Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

medical facilities Related Abstracts

2 Assessment of Urban Infrastructure and Health Using Principal Component Analysis and Geographic Information System: A Case of Ahmedabad, India

Authors: Anusha Vaddiraj Pallapu

Abstract:

Across the globe, there is a steady increase in people residing in urban areas. Due to this increase in urban population, urban health is affecting. The major issues identified like overcrowding, air pollution, unhealthy diet, inadequate infrastructure, poor solid waste management systems and insufficient access to health facilities, these issues are gradually clearly observed in health statistics of diseases and deaths rapidly increase in urban areas. Therefore, the present study aims to assess the health statistics and infrastructure services at urban areas to know the cause and effect between Infrastructure, its management and diseases (water borne). Most of the Indian cities have the municipal boundaries, which authorized by their respective municipal corporations and development authorities. Generally, cities have various zones under which municipal wards exist. The paper focuses on the city Ahmedabad, at Gujarat state. Ahmedabad Municipal Corporation (AMC) is divided into six zones namely Central zone, West zone, New-West zone, East zone, North zone, and South zone. Each zone includes various wards within it. Incidence of diseases in Ahmadabad which are linked to infrastructure was identified such as water-borne diseases. Later on, the occurrence of water-borne diseases at urban area was examined at each zone level. The study methodology follows four steps i.e. 1) Pre-Field literature study: Study on Sewerage system in urban areas and its best practices and public health status globally and Indian scenario; 2) Field study: Data collection and interviews of stakeholders regarding heal status and issues at each zone and ward level; 3) Post field: Data analysis with qualitative description of each ward of zones, followed by correlation coefficient analysis between sewerage coverage, diseases and density of each ward using geographic information system mapping (GIS); 4) Identification of reasons: Affected health on each of zone and wards followed by correlation analysis on each reason. The results reveal that the health conditions in Ahmedabad municipal zones or boundaries are effected due to the slums created by the migrated people from various rural and urban areas. It is also observed that due to increase in population water supply and sewerage management is affecting. The overall effect on infrastructure is creating the health diseases which detailed in the paper using geographical information system in Indian city.

Keywords: Water supply, Infrastructure, GIS, Water Borne Diseases, sewerage, municipal wards, medical facilities

Procedia PDF Downloads 55
1 Modeling the Demand for the Healthcare Services Using Data Analysis Techniques

Authors: Elizaveta S. Prokofyeva, Svetlana V. Maltseva, Roman D. Zaitsev

Abstract:

Rapidly evolving modern data analysis technologies in healthcare play a large role in understanding the operation of the system and its characteristics. Nowadays, one of the key tasks in urban healthcare is to optimize the resource allocation. Thus, the application of data analysis in medical institutions to solve optimization problems determines the significance of this study. The purpose of this research was to establish the dependence between the indicators of the effectiveness of the medical institution and its resources. Hospital discharges by diagnosis; hospital days of in-patients and in-patient average length of stay were selected as the performance indicators and the demand of the medical facility. The hospital beds by type of care, medical technology (magnetic resonance tomography, gamma cameras, angiographic complexes and lithotripters) and physicians characterized the resource provision of medical institutions for the developed models. The data source for the research was an open database of the statistical service Eurostat. The choice of the source is due to the fact that the databases contain complete and open information necessary for research tasks in the field of public health. In addition, the statistical database has a user-friendly interface that allows you to quickly build analytical reports. The study provides information on 28 European for the period from 2007 to 2016. For all countries included in the study, with the most accurate and complete data for the period under review, predictive models were developed based on historical panel data. An attempt to improve the quality and the interpretation of the models was made by cluster analysis of the investigated set of countries. The main idea was to assess the similarity of the joint behavior of the variables throughout the time period under consideration to identify groups of similar countries and to construct the separate regression models for them. Therefore, the original time series were used as the objects of clustering. The hierarchical agglomerate algorithm k-medoids was used. The sampled objects were used as the centers of the clusters obtained, since determining the centroid when working with time series involves additional difficulties. The number of clusters used the silhouette coefficient. After the cluster analysis it was possible to significantly improve the predictive power of the models: for example, in the one of the clusters, MAPE error was only 0,82%, which makes it possible to conclude that this forecast is highly reliable in the short term. The obtained predicted values of the developed models have a relatively low level of error and can be used to make decisions on the resource provision of the hospital by medical personnel. The research displays the strong dependencies between the demand for the medical services and the modern medical equipment variable, which highlights the importance of the technological component for the successful development of the medical facility. Currently, data analysis has a huge potential, which allows to significantly improving health services. Medical institutions that are the first to introduce these technologies will certainly have a competitive advantage.

Keywords: Data Analysis, Healthcare, medical facilities, demand modeling

Procedia PDF Downloads 32