Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9

lyapunov function Related Abstracts

9 Stability Analysis of DFIG Stator Powers Control Based on Sliding Mode Approach

Authors: Abdelhak Djoudi, Hachemi Chekireb, El Madjid Berkouk


The doubly fed induction generator (DFIG) received recently an important consideration in medium and high power wind energy conversion systems integration, due to its advantages compared to other generators types. The stator power sliding mode control (SPSMC) proves a great efficiency judge against other control laws and schemes. In the SPSMC laws elaborated by several authors, only the slide surface tracking conditions are elaborated using Lyapunov functions, and the boundedness of the DFIG states is never treated. Some works have validated theirs approaches by experiments results in the case of specified machines, but these verifications stay insufficient to generalize to other machines range. Adding to this argument, the DFIG states boundedness demonstration is widely suggested in goal to ensure that in the application of the SPSMC, the states evaluates within theirs tolerable bounds. Our objective in the present paper is to highlight the efficiency of the SPSMC by stability analysis. The boundedness of the DFIG states such as the stator current and rotor flux is discussed. Moreover, the states trajectories are finding using analytical proves taking into consideration the SPSMC gains.

Keywords: Stability, Doubly Fed Induction Generator (DFIG), Stator Powers Sliding Mode Control (SPSMC), lyapunov function, states boundedness, trajectories mathematical proves

Procedia PDF Downloads 273
8 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach

Authors: Alexander S. Andreev, Olga A. Peregudova


In this paper, we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electro-mechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present back-stepping design based on the Euler approximate discrete-time model of a continuous-time plant. Theoretical considerations are verified by numerical simulation. The work was supported by RFFI (15-01-08482).

Keywords: lyapunov function, back stepping, actuator dynamics, discrete-time controller, wheeled mobile robot

Procedia PDF Downloads 263
7 Aircraft Pitch Attitude Control Using Backstepping

Authors: Labane Chrif


A nonlinear approach to the automatic pitch attitude control problem for aircraft transportation is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. The controller is evaluated using the aircraft transportation. The adaptation scheme proposed allowed us to design an explicit controller with a minimal knowledge of the aircraft aerodynamics. Finally, the simulation results will show that backstepping controller have better dynamic performance, simpler design, higher precision, easier implement, etc. At the same time, the control effect will be significantly improved. In addition, backstepping control is superior in short transition, good stability, anti-disturbance and good control.

Keywords: Nonlinear Control, lyapunov function, backstepping, aircraft control, longitudinal model

Procedia PDF Downloads 446
6 Global Analysis of HIV Virus Models with Cell-to-Cell

Authors: Hossein Pourbashash


Recent experimental studies have shown that HIV can be transmitted directly from cell to cell when structures called virological synapses form during interactions between T cells. In this article, we describe a new within-host model of HIV infection that incorporates two mechanisms: infection by free virions and the direct cell-to-cell transmission. We conduct the local and global stability analysis of the model. We show that if the basic reproduction number R0 1, the virus is cleared and the disease dies out; if R0 > 1, the virus persists in the host. We also prove that the unique positive equilibrium attracts all positive solutions under additional assumptions on the parameters.

Keywords: lyapunov function, HIV virus model, cell-to-cell transmission, global stability, second compound matrices

Procedia PDF Downloads 365
5 Adaptive Control of Magnetorheological Damper Using Duffing-Like Model

Authors: Jia-Ying Tu, Cheng-En Tsai, Hung-Jiun Chi


Semi-active control of Magnetorheological (MR) dampers for vibration reduction of structural systems has received considerable attention in civil and earthquake engineering, because the effective stiffness and damping properties of MR fluid can change in a very short time in reaction to external loading, requiring only a low level of power. However, the inherent nonlinear dynamics of hysteresis raise challenges in the modeling and control processes. In order to control the MR damper, an innovative Duffing-like equation is proposed to approximate the hysteresis dynamics in a deterministic and systematic manner than previously has been possible. Then, the model-reference adaptive control technique based on the Duffing-like model and the Lyapunov method is discussed. Parameter identification work with experimental data is presented to show the effectiveness of the Duffing-like model. In addition, simulation results show that the resulting adaptive gains enable the MR damper force to track the desired response of the reference model satisfactorily, verifying the effectiveness of the proposed modeling and control techniques.

Keywords: lyapunov function, magnetorheological damper, hysteresis, duffing equation, model-reference adaptive control

Procedia PDF Downloads 237
4 Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays

Authors: Syed Abbas, Swati Tyagi


Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results.

Keywords: lyapunov function, bidirectional associative memory neural network, existence and uniqueness, fractional-order, Mittag-Leffler stability

Procedia PDF Downloads 226
3 Stabilization of a Three-Pole Active Magnetic Bearing by Hybrid Control Method in Static Mode

Authors: Mahdi Kiani, Hassan Salarieh, Aria Alasty, S. Mahdi Darbandi


The design and implementation of the hybrid control method for a three-pole active magnetic bearing (AMB) is proposed in this paper. The system is inherently nonlinear and conventional nonlinear controllers are a little complicated, while the proposed hybrid controller has a piecewise linear form, i.e. linear in each sub-region. A state-feedback hybrid controller is designed in this study, and the unmeasurable states are estimated by an observer. The gains of the hybrid controller are obtained by the Linear Quadratic Regulator (LQR) method in each sub-region. To evaluate the performance, the designed controller is implemented on an experimental setup in static mode. The experimental results show that the proposed method can efficiently stabilize the three-pole AMB system. The simplicity of design, domain of attraction, uncomplicated control law, and computational time are advantages of this method over other nonlinear control strategies in AMB systems.

Keywords: Hybrid Control, lyapunov function, active magnetic bearing, three pole AMB

Procedia PDF Downloads 187
2 Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants

Authors: Nisha Budhwar, Sunita Daniel


In this paper, we analyse the stability of the SEIR model of malaria with infective immigrants which was recently formulated by the authors. The model consists of an SEIR model for the human population and SI Model for the mosquitoes. Susceptible humans become infected after they are bitten by infectious mosquitoes and move on to the Exposed, Infected and Recovered classes respectively. The susceptible mosquito becomes infected after biting an infected person and remains infected till death. We calculate the reproduction number R0 using the next generation method and then discuss about the stability of the equilibrium points. We use the Lyapunov function to show the global stability of the equilibrium points.

Keywords: lyapunov function, reproduction number, global stability, susceptible, recovered, equilibrium points, exposed, infective immigrants

Procedia PDF Downloads 166
1 Lyapunov Functions for Extended Ross Model

Authors: Rahele Mosleh


This paper gives a survey of results on global stability of extended Ross model for malaria by constructing some elegant Lyapunov functions for two cases of epidemic, including disease-free and endemic occasions. The model is a nonlinear seven-dimensional system of ordinary differential equations that simulates this phenomenon in a more realistic fashion. We discuss the existence of positive disease-free and endemic equilibrium points of the model. It is stated that extended Ross model possesses invariant solutions for human and mosquito in a specific domain of the system.

Keywords: lyapunov function, invariant solutions, global stability, stationary points

Procedia PDF Downloads 1