Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29

inhibition Related Abstracts

29 Immunosupressive Effect of Chloroquine through the Inhibition of Myeloperoxidase

Authors: J. B. Minari, O. B. Oloyede

Abstract:

Polymorphonuclear neutrophils (PMNs) play a crucial role in a variety of infections caused by bacteria, fungi, and parasites. Indeed, the involvement of PMNs in host defence against Plasmodium falciparum is well documented both in vitro and in vivo. Many of the antimalarial drugs such as chloroquine used in the treatment of human malaria significantly reduce the immune response of the host in vitro and in vivo. Myeloperoxidase is the most abundant enzyme found in the polymorphonuclear neutrophil which plays a crucial role in its function. This study was carried out to investigate the effect of chloroquine on the enzyme. In investigating the effects of the drug on myeloperoxidase, the influence of concentration, pH, partition ratio estimation and kinetics of inhibition were studied. This study showed that chloroquine is concentration-dependent inhibitor of myeloperoxidase with an IC50 of 0.03 mM. Partition ratio estimation showed that 40 enzymatic turnover cycles are required for complete inhibition of myeloperoxidase in the presence of chloroquine. The influence of pH on the effect of chloroquine on the enzyme showed significant inhibition of myeloperoxidase at physiological pH. The kinetic inhibition studies showed that chloroquine caused a non-competitive inhibition with an inhibition constant Ki of 0.27mM. The results obtained from this study shows that chloroquine is a potent inhibitor of myeloperoxidase and it is capable of inactivating the enzyme. It is therefore considered that the inhibition of myeloperoxidase in the presence of chloroquine as revealed in this study may partly explain the impairment of polymorphonuclear neutrophil and consequent immunosuppression of the host defence system against secondary infections.

Keywords: Immune, myeloperoxidase, chloroquine, inhibition, neutrophil

Procedia PDF Downloads 214
28 α-Amylase Inhibitory Activity of Some Tunisian Aromatic and Medicinal Plants

Authors: Hamdi Belfeki, Belgacem Chandoul, Mnasser Hassouna, Mondher Mejri

Abstract:

Aqueous and ethanolic extracts of eight Tunisian aromatic and medicinal plants (TAMP) were characterized by studying their composition in polyphenols and also their antiradical and antioxidant capacities. In absence and in the presence of the various extracts, α-amylase from Bacillus subtlis activity, was measured in order to detect a potential inhibition. The total contents of polyphenols and flavonoid vary in function of TAMP and the mobile phase used for the extraction (distilled water or ethanol). The ethanolic extracts showed the most significant antiradical and antioxidant activities. Only the extracts from Coriandrum sativum showed a significant inhibiting effect on the α-amylase activity. This inhibiting capacity could be correlated with the chemical profile of the two extracts, due to the fact that they have the greatest amount of total flavonoid. The ethanolic extract has the most important antioxidant and anti-radicalizing activities among the sixteen extracts studied. The inhibition kinetics of the two coriander extracts were evaluated by pre-incubation method, using Lineweaver-Burk’s equation, obtained by linearization of Michaeilis-Menten’s expression. The results showed that both extracts exercised a competitive inhibition mechanism.

Keywords: antioxidant activity, inhibition, α-amylase, aromatic and medicinal plants

Procedia PDF Downloads 303
27 Electrochemical Studies of the Inhibition Effect of 2-Dimethylamine on the Corrosion of Austenitic Stainless Steel Type 304 in Dilute Hydrochloric Acid

Authors: Roland Tolulope Loto, Cleophas Akintoye Loto, Abimbola Patricia Popoola

Abstract:

The inhibiting action of 2-dimethylamine on the electrochemical behaviour of austenitic stainless steel (type 304) in dilute hydrochloric was evaluated through weight-loss method, open circuit potential measurement and potentiodynamic polarization tests at specific concentrations of the organic compound. Results obtained reveal that the compound performed effectively giving a maximum inhibition efficiency of 79% at 12.5% concentration from weight loss analysis and 80.9% at 12.5% concentration from polarization tests. The average corrosion potential of -321 mV was obtained the same concentration from other tests which is well within passivation potentials on the steel thus, providing good protection against corrosion in the acid solutions. 2-dimethylamine acted through physiochemical interaction at the steel/solution interface from thermodynamic calculations and obeyed the Langmuir adsorption isotherm. The values of the inhibition efficiency determined from the three methods are in reasonably good agreement. Polarization studies showed that the compounds behaved as cathodic type inhibitor.

Keywords: Corrosion, Adsorption, steel, inhibition, hydrochloric acid

Procedia PDF Downloads 151
26 Avoiding Gas Hydrate Problems in Qatar Oil and Gas Industry: Environmentally Friendly Solvents for Gas Hydrate Inhibition

Authors: Nabila Mohamed, Santiago Aparicio, Bahman Tohidi, Mert Atilhan

Abstract:

Qatar's one of the biggest problem in processing its natural resource, which is natural gas, is the often occurring blockage in the pipelines caused due to uncontrolled gas hydrate formation in the pipelines. Several millions of dollars are being spent at the process site to dehydrate the blockage safely by using chemical inhibitors. We aim to establish national database, which addresses the physical conditions that promotes Qatari natural gas to form gas hydrates in the pipelines. Moreover, we aim to design and test novel hydrate inhibitors that are suitable for Qatari natural gas and its processing facilities. From these perspectives we are aiming to provide more effective and sustainable reservoir utilization and processing of Qatari natural gas. In this work, we present the initial findings of a QNRF funded project, which deals with the natural gas hydrate formation characteristics of Qatari type gas in both experimental (PVTx) and computational (molecular simulations) methods. We present the data from the two fully automated apparatus: a gas hydrate autoclave and a rocking cell. Hydrate equilibrium curves including growth/dissociation conditions for multi-component systems for several gas mixtures that represent Qatari type natural gas with and without the presence of well known kinetic and thermodynamic hydrate inhibitors. Ionic liquids were designed and used for testing their inhibition performance and their DFT and molecular modeling simulation results were also obtained and compared with the experimental results. Results showed significant performance of ionic liquids with up to 0.5 % in volume with up to 2 to 4 0C inhibition at high pressures.

Keywords: Natural Gas, Ionic Liquids, Gas Hydrates, inhibition, thermodynamic inhibitors, kinetic inhibitors

Procedia PDF Downloads 191
25 Investigations of Metals and Metal-Antibrowning Agent Effects on Polyphenol Oxidase Activity from Red Poppy Leaf

Authors: Gulnur Arabaci

Abstract:

Heavy metals are one of the major groups of contaminants in the environment and many of them are toxic even at very low concentration in plants and animals. However, some metals play important roles in the biological function of many enzymes in living organisms. Metals such as zinc, iron, and cooper are important for survival and activity of enzymes in plants, however heavy metals can inhibit enzyme which is responsible for defense system of plants. Polyphenol oxidase (PPO) is a copper-containing metalloenzyme which is responsible for enzymatic browning reaction of plants. Enzymatic browning is a major problem for the handling of vegetables and fruits in food industry. It can be increased and effected with many different futures such as metals in the nature and ground. In the present work, PPO was isolated and characterized from green leaves of red poppy plant (Papaver rhoeas). Then, the effect of some known antibrowning agents which can form complexes with metals and metals were investigated on the red poppy PPO activity. The results showed that glutathione was the most potent inhibitory effect on PPO activity. Cu(II) and Fe(II) metals increased the enzyme activities however, Sn(II) had the maximum inhibitory effect and Zn(II) and Pb(II) had no significant effect on the enzyme activity. In order to reduce the effect of heavy metals, the effects of metal-antibrowning agent complexes on the PPO activity were determined. EDTA and metal complexes had no significant effect on the enzyme. L-ascorbic acid and metal complexes decreased but L-ascorbic acid-Cu(II)-complex had no effect. Glutathione–metal complexes had the best inhibitory effect on Red poppy leaf PPO activity.

Keywords: Metal, inhibition, red poppy, poly phenol oxidase (PPO)

Procedia PDF Downloads 180
24 The Effect of Artesunate on Myeloperoxidase Activity of Human Polymorphonuclear Neutrophil

Authors: J. B. Minari, O. B. Oloyede, A. A. Odutuga

Abstract:

Myeloperoxidase is the most abundant enzyme found in the polymorphonuclear neutrophil and is known to play a central role in the host defense system of the leukocyte. The enzyme has been reported to interact with some drugs to generate free radical which inhibits its activity. This study investigated the effects of artesunate on the activity of the enzyme and the subsequent effect on the host immune system. In investigating the effects of the drugs on myeloperoxidase, the influence of concentration, pH, partition ratio estimation and kinetics of inhibition were studied. This study showed that artesunate is concentration-dependent inhibitor of myeloperoxidase with an IC50 of 0.078mM. Partition ratio estimation showed that 60 enzymatic turnover cycles are required for complete inhibition of myeloperoxidase in the presence of artesunate. The influence of pH on the effect of artesunate on the enzyme showed least activity of myeloperoxidase at physiological pH. The kinetic inhibition studies showed that artesunate caused a competitive inhibition with an increase in the Km value from 0.12mM to 0.26mM and no effect on the Vmax value. The Ki value was estimated to be 2.5mM. The results obtained from this study show that artesunate is a potent inhibitor of myeloperoxidase and it is capable of inactivating the enzyme. It is considered that the inhibition of myeloperoxidase in the presence of artesunate as revealed in this study may partly explain the impairment of polymorphonuclear neutrophil and consequent reduction of the strength of the host defense system against secondary infections.

Keywords: myeloperoxidase, inhibition, artesunate, nuetrophill

Procedia PDF Downloads 246
23 Adsorption and Corrosion Inhibition of New Synthesized Thiophene Schiff Base on Mild Steel in HCL Solution

Authors: B. Hammouti, A. Aouniti, H. Elmsellem, S. Radi, A. Chetouani

Abstract:

The synthesis of new organic molecules offers various molecular structures containing heteroatoms and substituents for corrosion protection in acid pickling of metals. The most synthesized compounds are the nitrogen heterocyclic compounds, which are known to be excellent complex or chelate forming substances with metals. The choice of the inhibitor is based on two considerations: first it could be synthesized conveniently from relatively cheap raw materials, secondly, it contains the electron cloud on the aromatic ring or, the electro negative atoms such as nitrogen and oxygen in the relatively long chain compounds. In the present study, (NE)‐2‐methyl‐N‐(thiophen‐2‐ylmethylidene) aniline(T) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid was examined by different corrosion methods, such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results suggest that this compound is an efficient corrosion inhibitor and the inhibition efficiency increases with the increase in inhibitor concentration. Adsorption of this compound on mild steel surface obeys Langmuir’s isotherm. Correlation between quantum chemical calculations and inhibition efficiency of the investigated compound is discussed using the Density Functional Theory method (DFT).

Keywords: Corrosion, schiff base, mild steel, inhibition, HCl, quantum chemical

Procedia PDF Downloads 189
22 The Effect of a Muscarinic Antagonist on the Lipase Activity

Authors: Zohreh Bayat, Dariush Minai-Tehrani

Abstract:

Lipases constitute one of the most important groups of industrial enzymes that catalyze the hydrolysis of triacylglycerol to glycerol and fatty acids. Muscarinic antagonist relieves smooth muscle spasm of the gastrointestinal tract and effect on the cardiovascular system. In this research, the effect of a muscarinic antagonist on the lipase activity of Pseudomonas aeruginosa was studied. Lineweaver–Burk plot showed that the drug inhibited the enzyme by competitive inhibition. The IC50 value (60 uM) and Ki (30 uM) of the drug revealed the drug bound to the enzyme with high affinity. Determination of enzyme activity in various pH and temperature showed that the maximum activity of lipase was at pH 8 and 60°C both in presence and absence of the drug.

Keywords: Kinetics, Bacteria, lipase, inhibition

Procedia PDF Downloads 323
21 Effect of a Muscarinic Antagonist Drug on Extracellular Lipase Activityof Pseudomonas aeruginosa

Authors: Zohreh Bayat, Dariush Minai-Tehrani

Abstract:

Pseudomonas aeruginosa is a Gram-negative, rode shape and aerobic bacterium that has shown to be resistance to many antibiotics. This resistance makes the bacterium very harmful in some diseases. It can also generate diseases in any part of the gastrointestinal tract from oropharynx to rectum. P. aeruginosa has become an important cause of infection, especially in patients with compromised host defense mechanisms. One of the most important reasons that make P. aeruginosa an emerging opportunistic pathogen in patients is its ability to use various compounds as carbon sources. Lipase is an enzyme that catalyzes the hydrolysis of lipids. Most lipases act at a specific position on the glycerol backbone of lipid substrate. Some lipases are expressed and secreted by pathogenic organisms during the infection. Muscarinic antagonist used as an antispasmodic and in urinary incontinence. The drug has little effect on glandular secretion or the cardiovascular system. It does have some local anesthetic properties and is used in gastrointestinal, biliary, and urinary tract spasms. Aim: In this study the inhibitory effect of a muscarinic antagonist on lipase of P. aeruginosa was investigated. Methods: P. aeruginosa was cultured in minimal salt medium with 1% olive oil as carbon source. The cells were harvested and the supernatant, which contained lipase, was used for enzyme assay. Results: Our results showed that the drug can inhibit P. aeruginosa lipase by competitive manner. In the presence of different concentrations of the drug, the Vmax (2 mmol/min/mg protein) of enzyme did not change, while the Km raised by increasing the drug concentration. The Ki (inhibition constant) and IC50 (the half maximal inhibitory concentration) value of drug was estimated to be about 30 uM and 60 uM which determined that the drug binds to enzyme with high affinity. Maximum activity of the enzyme was observed at pH 8 in the absence and presence of muscarinic antagonist, respectively. The maximum activity of lipase was observed at 600C and the enzyme became inactive at 900C. Conclusion: The muscarinic antagonist drug could inhibit lipase of P. aeruginosa and changed the kinetic parameters of the enzyme. The drug binded to enzyme with high affinity and did not chang the optimum pH of the enzyme. Temperature did not affect the binding of drug to musmuscarinic antagonist.

Keywords: enzyme, Drug, inhibition, Pseudomonas aeruginosa

Procedia PDF Downloads 313
20 Molecular Docking Assessment of Pesticides Binding to Bacterial Chitinases

Authors: Diana Larisa Vladoiu, Vasile Ostafe, Adriana Isvoran

Abstract:

Molecular docking calculations reveal that pesticides provide favorable interactions with the bacterial chitinases. Pesticides interact with both hydrophilic and aromatic residues involved in the active site of the enzymes, their positions partially overlapping the substrate and the inhibitors locations. Molecular docking outcomes, in correlation with experimental literature data, suggest that the pesticides may be degraded or having an inhibitor effect on the activity of these enzymes, depending of the application dose and rate.

Keywords: Pesticides, Molecular Docking, inhibition, chitinases

Procedia PDF Downloads 370
19 Inhibition of Pipelines Corrosion Using Natural Extracts

Authors: Eman Alzahrani, Hala M. Abo-Dief, Ashraf T. Mohamed

Abstract:

The present work is aimed at examining carbon steel oil pipelines corrosion using three natural extracts (Eruca Sativa, Rosell and Mango peels) that are used as inhibitors of different concentrations ranging from 0.05-0.1wt. %. Two sulphur compounds are used as corrosion mediums. Weight loss method was used for measuring the corrosion rate of the carbon steel specimens immersed in technical white oil at 100ºC at various time intervals in absence and presence of the two sulphur compounds. The corroded specimens are examined using the chemical wear test, scratch test and hardness test. The scratch test is carried out using scratch loads from 0.5 Kg to 2.0 Kg. The scratch width is obtained at various scratch load and test conditions. The Brinell hardness test is carried out and investigated for both corroded and inhibited specimens. The results showed that three natural extracts can be used as environmentally friendly corrosion inhibitors.

Keywords: inhibition, natural extract, oil pipelines corrosion, sulphur compounds

Procedia PDF Downloads 368
18 Corrosion Inhibition of Mild Steel in 20% Sulfuric Acid

Authors: M. Saidi, M. Dekmouche, M. Hadjada, Z. Rahmani

Abstract:

The effect of iodide ions on the corrosion inhibition of mild steel in 20% sulfuric acid in the presence of 3-méthylthio-5-p-méthoxyphényl-1,2-dithiolylium against anion (I-) A1 synthesized in our laboratory,was studied by different electrochemical techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization. The obtained results showed that A1 effectively reduces the corrosion rate of steel. The adsorption of 3-méthylthio-5-p-méthoxyphényl-1,2-dithiolylium against anion (I-) followed Langmuir and temkin adsorption isotherm.

Keywords: Corrosion, inhibition, sulfuric acid, steel XC52

Procedia PDF Downloads 178
17 Effect of a Mixture of Phenol, O-Cresol, P-Cresol, and M-Cresol on the Nitrifying Process in a Sequencing Batch Reactor

Authors: Adriana Sosa, Susana Rincon, Chérif Ben, Diana Cabañas, Juan E. Ruiz, Alejandro Zepeda

Abstract:

The complex chemical composition (mixtures of ammonium and recalcitrant compounds) of the effluents from the chemical, pharmaceutical and petrochemical industries represents a challenge in their biological treatment. This treatment involves nitrification process that can suffer an inhibition due to the presence of aromatic compounds giving as a result the decrease of the process efficiency. The inhibitory effects on nitrification in the presence of aromatic compounds have already been studied; however a few studies have considered the presence of phenolic compounds in the form of mixtures, which is the form that they are present in real context. For this reason, we realized a kinetic study on the nitrifying process in the presence of different concentrations of a mixture of phenol, o-cresol, m-cresol and p-cresol (0 - 320 mg C/L) in a sequencing batch reactor (SBR). Firstly, the nitrifying process was evaluated in absence of the phenolic mixture (control 1) in a SBR with 2 L working volume and 176 mg/L of nitrogen of microbial protein. Total oxidation of initial ammonium (efficiency; ENH4+ of 100 %) to nitrate (nitrifying yield; YNO3- of 0.95) were obtained with specific rates of ammonium consumption (qN-NH4+) and nitrate production (qN-NO3-) (of 1.11 ± 0.04 h-1 and 0.67 h-1 ± 0.11 respectively. During the phase of acclimation with 40 mg C/L of the phenolic mixture, an inhibitory effect on the nitrifying process was observed, provoking a decrease in ENH4+ and YNO3- (11 and 54 % respectively) as well as in the specific rates (89 y 46 % respectively), being the ammonia oxidizing bacteria (BAO) the most affected. However, in the next cycles without the phenolic mixture (control 2), the nitrifying consortium was able to recover its nitrifying capacity (ENH4+ = 100% and YNO3-=0.98). Afterwards the SBR was fed with 10 mg C/L of the phenolic mixture, obtaining and ENH4+ of 100%, YNO3- and qN-NH4+ 0.62 ± 0.006 and 0.13 ± 0.004 respectively, while the qN-NO3- was 0.49 ± 0.007. Moreover, with the increase of the phenolic concentrations (10-160 mg C/L) and the number of cycles the nitrifying consortium was able to oxidize the ammonia with ENH4+ of 100 % and YNO3- close to 1. However a decrease in the values of the nitrification specific rates and increase in the oxidation in phenolic compounds (70 to 94%) were observed. Finally, in the presence of 320 mg C/L, the nitrifying consortium was able to simultaneously oxidize the ammonia (ENH4+= 100%) and the phenolic mixture (p-cresol>phenol>m-cresol>o-cresol) being the o-cresol the most recalcitrant compound. In all the experiments the use of a SBR allowed a respiratory adaptation of the consortium to oxidize the phenolic mixture achieving greater adaptation of the nitrite-oxidizing bacteria (NOB) than in the ammonia-oxidizing bacteria (AOB).

Keywords: Nitrification, phenol, inhibition, sequencing batch reactor, cresol

Procedia PDF Downloads 212
16 Comparative Study in Evaluating the Antioxidation Efficiency for Native Types Antioxidants Extracted from Crude Oil with the Synthesized Class

Authors: Mohammad Jamil Abd AlGhani

Abstract:

The natural native antioxidants N,N-P-methyl phenyl acetone and N,N-phenyl acetone were isolated from the Iraqi crude oil region of Kirkuk by ion exchange and their structure was characterized by spectral and chemical analysis methods. Tetraline was used as a liquid hydrocarbon to detect the efficiency of isolated molecules at elevated temperature (393 K) that it has physicochemical specifications and structure closed to hydrocarbons fractionated from crude oil. The synthesized universal antioxidant 2,6-ditertiaryisobutyl-p-methyl phenol (Unol) with known stochiometric coefficient of inhibition equal to (2) was used as a model for comparative evaluation at the same conditions. Modified chemiluminescence method was used to find the amount of absorbed oxygen and the induction periods in and without the existence of isolated antioxidants molecules. The results of induction periods and quantity of absorbed oxygen during the oxidation process were measured by manometric installation. It was seen that at specific equal concentrations of N,N-phenyl acetone and N, N-P-methyl phenyl acetone in comparison with Unol at 393 K were with (2) and (2.5) times efficient than do Unol. It means that they had the ability to inhibit the formation of new free radicals and prevent the chain reaction to pass from the propagation to the termination step rather than decomposition of formed hydroperoxides.

Keywords: Antioxidants, Chemiluminescence, inhibition, Unol

Procedia PDF Downloads 93
15 Probiotics’ Antibacterial Activity on Beef and Camel Minced Meat at Altered Ranges of Temperature

Authors: Rania Samir Zaki

Abstract:

Because of their inhibitory effects, selected probiotic Lactobacilli may be used as antimicrobial against some hazardous microorganisms responsible for spoilage of fresh minced beef (cattle) minced meat and camel minced meat. Lactic acid bacteria were isolated from camel meat. These included 10 isolates; 1 Lactobacillus fermenti, 4 Lactobacillus plantarum, 4 Lactobacillus pulgaricus, 3 Lactobacillus acidophilus and 1 Lactobacillus brevis. The most efficient inhibitory organism was Lactobacillus plantarum which can be used as a propiotic with antibacterial activity. All microbiological analyses were made at the time 0, first day and the second day at altered ranges of temperature [4±2 ⁰C (chilling temperature), 25±2 ⁰C, and 38±2 ⁰C]. Results showed a significant decrease of pH 6.2 to 5.1 within variant types of meat, in addition to reduction of Total Bacterial Count, Enterococci, Bacillus cereus and Escherichia coli together with the stability of Coliforms and absence of Staphylococcus aureus.

Keywords: Antibacterial, Probiotics, inhibition, camel meat

Procedia PDF Downloads 162
14 In vitro Control of Mycosphaerella arachidis Deighton the Early Leaf Spot Disease Pathogen of Groundnut by the Extracts from Six Medicinal Plants

Authors: Matthew Omoniyi Adebola, Jude E Amadi

Abstract:

Ground nut (Arachis hypogaea) is one of the most popular commercial crops in Nigeria. Its suc-cessful production has been drastically affected by early leaf spot disease caused by Mycosphae-rella arachidis Deighton. In vitro control of the pathogen by six medicinal plants (Entada afri-cana, Vitex doniana, Lawsonia inermis, Azadirachta indica, Acalypha hispida and Nuaclea lati-folia) was assessed in this study. The extracts of the plants were prepared using cold and hot wa-ter and alcohol. The pathogen was isolated from ground nut infected with early leaf spot disease. The results revealed a great significant difference (P<0.05) in yield of extracts between cold water, hot water, and alcohol extracts. A significant difference (P<0.05) was observed in percentage concentrations of the various phytochemical constituents present in the extracts. Flavonoids per-centage concentration was the highest (0.68 - 1.95%) followed by saponnin(0.09-1.53%) in N. latifolia extracts. Steroiods had the least percentage concentrations (0.00- 0.09%)followed by terpenoids(0.02–0.71%) and proanthocyannin (0.05 – 0.86%). N. latifolia extracts produced the highest percentage concentrations (0.07–1.95%) of all the phytochemicals followed by A. indi-ca(0.05–1.64%)and least concentrations were obtained in A. hispidia(0.09 – 0.87%)and V. do-niana (0.00–0.88%). The extracts inhibited spore germination and growth of M. arachidis. The inhibition by alcohol extracts was high and significantly different (P>0.05) from cold and hot water extracts. Alcohol extract of L. inermis gave 100% spore germination inhibition followed by N. latifolia and A.indica with 97.75% and 85.60% inhibition respectively. Therefore, field trials of these six medicinal plants on the control of early leaf spot disease of ground nut are rec-ommended.

Keywords: Medicinal Plants, Phytochemicals, inhibition, extracts, groundnut

Procedia PDF Downloads 140
13 The Effects of Acute Physical Activity on Measures of Inhibition in Pre-School Children

Authors: Antonia Stergiou

Abstract:

Background: Due to the developmental trajectory of executive function in preschool age, the majority of existing studies investigating the association between acute physical activity and cognitive control have focused on adolescents and adult population. Aim- The aim of this study was to investigate the possible effects of physical activity on the inhibitory control of pre-school children. Methods: This is a prospectively designed study that was conducted in a primary school in Bristol in June 2015. The total number of subjects was n=61 and 20 trials of a modified Eriksen Flanker Task were completed before and after a 30-minutes session of moderate exercise (including both 5 minutes of warm up and cool down). For each test a pre- and post-test assessment took place that included both congruent and incongruent trials. The congruent trials were considered as the control condition and the incongruent trials as those that measure inhibitory control (experimental condition). At the end of the assessment, the participants were instructed to choose the face that described their current feelings between three options (happy, neutral, sad). Results: There was a trend for increased accuracy following moderate exercise, but there was statistical significance (p > .05). However, there was statistically significant improvement in the reaction time following the same type of exercise (p = .005). Face board assessment revealed positive emotions after 30 minutes of moderate exercise. Conclusions: The current study supports findings from previous studies related to the benefits of physical activity on the children’s inhibitory control and provides evidence of those benefits in even younger ages. Further research should take place considering each child individually. Implementation of those findings could result in an improved curriculum in schools with additional time spent on physical education courses.

Keywords: Physical Activity, Cognitive Control, inhibition, pre-school children

Procedia PDF Downloads 133
12 Trainability of Executive Functions during Preschool Age Analysis of Inhibition of 5-Year-Old Children

Authors: Christian Andrä, Pauline Hähner, Sebastian Ludyga

Abstract:

Introduction: In the recent past, discussions on the importance of physical activity for child development have contributed to a growing interest in executive functions, which refer to cognitive processes. By controlling, modulating and coordinating sub-processes, they make it possible to achieve superior goals. Major components include working memory, inhibition and cognitive flexibility. While executive functions can be trained easily in school children, there are still research deficits regarding the trainability during preschool age. Methodology: This quasi-experimental study with pre- and post-design analyzes 23 children [age: 5.0 (mean value) ± 0.7 (standard deviation)] from four different sports groups. The intervention group was made up of 13 children (IG: 4.9 ± 0.6), while the control group consisted of ten children (CG: 5.1 ± 0.9). Between pre-test and post-test, children from the intervention group participated special games that train executive functions (i.e., changing rules of the game, introduction of new stimuli in familiar games) for ten units of their weekly sports program. The sports program of the control group was not modified. A computer-based version of the Eriksen Flanker Task was employed in order to analyze the participants’ inhibition ability. In two rounds, the participants had to respond 50 times and as fast as possible to a certain target (direction of sight of a fish; the target was always placed in a central position between five fish). Congruent (all fish have the same direction of sight) and incongruent (central fish faces opposite direction) stimuli were used. Relevant parameters were response time and accuracy. The main objective was to investigate whether children from the intervention group show more improvement in the two parameters than the children from the control group. Major findings: The intervention group revealed significant improvements in congruent response time (pre: 1.34 s, post: 1.12 s, p<.01), while the control group did not show any statistically relevant difference (pre: 1.31 s, post: 1.24 s). Likewise, the comparison of incongruent response times indicates a comparable result (IG: pre: 1.44 s, post: 1.25 s, p<.05 vs. CG: pre: 1.38 s, post: 1.38 s). In terms of accuracy for congruent stimuli, the intervention group showed significant improvements (pre: 90.1 %, post: 95.9 %, p<.01). In contrast, no significant improvement was found for the control group (pre: 88.8 %, post: 92.9 %). Vice versa, the intervention group did not display any significant results for incongruent stimuli (pre: 74.9 %, post: 83.5 %), while the control group revealed a significant difference (pre: 68.9 %, post: 80.3 %, p<.01). The analysis of three out of four criteria demonstrates that children who took part in a special sports program improved more than children who did not. The contrary results for the last criterion could be caused by the control group’s low results from the pre-test. Conclusion: The findings illustrate that inhibition can be trained as early as in preschool age. The combination of familiar games with increased requirements for attention and control processes appears to be particularly suitable.

Keywords: Executive Functions, inhibition, preschool children, flanker task

Procedia PDF Downloads 125
11 Antimicrobial Activities of Lactic Acid Bacteria from Fermented Foods and Probiotic Products

Authors: Jerneja Vidmar, Walter Chingwaru, Alec Chabwinja, Cannan Tawonezvi, Constance Chingwaru

Abstract:

Objective: To evaluate the potential of commercial fermented / probiotic products available in Zimbabwe or internationally, and strains of Lactobacillus plantarum (L. plantarum) as prophylaxis and therapy against diarrhoeal and sexually transmitted infections. Methods: The antimicrobial potential of cultures of lactobacilli enriched from 4 Zimbabwean commercial food/beverage products, namely Dairibord Lacto sour milk (DLSM), Probrand sour milk (PSM), Kefalos Vuka cheese (KVC) and Chibuku opaque beer (COB); three probiotic products obtainable in Europe and internationally; and four strains of L. plantarum obtained from Balkan traditional cheeses and Zimbabwean foods against clinical strains of Escherichia coli (E. coli) and non-clinical strains of Candida albicans and Rhodotorula spp. was assayed using the well diffusion method. Three commercial Agar diffusion assay and a competitive exclusion assay were carried out on Mueller-Hinton agar. Results: Crude cultures of putative lactobacillus strains obtained from Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer) exhibited significantly greater antimicrobial activities against clinical strains of E. coli than strains of L. plantarum isolated from Balkan cheeses (CLP1, CLP2 or CLP3) or crude microbial cultures from commercial paediatric probiotic products (BG, PJ and PL) of a culture of Lactobacillus rhamnosus LGG (p < 0.05). Furthermore, the following has high antifungal activities against the two yeasts: supernatant-free microbial pellet (SFMP) from an extract of M. azedarach leaves (27mm ± 2.5) > cell-free culture supernatants (CFCS) from Maaz Dairy sour milk and Mnandi sour milk (approximately 26mm ± 1.8) > CFCS and SFMP from Amansi hodzeko (25mm ± 1.5) > CFCS from Parinari curatellifolia fruit (24mm ± 1.5), SFMP from P. curatellifolia fruit (24mm ± 1.4) and SFMP from mahewu (20mm ± 1.5). These cultures also showed high tolerance to acidic conditions (~pH4). Conclusions: The putative lactobacilli from four commercial Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer), and three strains of L. plantarum from Balkan cheeses (CLP1, CLP2 or CLP3) exhibited high antibacterial activities, while Maaz Dairy sour-, Mnandi sour- and Amansi hodzeko milk products had high antifungal activities. Our selection of Zimbabwean probiotic products has potential for further development into probiotic products for use in the control diarrhea caused by pathogenic strains of E. coli or yeast infections. Studies to characterise the probiotic potential of the live cultures in the products are underway.

Keywords: Lactic Acid Bacteria, Yeast, Staphylococcus aureus, inhibition, acid tolerance, Streptococcus spp

Procedia PDF Downloads 264
10 Aqueous Extract of Picrorrhiza kurroa Royle ex Benth: A Potent Inhibitor of Human Topoisomerases

Authors: Syed Asif Hassan, Ritu Barthwal

Abstract:

Topoisomerase I and II α plays a crucial role in the DNA-maintenance in all living cells, and for this reason, inhibitors of this enzyme have been much studied. In this paper, we have described the inhibitory effect of the aqueous extract of Picrorrhiza kurroa on human topoisomerases by measuring the relaxation of superhelical plasmid pBR322 DNA. The aqueous extract inhibited topoisomerase I and II α in a concentration-dependent manner (Inhibitory concentration (IC) ≈ 25 and 50 µg, respectively). By stabilization studies of topoisomerase I-DNA complex and preincubation studies of topoisomerase I and II α with the extract; we conclude that the possible mechanism of inhibition is both; 1) stabilization of covalent complex of topo I-DNA complex and 2) direct inhibition of the enzyme topoisomerases. These findings might explain the antineoplastic activity of Picrorrhiza kurroa and encourage new studies to elucidate the usefulness of the extract as a potent antineoplastic agent.

Keywords: inhibition, Picrorrhiza kurroa, topoisomerase I and II α, antineoplastic agent

Procedia PDF Downloads 203
9 Evaluation of the Effect of Lactose Derived Monosaccharide on Galactooligosaccharides Production by β-Galactosidase

Authors: Juan Carlos Serrato Bermúdez, Yenny Paola Morales Cortés, Fabián Rico Rodríguez, Carlos Arturo Martínez Riascos

Abstract:

Numerous benefits of galactooligosaccharides (GOS) as prebiotics have motivated the study of enzymatic processes for their production. These processes have special complexities due to several factors that make difficult high productivity, such as enzyme type, reaction medium pH, substrate concentrations and presence of inhibitors, among others. In the present work the production of galactooligosaccharides (with different degrees of polymerization: two, three and four) from lactose was studied. The study considers the formulation of a mathematical model that predicts the production of GOS from lactose using the enzyme β-galactosidase. The effect of pH in the reaction was studied. For that, phosphate buffer was used and with this was evaluated three pH values (6.0.6.5 and 7.0). Thus it was observed that at pH 6.0 the enzymatic activity insignificant. On the other hand, at pH 7.0 the enzymatic activity was approximately 27 times greater than at 6.5. The last result differs from previously reported results. Therefore, pH 7.0 was chosen as working pH. Additionally, the enzyme concentration was analyzed, which allowed observing that the effect of the concentration depends on the pH and the concentration was set for the following studies in 0.272 mM. Afterwards, experiments were performed varying the lactose concentration to evaluate its effects on the process and to generate the data for the adjustment of the mathematical model parameters. The mathematical model considers the reactions of lactose hydrolysis and transgalactosylation for the production of disaccharides and trisaccharides, with their inverse reactions. The production of tetrasaccharides was negligible and, because of that, it was not included in the model. The reaction was monitored by HPLC and for the quantitative analysis of the experimental data the Matlab programming language was used, including solvers for differential equations systems integration (ode15s) and nonlinear problems optimization (fminunc). The results confirm that the transgalactosylation and hydrolysis reactions are reversible, additionally inhibition by glucose and galactose is observed on the production of GOS. In relation to the production process of galactooligosaccharides, the results show that it is necessary to have high initial concentrations of lactose considering that favors the transgalactosylation reaction, while low concentrations favor hydrolysis reactions.

Keywords: Modeling, MATLAB, Lactose, β-galactosidase, inhibition, galactooligosaccharides

Procedia PDF Downloads 188
8 Synthesis and Anti-Inflammatory Activity of Pyrazol-3-yl Thiazole 4-Carboxylic Acid Derivatives Targeting Enzyme in the Leukotriene Pathway

Authors: Mukesh Doble, Shweta Sinha, Manju S. L.

Abstract:

Pyrazole scaffold is an important group of compound in heterocyclic chemistry and is found to possess numerous uses in chemistry. Pyrazole derivatives are also known to possess important biological activities including antitumor, antimicrobial, antiviral, antifungal, anticancer and anti-inflammatory. Inflammation is associated with pain, allergy and asthma. Leukotrienes are mediators of various inflammatory and allergic disorders. 5-Lipoxygenase (5-LOX) is an important enzyme involved in the biosynthesis of leukotrienes and metabolism of arachidonic acid (AA) and thus targeted for anti-inflammation. In vitro inhibitory activity of pyrazol-3-yl thiazole 4-carboxylic acid derivatives is tested against enzyme 5-LOX. Most of these compounds exhibit good inhibitory activity against this enzyme. Binding mode study of these compounds is determined by computational tool. Further experiments are being done to understand the mechanism of action of these compounds in inhibiting this enzyme. To conclude, these compounds appear to be a promising target in drug design against 5-LOX.

Keywords: Inflammation, inhibition, pyrazole

Procedia PDF Downloads 114
7 In vitro Determination of Carbonic Anhydrase Inhibition of the Flowers of Vanda Orchid, Vanda Tessellata Roxb. (1795) by Modified Colorimetric Maren T.H. (1960) Method

Authors: John Carlo Combista, Jimbert Tan

Abstract:

The orchid, Vanda tessellata was chosen by the researchers because of the presence of the constituents in the family Orchidaceae such as alkaloids, flavonoids and glycosides that might give an inhibition activity of the carbonic anhydrase enzyme. This study aimed to determine the in vitro inhibition of carbonic anhydrase of Vanda tessellata flower extract. With the use of modified colorimetric Maren T.H. (1960) method, the time in seconds each test solution changed its color after the rate of CO2 hydration were recorded. Two solvents were used: the semi-polar, 95% ethanol and the non-polar, dichloromethane solvents. The percent inhibition activity of carbonic anhydrase of the different concentrations of solvents ethanol (1%, 25% and 50%) and dichloromethane (1% and 10%) test solutions were determined. Results showed that the ethanol-based extract of Vanda tessellata in different concentrations showed an inhibitory effect while the dichloromethane-based extract of Vanda tessellata showed no inhibitory effect of carbonic anhydrase activity. For ethanol extract, the concentration with the highest activity was 50% followed by 25% which changed its color from red to yellow with an average time of 13.11 seconds and 11.57 seconds but 1% with an average time of 7.56 seconds did not exhibit an effect. The researchers recommend the isolation of the specific active constituents of Vanda tessellata that is responsible for the inhibitory effect of carbonic anhydrase enzyme. It is also recommended to utilize different blood types to observe different reactions to the inhibition of the carbonic anhydrase.

Keywords: Carbonic Anhydrase, inhibition, modified colorimetric Maren TH method, Vanda orchid

Procedia PDF Downloads 178
6 Antimicrobial Action and Its Underlying Mechanism by Methanolic Seed Extract of Syzygium cumini on Bacillus subtilis

Authors: Alok Kumar Yadav, Saurabh Saraswat, Preeti Sirohi, Manjoo Rani, Sameer Srivastava, Manish Pratap Singh, Nand K. Singh

Abstract:

The development of antibiotic resistance in bacteria is increasing at an alarming rate, and this is considered as one of the most serious threats in the history of medicine, and an alternative solution should be derived so as to tackle this problem. In many countries, people use the medicinal plants for the treatment of various diseases as these are cheaper, easily available and least toxic. Syzygium cumini is used for the treatment of various kinds of diseases but their mechanism of action is not reported. The antimicrobial activity of Syzygium cumini was tested by the well diffusion assay and zone of inhibition was reported to be 20.06 mm as compared to control with MIC of 0.3 mg/ml. Genomic DNA fragmentation of Bacillus subtilis revealed apoptosis and FE-SEM indicate cell wall cracking on several intervals of time. Propidium iodide staining results showed that few bacterial cells were stained in the control and population of stained cells increase after exposing them for various period of time. Flow cytometric kinetic data analysis on the membrane permeabilization in bacterial cell showed the significant contribution of antimicrobial potential of the seed extract on antimicrobial-induced permeabilization. Two components of Syzygium cumini methanolic seed extract was found to be quite active against four enzymes like PDB ID- 1W5D, 4OX3, 3MFD and 5E2F which have a very crucial role in membrane synthesis in Bacillus subtilis by in silico analysis. Through in silico analysis, lupeol showed highest binding energy for macromolecule 1W5D and 4OX3 whereas stigmasterol showed the highest binding energy for macromolecule 3MFD and 5E2F respectively. It showed that methanolic seed extract of Syzygium cumini can be used for the inhibition of foodborne infections caused by Bacillus subtilis and also as an alternative of prevalent antibiotics.

Keywords: Antibiotics, Bacillus subtilis, inhibition, Syzygium cumini

Procedia PDF Downloads 61
5 Docking and Dynamic Molecular Study of Isoniazid Derivatives as Anti-Tuberculosis Drug Candidate

Authors: Richa Mardianingrum, Srie R. N. Endah

Abstract:

In this research, we have designed four isoniazid derivatives i.e., isonicotinohydrazide (1-isonicotinoyl semicarbazide, 1-thiosemi isonicotinoyl carbazide, N '-(1,3-dimethyl-1 h-pyrazole-5-carbonyl) isonicotino hydrazide, and N '-(1,2,3- 4-thiadiazole-carbonyl) isonicotinohydrazide. The docking and molecular dynamic have performed to them in order to study its interaction with Mycobacterium tuberculosis Enoyl-Acyl Carrier Protein Reductase (InhA). Based on this research, all of the compounds were predicted to have a stable interaction with Mycobacterium tuberculosis Enoyl-Acyl Carrier Protein Reductase (INHA) receptor, so they could be used as an anti-tuberculosis drug candidate.

Keywords: Synthesis, docking, inhibition, anti-tuberculosis, InhA, Inhibin alpha subunit, isonicotinohydrazide

Procedia PDF Downloads 27
4 Odor-Color Association Stroop-Task and the Importance of an Odorant in an Odor-Imagery Task

Authors: Jonathan Ham, Christopher Koch

Abstract:

There are consistently observed associations between certain odors and colors, and there is an association between the ability to imagine vivid visual objects and imagine vivid odors. However, little has been done to investigate how the associations between odors and visual information effect visual processes. This study seeks to understand the relationship between odor imaging, color associations, and visual attention by utilizing a Stroop-task based on common odor-color associations. This Stroop-task was designed using three fruits with distinct odors that are associated with the color of the fruit: lime with green, strawberry with red, and lemon with yellow. Each possible word-color combination was presented in the experimental trials. When the word matched the associated color (lime written in green) it was considered congruent; if it did not, it was considered incongruent (lime written in red or yellow). In experiment I (n = 34) participants were asked to both imagine the odor of the fruit on the screen and identify which fruit it was, and each word-color combination was presented 20 times (a total of 180 trials, with 60 congruent and 120 incongruent instances). Response time and error rate of the participant responses were recorded. There was no significant difference in either measure between the congruent and incongruent trials. In experiment II participants (n = 18) followed the identical procedure as in the previous experiment with the addition of an odorant in the room. The odorant (orange) was not the fruit or color used in the experimental trials. With a fruit-based odorant in the room, the response times (measured in milliseconds) between congruent and incongruent trials were significantly different, with incongruent trials (M = 755.919, SD = 239.854) having significantly longer response times than congruent trials (M = 690.626, SD = 198.822), t (1, 17) = 4.154, p < 0.01. This suggests that odor imagery does affect visual attention to colors, and the ability to inhibit odor-color associations; however, odor imagery is difficult and appears to be facilitated in the presence of a related odorant.

Keywords: Visual Attention, inhibition, odor-color associations, odor imagery

Procedia PDF Downloads 20
3 Biophysical Characterization of the Inhibition of cGAS-DNA Sensing by KicGAS, Kaposi's Sarcoma-Associated Herpesvirus Inhibitor of cGAS

Authors: Y. Tian, D. Bhowmik, Q. Yin, F. Zhu

Abstract:

Cyclic GMP-AMP synthase (cGAS), recognises cytoplasmic double-stranded DNA (dsDNA), indicative of bacterial and viral infections, as well as the leakage of self DNA by cellular dysfunction and stresses, to elicit the host's immune responses. Viruses also have developed numerous strategies to antagonize the cGAS-STING pathway. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human DNA tumor virus that is the causative agent of Kaposi’s sarcoma and several other malignancies. To persist in the host, consequently causing diseases, KSHV must overcome the host innate immune responses, including the cGAS-STING DNA sensing pathway. We already found that ORF52 or KicGAS (KSHV inhibitor of cGAS), an abundant and basic gamma herpesvirus-conserved tegument protein, directly inhibits cGAS enzymatic activity. To better understand the mechanism, we have performed the biochemical and structural characterization of full-length KicGAS and various mutants in regarding binding to DNA. We observed that KicGAS is capable of self-association and identified the critical residues involved in the oligomerization process. We also characterized the DNA-binding of KicGAS and found that KicGAS cooperatively oligomerizes along the length of the double stranded DNA, the highly conserved basic residues at the c-terminal disordered region are crucial for DNA recognition. Deficiency in oligomerization also affects DNA binding. Thus DNA binding by KicGAS sequesters DNA and prevents it from being detected by cGAS, consequently inhibiting cGAS activation. KicGAS homologues also inhibit cGAS efficiently, suggesting inhibition of cGAS is evolutionarily conserved mechanism among gamma herpesvirus. These results highlight the important viral strategy to evade this innate immune sensor.

Keywords: inhibition, DNA binding, Kaposi's sarcoma-associated herpesvirus, KSHV, cGAS

Procedia PDF Downloads 1
2 The Impact of Mycotoxins on the Anaerobic Digestion Process

Authors: Harald Lindorfer, Bettina Frauz, Dietmar Ramhold

Abstract:

Next to the well-known inhibitors in anaerobic digestion like ammonia, antibiotics or disinfectants, the number of process failures connected with mould growth in the feedstock increased significantly in the last years. It was assumed that mycotoxins are the cause of the negative effects. The financial damage to plants associated with these process failures is considerable. The aim of this study was to find a way of predicting the failures and furthermore strategies for a fast process recovery. In a first step, mould-contaminated feedstocks causing process failures in full-scale digesters were sampled and analysed on mycotoxin content. A selection of these samples was applied to biological inhibition tests. In this test, crystalline cellulose is applied in addition to the feedstock sample as standard substrate. Affected digesters were also sampled and analytical process data as well as operational data of the plants were recorded. Additionally, different mycotoxin substances, Deoxynivalenol, Zearalenon, Aflatoxin B1, Mycophenolic acid and Citrinin, were applied as pure substances to lab-scale digesters, individually and in various combinations, and effects were monitored. As expected, various mycotoxins were detected in all of the mould-contaminated samples. Nevertheless, inhibition effects were observed with only one of the collected samples, after applying it to an inhibition test. With this sample, the biogas yield of the standard substrate was reduced by approx. 20%. This result corresponds with observations made on full-scale plants. However, none of the tested mycotoxins applied as pure substance caused a negative effect on biogas production in lab scale digesters, neither after application as individual substance nor in combination. The recording of the process data in full-scale plants affected by process failures in most cases showed a severe accumulation of fatty acids alongside a decrease in biogas production and methane concentration. In the analytical data of the digester samples, a typical distribution of fatty acids with exceptionally high acetic acid concentrations could be identified. This typical fatty acid pattern can be used as a rapid identification parameter pointing to the cause of the process troubles and enable a fast implication of countermeasures. The results of the study show that more attention needs to be paid to feedstock storage and feedstock conservation before their application to anaerobic digesters. This is all the more important since first studies indicate that the occurrence of mycotoxins will likely increase in Europe due to the ongoing climate change.

Keywords: Biogas, Anaerobic Digestion, inhibition, Feedstock conservation, Fungal mycotoxins, process failure

Procedia PDF Downloads 1
1 Synthesis and in-Vitro Biological Activity of Novel Gallic Acid Derivatives

Authors: Hossein Mostafavi

Abstract:

A diversity of biological activities and pharmaceutical uses have been attributed to gallic acid derivatives such as antibacterial, anticancer, anti inflammatory. A series of gallic acid derivatives were synthesized, and their structure was confirmed by FT-IR, HNMR, CNMR, elemental analysis. In vitro biological activity of compounds was determined against Proteus vulgaris ATCC 7829, Escherichia coli ATCC 25922, as (Gram-negative) bacteria and bacillus cereus ATCC 11778, Staphylococus aureus ATCC 6538 as (Gram-positive) bacteria. Antibacterial susceptibility tests were done by use of the paper disc diffusion method on Mueller Hinton agar (Merck). Chloramiphenicol, Penicilline, Streptomycin and Tetracycline were standard reference antibiotics. The zone of inhibition against bacteria was measured after 24 hours at 37 °C. Compounds 3, 4, 5 were the main antibacterial compounds against Gram-negative bacteria but not Gram-positive.

Keywords: Antibacterial, Antibiotics, inhibition, gallic acid derivatives

Procedia PDF Downloads 1