Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13

Microorganism Related Abstracts

13 Microbial Evaluation of Geophagic and Cosmetic Clays from Southern and Western Nigeria: Potential Natural Nanomaterials

Authors: Kehinde A. Adediran, Saheed A. Akinola, Bisi-Johnson, Mary A., Hamzart A. Oyelade

Abstract:

Geophagic and cosmetic clays are among potential nano-material which occur naturally and are of various forms. The use of these nano-clays is a common practice in both rural and urban areas mostly due to tradition and medicinal reasons. These naturally occurring materials can be valuable sources of nano-material by serving as nano-composites. The need to ascertain the safety of these materials is the motivation for this research. Physical Characterization based on the hue value and microbiological qualities of the nano-clays were carried out. The Microbial analysis of the clay samples showed considerable contamination with both bacteria and fungi with fungal contaminants taking the lead. This observation may not be unlikely due to the ability of fungi species to survive harsher growth conditions than bacteria. 'Atike pupa' showed no bacterial growth. The clay with the largest bacterial count was Calabash chalk (Igbanke), while that with the highest fungal count was 'Eko grey'. The most commonly isolated bacteria in this study were Clostridium spp. and Corynebacterium spp. while fungi included Aspergillus spp. These results are an indication of the need to subject these clay materials to treatments such as heating before consumption or topical usage thereby ascertaining their safety.

Keywords: Quality, Microorganism, Clay, nano-material

Procedia PDF Downloads 241
12 Drug Sensitivity Pattern of Organisms Causing Chronic Suppurative Otitis Media

Authors: Fatma M. Benrabha

Abstract:

The aim of the study was to determine the type and pattern of antibiotic susceptibility of the pathogenic microorganisms causing chronic suppurative otitis media (CSOM), which could lead to better therapeutic decisions and consequently avoidance of appearance of resistance to specific antibiotics. Most frequently isolated agents were Pseudomonas aeruginosa 28.5%; followed by Staphylococcus aureus 18.2%; proteus mirabilis 13.9%; Providencia stuartti 6.7%; Bacteroides melaninogenicus, Aspergillus sp., candida sp., 4.2% each; and other microorganisms were represented in 3-0.2%. Drug sensitivities pattern of Pseudomonas aeruginosa showed that ciprofloxacin was active against the majority of isolates (93.9%) followed by ceftazidime 86.2%, amikacin 76.2% and gentamicin 40.8%. However, Staphylococcus aureus isolates were resistant to penicillin 72.7%, erythromycin 28.6%, cephalothin 18.2%, cloxacillin 8.3% and ciprofloxacin was active against 96.2% of isolates. The resistance pattern of proteus mirabilis were 55.6% to ampicillin, 47.1% to carbencillin, 29.4% to cephalothin, 14.3% to gentamicin and 4.8% to amikacin while 100% were sensitive to ciprofloxacin. We conclude that ciprofloxacin is the best drug of choice in treatment of CSOM caused by the common microorganisms.

Keywords: Microorganism, otitis media, chronic suppurative otitis media (CSOM), drug sensitivity

Procedia PDF Downloads 252
11 Antimicrobial Effect of Essential Oil of Plant Schinus molle on Some Bacteria Pathogens

Authors: Mehani Mouna, Ladjel segni

Abstract:

Humans use plants for thousands of years to treat various ailments, In many developing countries, Much of the population relies on traditional doctors and their collections of medicinal plants to cure them. Essential oils have many therapeutic properties. In herbal medicine, They are used for their antiseptic properties against infectious diseases of fungal origin, Against dermatophytes, Those of bacterial origin. The aim of our study is to determine the antimicrobial effect of essential oils of the plant Schinus molle on some pathogenic bacteria. It is a medicinal plant used in traditional therapy. Essential oils have many therapeutic properties. In herbal medicine, They are used for their antiseptic properties against infectious diseases of fungal origin, Against dermatophytes, Those of bacterial origin. The test adopted is based on the diffusion method on solid medium (Antibiogram), This method allows to determine the susceptibility or resistance of an organism according to the sample studied. Our study reveals that the essential oil of the plant Schinus molle has a different effect on the resistance of germs: For Pseudomonas aeruginosa strain is a moderately sensitive with an inhibition zone of 10 mm, Further Antirobactere, Escherichia coli and Proteus are strains that represent a high sensitivity, A zone of inhibition equal to 14.66 mm.

Keywords: Microorganism, Essential Oil, antibiogram, shinus molle

Procedia PDF Downloads 207
10 Isolation and Identification of Biosurfactant Producing Microorganism for Bioaugmentation

Authors: Karthick Gopalan, Selvamohan Thankiah

Abstract:

Biosurfactants are lipid compounds produced by microbes, which are amphipathic molecules consisting of hydrophophic and hydrophilic domains. In the present investigation, ten bacterial strains were isolated from petroleum oil contaminated sites near petrol bunk. Oil collapsing test, haemolytic activity were used as a criteria for primary isolation of biosurfactant producing bacteria. In this study, all the bacterial strains gave positive results. Among the ten strains, two were observed as good biosurfactant producers, they utilize the diesel as a sole carbon source. Optimization of biosurfactant producing bacteria isolated from petroleum oil contaminated sites was carried out using different parameters such as, temperature (20ºC, 25ºC, 30ºC, 37ºC and 45ºC), pH (5,6,7,8 & 9) and nitrogen sources (ammonium chloride, ammonium carbonate and sodium nitrate). Biosurfactants produced by bacteria were extracted, dried and quantified. As a result of optimization of parameters the suitable values for the production of more amount of biosurfactant by the isolated bacterial species was observed as 30ºC (0.543 gm/lt) in the pH 7 (0.537 gm/lt) with ammonium nitrate (0.431 gm/lt) as sole carbon source.

Keywords: Microorganism, Bioaugmentation, biosurfactant, isolation and identification

Procedia PDF Downloads 212
9 An Innovative Equipment for ICU Infection Control

Authors: Ankit Agarwal

Abstract:

Background: To develop a fully indigenous equipment which is an innovation in critical care, which can effectively scavenge contaminated ICU ventilator air. Objectives: Infection control in ICUs is a concern the world over. Various modalities from simple hand hygiene to costly antibiotics exist. However, one simple and scientific fact has been unnoticed till date, that the air exhaled by patients harboring MDR and other microorganisms, is released by ventilators into ICU atmosphere itself. This increases infection in ICU atmosphere and poses risk to other patients. Material and Methods: Some parts of the ventilator are neither disposable nor sterilizable. Over time, microorganisms accumulate in ventilator and act as a source of infection and also contaminate ICU air. This was demonstrated by exposing microbiological culture plates to air from expiratory port of ventilator, whereby dense growth of pathogenic microorganisms was observed. The present prototype of the equipment is totally self-made. It has a mechanism of controlled negative pressure, active and passive systems and various alarms and is versatile to be used with any ventilator. Results: This equipment captures the whole of contaminated exhaled air from the expiratory port of the ventilator and directs it out of the ICU space. Thus, it does not allow contaminated ventilator air to release into the ICU atmosphere. Therefore, there is no chance of exposure of other patients to contaminated air. Conclusion: The equipment is first of its kind the world over and is already under patent process. It has rightly been called ICU Ventilator Air Removal System (ICU VARS). It holds a chance that this technique will gain widespread acceptance shall find use in all the ventilators in most of the ICUs throughout the world.

Keywords: Innovative, Microorganism, negative pressure, ICU Infection Control

Procedia PDF Downloads 235
8 Extract and Naphthoquinone Derivatives from in vitro Culture of an Ascomycetous Marine Fungus with Antibacterial Activity

Authors: Uftah Ali M. Shushni, Viola Stuppec, Ulrike Lindequist

Abstract:

Because of the evolving resistance of microorganisms to existing antibiotics, there is an increasing need for new antibiotics not only in human but also in veterinary medicine. As part of our ongoing work on the secondary metabolites produced by marine fungi, the organic extract of the culture filtrate of an Ascomycetous fungus, which was found on driftwood collected from the coast of the Greifswalder Bodden, Baltic Sea, Germany displayed antimicrobial activity against some fish and human pathogenic bacteria. Bioactivity-guided column chromatographic separation led to the isolation of 6-Deoxybostrycoidin. The structure was determined from the interpretation of spectroscopic data (UV, MS, and NMR). 6-Deoxybostrycoidin exhibited in vitro activity against Bacillus subtilis, Staphylococcus aureus and Flexibacter maritimus with minimal inhibitory concentrations of 25, 12.5 and 12.5 μg/ml respectively.

Keywords: Medicine, Microorganism, marine fungi, fish pathogenic bacteria

Procedia PDF Downloads 406
7 Numerical Study of UV Irradiation Effect on Air Disinfection Systems

Authors: B. Sajadi, H. Shokouhmand, M. Degheh, H. Sobhani

Abstract:

The induct ultraviolet germicidal irradiation (UVGI) systems are broadly used nowadays and their utilization is widened every day. Even though these systems are not applicable individually, they are very suitable supplements for the traditional filtration systems. The amount of inactivated microorganisms is dependent on the air velocity, lamp power, fluence rate distribution, and also germicidal susceptibility of microorganisms. In this paper, these factors are investigated utilizing an air-microorganism two-phase numerical model. The eulerian-lagrangian method was used to have more detailed information on the history of each particle. The UVGI system was modeled in three steps including: 1) modeling the air flow, 2) modeling the discrete phase of particles, 3) modeling the UV intensity field, and 4) modeling the particle inactivation. The results from modeling different lamp arrangements and powers showed that the system functions better at more homogeneous irradiation distribution. Since increasing the air flow rate of the device results in increasing of particle inactivation rate, the optimal air velocity shall be adjusted in accordance with the microorganism production rate, and the air quality requirement using the curves represented in this paper.

Keywords: CFD, Microorganism, two-phase flow, ultraviolet germicidal irradiation

Procedia PDF Downloads 161
6 Evaluation of Antimicrobial Activity of Different Dithiolethiones

Authors: Mohamed Hadjadj, Mokhtar Saidi, Zehour Rahmani, Messouda Dekmouche

Abstract:

In the last decades of the nineteenth century, the study of disease – causing microorganisms became concentrated on bacteria and largely institutionalized. In earlier years, the scientists interested in bacteria had originally been chemists like Pasteur, physicists like Tyndall, or botanists like Cohn and ward. For this reason, the objective of this research was to evaluate the potential of some dithiolethiones on standard microorganism strains as well as multi-drug resistant bacteria, which were isolated from hospitals. Recent studies have demonstrated, that several dithiolethione compounds, particularly (3H-1,2-dithiole-3-thione), exhibit the biological activities against several bacteria.

Keywords: Bacteria, Microorganism, potential, dithiolethiones

Procedia PDF Downloads 169
5 Microbiological Study of Two Spontaneous Plants of Algerian Sahara Septentrional: Cotula cinerea and Chamomilla recutita

Authors: Mehani Mouna, Boukhari Nadjet, Ladjal Segni

Abstract:

The aim of our study is to determine the antimicrobial effect of essential oils of two plants Cotula cinerea and Chamomilla recutita on some pathogenic bacteria. It is a medicinal plant used in traditional therapy. Essential oils have many therapeutic properties. In herbal medicine, they are used for their antiseptic properties against infectious diseases of fungal origin, against dermatophytes, those of bacterial origin. Essential oils have many therapeutic properties. In herbal medicine, they are used for their antiseptic properties against infectious diseases of fungal origin, against dermatophytes, those of bacterial origin. Humans use plants for thousands of years to treat various ailments, in many developing countries; much of the population relies on traditional doctors and their collections of medicinal plants to cure them. The test adopted is based on the diffusion method on solid medium (Antibiogram), this method allows to determine the susceptibility or resistance of an organism according to the sample studied. Our study reveals that the essential oil of the plants Cotula cinerea and Chamomilla recutita have a different effect on the resistance of germs.

Keywords: Microorganism, Essential Oil, antibiogram, Cotula cinerea, Chamomilla recutita

Procedia PDF Downloads 207
4 Finite Element Simulation for Preliminary Study on Microorganism Detection System

Authors: Muhammad Rosli Abdullah, Noor Hasmiza Harun

Abstract:

A microorganism detection system has a potential to be used with the advancement in a biosensor development. The detection system requires an optical sensing system, microfluidic device and biological reagent. Although, the biosensors are available in the market, a label free and a lab-on-chip approach will promote a flexible solution. As a preliminary study of microorganism detection, three mechanisms such as Total Internal Reflection (TIR), Micro Fluidic Channel (MFC) and magnetic-electric field propagation were study and simulated. The objective are to identify the TIR angle, MFC parabolic flow and the wavelength for the microorganism detection. The simulation result indicates that evanescent wave is achieved when TIR angle > 42°, the corner and centre of a parabolic velocity are 0.02 m/s and 0.06 m/s respectively, and a higher energy distribution of a perfect electromagnetic scattering with dipole resonance radiation occurs at 500 nm. This simulation is beneficial to determine the components of the microorganism detection system that does not rely on classical microbiological, immunological and genetic methods which are laborious, time-consuming procedures and confined to specialized laboratories with expensive instrumentation equipment.

Keywords: Microfluidic, Microorganism, total internal reflection, lab on chip

Procedia PDF Downloads 155
3 Selected Macrophyte Populations Promotes Coupled Nitrification and Denitrification Function in Eutrophic Urban Wetland Ecosystem

Authors: Rupak Kumar Sarma, Ratul Saikia

Abstract:

Macrophytes encompass major functional group in eutrophic wetland ecosystems. As a key functional element of freshwater lakes, they play a crucial role in regulating various wetland biogeochemical cycles, as well as maintain the biodiversity at the ecosystem level. The high carbon-rich underground biomass of macrophyte populations may harbour diverse microbial community having significant potential in maintaining different biogeochemical cycles. The present investigation was designed to study the macrophyte-microbe interaction in coupled nitrification and denitrification, considering Deepor Beel Lake (a Ramsar conservation site) of North East India as a model eutrophic system. Highly eutrophic sites of Deepor Beel were selected based on sediment oxygen demand and inorganic phosphorus and nitrogen (P&N) concentration. Sediment redox potential and depth of the lake was chosen as the benchmark for collecting the plant and sediment samples. The average highest depth in winter (January 2016) and summer (July 2016) were recorded as 20ft (6.096m) and 35ft (10.668m) respectively. Both sampling depth and sampling seasons had the distinct effect on variation in macrophyte community composition. Overall, the dominant macrophytic populations in the lake were Nymphaea alba, Hydrilla verticillata, Utricularia flexuosa, Vallisneria spiralis, Najas indica, Monochoria hastaefolia, Trapa bispinosa, Ipomea fistulosa, Hygrorhiza aristata, Polygonum hydropiper, Eichhornia crassipes and Euryale ferox. There was a distinct correlation in the variation of major sediment physicochemical parameters with change in macrophyte community compositions. Quantitative estimation revealed an almost even accumulation of nitrate and nitrite in the sediment samples dominated by the plant species Eichhornia crassipes, Nymphaea alba, Hydrilla verticillata, Vallisneria spiralis, Euryale ferox and Monochoria hastaefolia, which might have signified a stable nitrification and denitrification process in the sites dominated by the selected aquatic plants. This was further examined by a systematic analysis of microbial populations through culture dependent and independent approach. Culture-dependent bacterial community study revealed the higher population of nitrifiers and denitrifiers in the sediment samples dominated by the six macrophyte species. However, culture-independent study with bacterial 16S rDNA V3-V4 metagenome sequencing revealed the overall similar type of bacterial phylum in all the sediment samples collected during the study. Thus, there might be the possibility of uneven distribution of nitrifying and denitrifying molecular markers among the sediment samples collected during the investigation. The diversity and abundance of the nitrifying and denitrifying molecular markers in the sediment samples are under investigation. Thus, the role of different aquatic plant functional types in microorganism mediated nitrogen cycle coupling could be screened out further from the present initial investigation.

Keywords: Denitrification, Microorganism, Nitrification, macrophyte, metagenome

Procedia PDF Downloads 40
2 Microbial Metabolites with Ability of Anti-Free Radicals

Authors: Yu Pu, Chien-Ping Hsiao, Chien-Chang Huang, Chieh-Lun Cheng

Abstract:

Free radicals can accelerate aging on human skin by causing lipid oxidation, protein denaturation, and even DNA mutation. Substances with the ability of anti-free radicals can be used as functional components in cosmetic products. Research are attracted to develop new anti-free radical components for cosmetic application. This study was aimed to evaluate the microbial metabolites on free radical scavenging ability. Two microorganisms, PU-01 and PU-02, were isolated from soil of hot spring environment and grew in LB agar at 50°C for 24 h. The suspension was collected by centrifugation at 4800 g for 3 min, The anti-free radical activity was determined by DPPH (1,1-diphenyl-2-picrylhydrazyl) scavenging assay. The result showed that the growth medium of PU-01 presented a higher DPPH scavenging effect than that of PU-02. This study presented potential anti-free radical components from microbial metabolites that might be applied in anti-aging cosmetics.

Keywords: Biotechnology, Microorganism, anti-ageing, anti-free radical

Procedia PDF Downloads 1
1 Development of a Two-Step 'Green' Process for (-) Ambrafuran Production

Authors: Lucia Steenkamp, Chris V. D. Westhuyzen, Kgama Mathiba

Abstract:

Ambergris, and more specifically its oxidation product (–)-ambrafuran, is a scarce, valuable, and sought-after perfumery ingredient. The material is used as a fixative agent to stabilise perfumes in formulations by reducing the evaporation rate of volatile substances. Ambergris is a metabolic product of the sperm whale (Physeter macrocephatus L.), resulting from intestinal irritation. Chemically, (–)-ambrafuran is produced from the natural product sclareol in eight synthetic steps – in the process using harsh and often toxic chemicals to do so. An overall yield of no more than 76% can be achieved in some routes, but generally, this is lower. A new 'green' route has been developed in our laboratory in which sclareol, extracted from the Clary sage plant, is converted to (–)-ambrafuran in two steps with an overall yield in excess of 80%. The first step uses a microorganism, Hyphozyma roseoniger, to bioconvert sclareol to an intermediate diol using substrate concentrations up to 50g/L. The yield varies between 90 and 67% depending on the substrate concentration used. The purity of the diol product is 95%, and the diol is used without further purification in the next step. The intermediate diol is then cyclodehydrated to the final product (–)-ambrafuran using a zeolite, which is not harmful to the environment and is readily recycled. The yield of the product is 96%, and following a single recrystallization, the purity of the product is > 99.5%. A preliminary LC-MS study of the bioconversion identified several intermediates produced in the fermentation broth under oxygen-restricted conditions. Initially, a short-lived ketone is produced in equilibrium with a more stable pyranol, a key intermediate in the process. The latter is oxidised under Norrish type I cleavage conditions to yield an acetate, which is hydrolysed either chemically or under lipase action to afford the primary fermentation product, an intermediate diol. All the intermediates identified point to the likely CYP450 action as the key enzyme(s) in the mechanism. This invention is an exceptional example of how the power of biocatalysis, combined with a mild, benign chemical step, can be deployed to replace a total chemical synthesis of a specific chiral antipode of a commercially relevant material.

Keywords: Biocatalysis, Microorganism, ambrafuran, fragrance

Procedia PDF Downloads 1