Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10

Multi-Agent Related Abstracts

10 The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications

Authors: Mohamed R. Mhereeg

Abstract:

The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). Microsoft's .NET windows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers.

Keywords: Multi-Agent, Autonomous, Implementation, SOA, MACS, WCF

Procedia PDF Downloads 141
9 A New Multi-Target, Multi-Agent Search and Rescue Path Planning Approach

Authors: Jean Berger, Nassirou Lo, Martin Noel

Abstract:

Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.

Keywords: Optimization, Multi-Agent, search and rescue, search path planning, mixed-integer linear programming

Procedia PDF Downloads 235
8 Voting Representation in Social Networks Using Rough Set Techniques

Authors: Yasser F. Hassan

Abstract:

Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.

Keywords: Social Networks, Multi-Agent, Rough Sets, Emergence, voting system, power indices

Procedia PDF Downloads 266
7 Multi-Agent Railway Control System: Requirements Definitions of Multi-Agent System Using the Behavioral Patterns Analysis (BPA) Approach

Authors: Assem I. El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent Railway Control System (MARCS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: Analysis, Multi-Agent, Use Cases, Software Modeling, modeling methodology, event-oriented, behavioral pattern, railway control

Procedia PDF Downloads 368
6 Multi-Agent TeleRobotic Security Control System: Requirements Definitions of Multi-Agent System Using The Behavioral Patterns Analysis (BPA) Approach

Authors: Assem El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent TeleRobotic Security Control System (MTSCS). The event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: Security, Analysis, Multi-Agent, Use Cases, Software Modeling, modeling methodology, event-oriented, behavioral pattern, TeleRobotics control

Procedia PDF Downloads 306
5 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data

Authors: S. H. Lee, M. J. Park, O. M. Kwon

Abstract:

In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of this systems are obtained by solving a set of Linear Matrix Inequalities(LMIs). One numerical example is included to show the effectiveness of the proposed criteria.

Keywords: Multi-Agent, Lyapunov method, linear matrix inequalities (LMIs), kronecker product, sampled-data

Procedia PDF Downloads 402
4 An Intelligent Cloud Radio Access Network (RAN) Architecture for Future 5G Heterogeneous Wireless Network

Authors: Jin Xu

Abstract:

5G network developers need to satisfy the necessary requirements of additional capacity from massive users and spectrally efficient wireless technologies. Therefore, the significant amount of underutilized spectrum in network is motivating operators to combine long-term evolution (LTE) with intelligent spectrum management technology. This new LTE intelligent spectrum management in unlicensed band (LTE-U) has the physical layer topology to access spectrum, specifically the 5-GHz band. We proposed a new intelligent cloud RAN for 5G.

Keywords: Cloud Computing, Wireless Network, Multi-Agent, cloud radio access network

Procedia PDF Downloads 258
3 Agent-Based Modeling of Pedestrian Corridor Congestion on the Characteristics of Physical Space Form

Authors: Sun Shi, Sun Cheng

Abstract:

The pedestrian corridor is the most crowded area in the public space. The crowded severity has been focused on the field of evacuation strategies of the entrance in large public spaces. The aim of this paper is to analyze the walking efficiency in different spaces of pedestrian corridor with the variation of spatial parameters. The congestion condition caused by the variation of walking efficiency is modeled as well. This study established the space model of the walking corridor by setting the width, slope, turning form and turning angle of the pedestrian corridor. The pedestrian preference of walking mode varied with the difference of the crowded severity, walking speed, field of vision, sight direction and the expected destination, which is influenced by the characters of physical space form. Swarm software is applied to build Agent model. According to the output of the Agent model, the relationship between the pedestrian corridor width, ground slope, turning forms, turning angle and the walking efficiency, crowded severity is acquired. The results of the simulation can be applied to pedestrian corridor design in order to reduce the crowded severity and the potential safety risks caused by crowded people.

Keywords: Multi-Agent, crowded severity, pedestrian preference, urban space design

Procedia PDF Downloads 58
2 Tabu Random Algorithm for Guiding Mobile Robots

Authors: Euan McGookin, Kevin Worrall

Abstract:

The use of optimization algorithms is common across a large number of diverse fields. This work presents the use of a hybrid optimization algorithm applied to a mobile robot tasked with carrying out a search of an unknown environment. The algorithm is then applied to the multiple robots case, which results in a reduction in the time taken to carry out the search. The hybrid algorithm is a Random Search Algorithm fused with a Tabu mechanism. The work shows that the algorithm locates the desired points in a quicker time than a brute force search. The Tabu Random algorithm is shown to work within a simulated environment using a validated mathematical model. The simulation was run using three different environments with varying numbers of targets. As an algorithm, the Tabu Random is small, clear and can be implemented with minimal resources. The power of the algorithm is the speed at which it locates points of interest and the robustness to the number of robots involved. The number of robots can vary with no changes to the algorithm resulting in a flexible algorithm.

Keywords: Algorithms, Control, Multi-Agent, search and rescue

Procedia PDF Downloads 74
1 Design of a Human-in-the-Loop Aircraft Taxiing Optimisation System Using Autonomous Tow Trucks

Authors: Stefano Zaninotto, Geoffrey Farrugia, Johan Debattista, Jason Gauci

Abstract:

The need to reduce fuel and noise during taxi operations in the airports with a scenario of constantly increasing air traffic has resulted in an effort by the aerospace industry to move towards electric taxiing. In fact, this is one of the problems that is currently being addressed by SESAR JU and two main solutions are being proposed. With the first solution, electric motors are installed in the main (or nose) landing gear of the aircraft. With the second solution, manned or unmanned electric tow trucks are used to tow aircraft from the gate to the runway (or vice-versa). The presence of the tow trucks results in an increase in vehicle traffic inside the airport. Therefore, it is important to design the system in a way that the workload of Air Traffic Control (ATC) is not increased and the system assists ATC in managing all ground operations. The aim of this work is to develop an electric taxiing system, based on the use of autonomous tow trucks, which optimizes aircraft ground operations while keeping ATC in the loop. This system will consist of two components: an optimization tool and a Graphical User Interface (GUI). The optimization tool will be responsible for determining the optimal path for arriving and departing aircraft; allocating a tow truck to each taxiing aircraft; detecting conflicts between aircraft and/or tow trucks; and proposing solutions to resolve any conflicts. There are two main optimization strategies proposed in the literature. With centralized optimization, a central authority coordinates and makes the decision for all ground movements, in order to find a global optimum. With the second strategy, called decentralized optimization or multi-agent system, the decision authority is distributed among several agents. These agents could be the aircraft, the tow trucks, and taxiway or runway intersections. This approach finds local optima; however, it scales better with the number of ground movements and is more robust to external disturbances (such as taxi delays or unscheduled events). The strategy proposed in this work is a hybrid system combining aspects of these two approaches. The GUI will provide information on the movement and status of each aircraft and tow truck, and alert ATC about any impending conflicts. It will also enable ATC to give taxi clearances and to modify the routes proposed by the system. The complete system will be tested via computer simulation of various taxi scenarios at multiple airports, including Malta International Airport, a major international airport, and a fictitious airport. These tests will involve actual Air Traffic Controllers in order to evaluate the GUI and assess the impact of the system on ATC workload and situation awareness. It is expected that the proposed system will increase the efficiency of taxi operations while reducing their environmental impact. Furthermore, it is envisaged that the system will facilitate various controller tasks and improve ATC situation awareness.

Keywords: Multi-Agent, Air Traffic Control, Ground Operations, Route Optimization, Graphical User Interface, electric taxiing, autonomous tow trucks

Procedia PDF Downloads 25