Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

low-cost housing Related Abstracts

3 Factors Affecting the Quality of Life of Residents in Low-Cost Housing in Thailand

Authors: Bundit Pungnirund


The objectives of this research were to study the factors affecting life quality of residents who lived in the low-cost housing in Thailand. This study employed by quantitative research and the questionnaire was used to collect the data from 400 sampled of the residents in low-cost housing projects in Thailand. The descriptive statistics and multiple regression analysis were used to analyze data. The research results revealed that economic status of residents, government’s policy on dwelling places, leadership of community leaders, environmental condition of the community, and the quality of life were rated at the good level, while the participation of residents, and the knowledge and understanding of community members were rated at the high level. Furthermore, the environmental condition, the government’s policy on dwelling places, knowledge and understanding of residents, leadership of community leaders, economic status of the residents, and participation of community members had significantly affected the quality of life of residents in the low-cost housing.

Keywords: Quality of Life, community participation, community leadership, low-cost housing

Procedia PDF Downloads 169
2 Thermodynamic Performance of a Low-Cost House Coated with Transparent Infrared Reflective Paint

Authors: Ochuko K. Overen, Edson L. Meyer


Uncontrolled heat transfer between the inner and outer space of low-cost housings through the thermal envelope result in indoor thermal discomfort. As a result, an excessive amount of energy is consumed for space heating and cooling. Thermo-optical properties are the ability of paints to reduce the rate of heat transfer through the thermal envelope. The aim of this study is to analyze the thermal performance of a low-cost house with its walls inner surface coated with transparent infrared reflective paint. The thermo-optical properties of the paint were analyzed using Scanning Electron Microscopy/ Energy Dispersive X-ray spectroscopy (SEM/EDX), Fourier Transform Infra-Red (FTIR) and thermal photographic technique. Meteorological indoor and ambient parameters such as; air temperature, relative humidity, solar radiation, wind speed and direction of a low-cost house in Golf-course settlement, South Africa were monitored. The monitoring period covers both winter and summer period before and after coating. The thermal performance of the coated walls was evaluated using time lag and decrement factor. The SEM image shows that the coat is transparent to light. The presence of Al as Al2O and other elements were revealed by the EDX spectrum. Before coating, the average decrement factor of the walls in summer was found to be 0.773 with a corresponding time lag of 1.3 hours. In winter, the average decrement factor and corresponding time lag were 0.467 and 1.6 hours, respectively. After coating, the average decrement factor and corresponding time lag were 0.533 and 2.3 hour, respectively in summer. In winter, an average decrement factor of 1.120 and corresponding time lag of 3 hours was observed. The findings show that the performance of the coats is influenced by the seasons. With a 74% reduction in decrement factor and 1.4 time lag increase in winter, it implies that the coatings have more ability to retain heat within the inner space of the house than preventing heat flow into the house. In conclusion, the results have shown that transparent infrared reflective paint has the ability to reduce the propagation of heat flux through building walls. Hence, it can serve as a remedy to the poor thermal performance of low-cost housings in South Africa.

Keywords: Energy Efficiency, Rural development, Paints, Thermal comfort, time lag, low-cost housing, decrement factor

Procedia PDF Downloads 170
1 Thermal Behaviour of a Low-Cost Passive Solar House in Somerset East, South Africa

Authors: Ochuko K. Overen, Edson L. Meyer, Golden Makaka, Sampson Mamphweli


Low-cost housing provided for people with small incomes in South Africa are characterized by poor thermal performance. This is due to inferior craftsmanship with no regard to energy efficient design during the building process. On average, South African households spend 14% of their total monthly income on energy needs, in particular space heating; which is higher than the international benchmark of 10% for energy poverty. Adopting energy efficient passive solar design strategies and superior thermal building materials can create a stable thermal comfort environment indoors. Thereby, reducing energy consumption for space heating. The aim of this study is to analyse the thermal behaviour of a low-cost house integrated with passive solar design features. A low-cost passive solar house with superstructure fly ash brick walls was designed and constructed in Somerset East, South Africa. Indoor and outdoor meteorological parameters of the house were monitored for a period of one year. The ASTM E741-11 Standard was adopted to perform ventilation test in the house. In summer, the house was found to be thermally comfortable for 66% of the period monitored, while for winter it was about 79%. The ventilation heat flow rate of the windows and doors were found to be 140 J/s and 68 J/s, respectively. Air leakage through cracks and openings in the building envelope was 0.16 m3/m2h with a corresponding ventilation heat flow rate of 24 J/s. The indoor carbon dioxide concentration monitored overnight was found to be 0.248%, which is less than the maximum range limit of 0.500%. The prediction percentage dissatisfaction of the house shows that 86% of the occupants will express the thermal satisfaction of the indoor environment. With a good operation of the house, it can create a well-ventilated, thermal comfortable and nature luminous indoor environment for the occupants. Incorporating passive solar design in low-cost housing can be one of the long and immediate solutions to the energy crisis facing South Africa.

Keywords: Energy Efficiency, Rural development, Thermal comfort, low-cost housing, passive solar design

Procedia PDF Downloads 143