanostructures, SERS, grating, plasmon-polaritons

Procedia PDF Downloads 147
12 Photoelectrochemical Study of Nanostructured Acropora-Like Lead Sulfide Thin Films

Authors: S. Kaci, A. Keffous, O. Fellahi, I. Bozetine, H. Menari

Abstract:

In this paper, we report the fabrication and characterization of Acropora-like lead sulfide nanostructured thin films using chemical bath deposition. The method has the strong points of low temperature and no surfactant, comparing with the other method. The preferential growth directions of the broad branches were indexed as along (200) directions. The photoelectrochemical property of the as-deposited thin films was also investigated. Photoelectrochemical characterization was performed in the aim to determine the flat band potential (Vfb) and to confirm the n-type character of PbS, elucidated from the J(V) curves both in the dark and under illumination. The apparition of the photocurrent Jph started at a potential VON of −0.41 V/ECS and increased towards the anodic direction, which is typical of n-type behavior. The near infrared absorbance spectrum displayed an absorbance edge at 1959 nm, showing blue shift comparing to bulk PbS (3020 nm). These nanostructured lead sulfide thin films may have potential application as dispersed photoelectrode capable of generating H2 under visible light.

Keywords: Nanostructures, Thin Films, lead sulfide, photo-conversion

Procedia PDF Downloads 213
11 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications

Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken

Abstract:

High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.

Keywords: Nanostructures, thin film, Li-ion rechargeable batteries, rate performance, all-solid state

Procedia PDF Downloads 204
10 3-D Strain Imaging of Nanostructures Synthesized via CVD

Authors: Jong Woo Kim, Sohini Manna, Oleg Shpyrko, Eric E. Fullerton

Abstract:

CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.

Keywords: Nanostructures, CVD, strain, CXRD

Procedia PDF Downloads 276
9 Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots

Authors: H. Paredes Gutiérrez, S. T. Pérez-Merchancano

Abstract:

Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.

Keywords: Nanostructures, Quantum Dots, quantum semiconductors, spin polarization

Procedia PDF Downloads 113
8 Computer Simulation Studies of Spinel LiMn₂O₄ Nanotubes

Authors: D. M. Tshwane, R. R. Maphanga, P. E. Ngoepe

Abstract:

Nanostructured materials are attractive candidates for efficient electrochemical energy storage devices because of their unique physicochemical properties. Nanotubes have drawn a continuous attention because of their unique electrical, optical and magnetic properties contrast to that of bulk system. They have potential application in the field of optical, electronics and energy storage device. Introducing nanotubes structures as electrode materials; represents one of the most attractive strategies that could dramatically enhance the battery performance. Spinel LiMn2O4 is the most promising cathode material for Li-ion batteries. In this work, computer simulation methods are used to generate and investigate properties of spinel LiMn2O4 nanotubes. Molecular dynamic simulation is used to probe the local structure of LiMn2O4 nanotubes and the effect of temperature on these systems. It is found that diameter, Miller indices and size have a direct control on nanotubes morphology. Furthermore, it is noted that stability depends on surface and wrapping of the nanotube. The nanotube structures are described using the radial distribution function and XRD patterns. There is a correlation between calculated XRD and experimentally reported results.

Keywords: Nanostructures, nanotubes, Li-ion batteries, LiMn2O4

Procedia PDF Downloads 73
7 Quantum Confinement in LEEH Capped CdS Nanocrystalline

Authors: Mihir Hota, Namita Jena, S. N. Sahu

Abstract:

LEEH (L-cysteine ethyl ester hydrochloride) capped CdS semiconductor nanocrystals are grown at 800C using a simple chemical route. Photoluminescence (PL), Optical absorption (UV) and Transmission Electron Microscopy (TEM) have been carried out to evaluate the structural and optical properties of the nanocrystal. Optical absorption studies have been carried out to optimize the sample. XRD and TEM analysis shows that the nanocrystal belongs to FCC structure having average size of 3nm while a bandgap of 2.84eV is estimated from Photoluminescence analysis. The nanocrystal emits bluish light when excited with 355nm LASER.

Keywords: Nanostructures, Optical Properties, Luminescence, cadmium sulphide

Procedia PDF Downloads 251
6 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites

Authors: Iftikhar Ahmad, Mohammad Islam

Abstract:

Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.

Keywords: Nanocomposites, Nanostructures, interfaces, Electron Microscopy, Ceramics, Al2O3

Procedia PDF Downloads 227
5 Different Types of Bismuth Selenide Nanostructures for Targeted Applications: Synthesis and Properties

Authors: Jana Andzane, Gunta Kunakova, Margarita Baitimirova, Mikelis Marnauza, Floriana Lombardi, Donats Erts

Abstract:

Bismuth selenide (Bi₂Se₃) is known as a narrow band gap semiconductor with pronounced thermoelectric (TE) and topological insulator (TI) properties. Unique TI properties offer exciting possibilities for fundamental research as observing the exciton condensate and Majorana fermions, as well as practical application in spintronic and quantum information. In turn, TE properties of this material can be applied for wide range of thermoelectric applications, as well as for broadband photodetectors and near-infrared sensors. Nanostructuring of this material results in improvement of TI properties due to suppression of the bulk conductivity, and enhancement of TE properties because of increased phonon scattering at the nanoscale grains and interfaces. Regarding TE properties, crystallographic growth direction, as well as orientation of the nanostructures relative to the growth substrate, play significant role in improvement of TE performance of nanostructured material. For instance, Bi₂Se₃ layers consisting of randomly oriented nanostructures and/or of combination of them with planar nanostructures show significantly enhanced in comparison with bulk and only planar Bi₂Se₃ nanostructures TE properties. In this work, a catalyst-free vapour-solid deposition technique was applied for controlled obtaining of different types of Bi₂Se₃ nanostructures and continuous nanostructured layers for targeted applications. For example, separated Bi₂Se₃ nanoplates, nanobelts and nanowires can be used for investigations of TI properties; consisting from merged planar and/or randomly oriented nanostructures Bi₂Se₃ layers are useful for applications in heat-to-power conversion devices and infrared detectors. The vapour-solid deposition was carried out using quartz tube furnace (MTI Corp), equipped with an inert gas supply and pressure/temperature control system. Bi₂Se₃ nanostructures/nanostructured layers of desired type were obtained by adjustment of synthesis parameters (process temperature, deposition time, pressure, carrier gas flow) and selection of deposition substrate (glass, quartz, mica, indium-tin-oxide, graphene and carbon nanotubes). Morphology, structure and composition of obtained Bi₂Se₃ nanostructures and nanostructured layers were inspected using SEM, AFM, EDX and HRTEM techniques, as well as home-build experimental setup for thermoelectric measurements. It was found that introducing of temporary carrier gas flow into the process tube during the synthesis and deposition substrate choice significantly influence nanostructures formation mechanism. Electrical, thermoelectric, and topological insulator properties of different types of deposited Bi₂Se₃ nanostructures and nanostructured coatings are characterized as a function of thickness and discussed.

Keywords: Nanostructures, bismuth seleinde, topological insulator, vapour-solid deposition

Procedia PDF Downloads 85
4 Hafnium Doped Zno Nanostructures: An Eco-Friendly Synthesis for Optoelectronic Applications

Authors: Mohammed Khenfouch, Izeddine Zorkani, Mohamed Achehboune, Issam Boukhoubza, Bakang Mothudi, Anouar Jorio

Abstract:

Zinc Oxide (ZnO) nanostructures have been attracting growing interest in recent years; their optical and electrical properties make them useful as attractive and promising materials for optoelectronic applications. In this study, pure and Hafnium doped ZnO nanostructures were synthesized using a green processing method. The structural, optical and electrical properties of samples were investigated structural and optical spectroscopies and electrical measurements. The synthesis and chemical composition of pure and Hafnium doped ZnO were confirmed by SEM observation. The XRD studies of Hafnium doped ZnO demonstrate the formation of wurtzite structure with preferred c-axis orientation. Moreover, the optical and electrical properties of doped material have improved after the doping process. The experimental results obtained for our material show that Hf doped ZnO nanostructures could be a promising material in optoelectronic applications such as photovoltaic cell and light emitting diode devices.

Keywords: Nanostructures, Optoelectronic, Green Synthesis, hafnium-doped-zinc oxide

Procedia PDF Downloads 70
3 A Fast Method for Graphene-Supported Pd-Co Nanostructures as Catalyst toward Ethanol Oxidation in Alkaline Media

Authors: Amir Shafiee Kisomi, Mehrdad Mofidi

Abstract:

Nowadays, fuel cells as a promising alternative for power source have been widely studied owing to their security, high energy density, low operation temperatures, renewable capability and low environmental pollutant emission. The nanoparticles of core-shell type could be widely described in a combination of a shell (outer layer material) and a core (inner material), and their characteristics are greatly conditional on dimensions and composition of the core and shell. In addition, the change in the constituting materials or the ratio of core to the shell can create their special noble characteristics. In this study, a fast technique for the fabrication of a Pd-Co/G/GCE modified electrode is offered. Thermal decomposition reaction of cobalt (II) formate salt over the surface of graphene/glassy carbon electrode (G/GCE) is utilized for the synthesis of Co nanoparticles. The nanoparticles of Pd-Co decorated on the graphene are created based on the following method: (1) Thermal decomposition reaction of cobalt (II) formate salt and (2) the galvanic replacement process Co by Pd2+. The physical and electrochemical performances of the as-prepared Pd-Co/G electrocatalyst are studied by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Cyclic Voltammetry (CV), and Chronoamperometry (CHA). Galvanic replacement method is utilized as a facile and spontaneous approach for growth of Pd nanostructures. The Pd-Co/G is used as an anode catalyst for ethanol oxidation in alkaline media. The Pd-Co/G not only delivered much higher current density (262.3 mAcm-2) compared to the Pd/C (32.1 mAcm-2) catalyst, but also demonstrated a negative shift of the onset oxidation potential (-0.480 vs -0.460 mV) in the forward sweep. Moreover, the novel Pd-Co/G electrocatalyst represents large electrochemically active surface area (ECSA), lower apparent activation energy (Ea), higher levels of durability and poisoning tolerance compared to the Pd/C catalyst. The paper demonstrates that the catalytic activity and stability of Pd-Co/G electrocatalyst are higher than those of the Pd/C electrocatalyst toward ethanol oxidation in alkaline media.

Keywords: Nanostructures, Thermal decomposition, electrocatalyst, ethanol oxidation, galvanic replacement, alkaline media

Procedia PDF Downloads 29
2 Structural and Morphological Study of Europium Doped ZnO

Authors: Abdelhak Nouri

Abstract:

Europium doped zinc oxide nanocolumns (ZnO:Eu) were deposited on indium tin oxide (ITO) substrate from an aqueous solution of 10⁻³M Zn(NO₃)₂ and 0.5M KNO₃ with different concentration of europium ions. The deposition was performed in a classical three-electrode electrochemical cell. The structural, morphology and optical properties have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM). The XRD results show high quality of crystallite with preferential orientation along c-axis. SEM images speculate ZnO: Eu has nanocolumnar form with hexagonal shape. The diameter of nanocolumns is around 230 nm. Furthermore, it was found that tail of crystallite, roughness, and band gap energy is highly influenced with increasing Eu ions concentration. The average grain size is about 102 nm to 125 nm.

Keywords: Nanostructures, Doping, deterioration lattice, Eu:ZnO

Procedia PDF Downloads 25
1 Nanoprofiling of GaAs Surface in a Combined Low-Temperature Plasma for Microwave Devices

Authors: Victor S. Klimin, Alexey A. Rezvan, Maxim S. Solodovnik, Oleg A. Ageev

Abstract:

In this paper, the problems of existing methods of profiling and surface modification of nanoscale arsenide-gallium structures are analyzed. The use of a combination of methods of local anodic oxidation and plasma chemical etching to solve this problem is considered. The main features that make this technology one of the promising areas of modification and profiling of near-surface layers of solids are demonstrated. In this paper, we studied the effect of formation stress and etching time on the geometrical parameters of the etched layer and the roughness of the etched surface. Experimental dependences of the thickness of the etched layer on the time and stress of formation were obtained. The surface analysis was carried out using atomic force microscopy methods, the corresponding profilograms were constructed from the obtained images, and the roughness of the etched surface was studied accordingly. It was shown that at high formation voltage, the depth of the etched surface increased, this is due to an increase in the number of active particles (oxygen ions and hydroxyl groups) formed as a result of the decomposition of water molecules in an electric field, during the formation of oxide nanostructures on the surface of gallium arsenide. Oxide layers were used as negative masks for subsequent plasma chemical etching by the STE ICPe68 unit. BCl₃ was chosen as the chlorine-containing gas, which differs from analogs in some parameters for the effect of etching of nanostructures based on gallium arsenide in the low-temperature plasma. The gas mixture of reaction chamber consisted of a buffer gas NAr = 100 cm³/min and a chlorine-containing gas NBCl₃ = 15 cm³/min at a pressure P = 2 Pa. The influence of these methods modes, which are formation voltage and etching time, on the roughness and geometric parameters, and corresponding dependences are demonstrated. Probe nanotechnology was used for surface analysis.

Keywords: Nanostructures, GaAs, plasma chemical etching, modification structures

Procedia PDF Downloads 14