Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8

Infectious Disease Related Abstracts

8 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong

Authors: Afia Naheed, Manmohan Singh, David Lucy


This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.

Keywords: Infectious Disease, Uncertainty analysis, Sensitivity Analysis, Parameter Estimation, severe acute respiratory syndrome (SARS), Runge-Kutta methods, Levenberg-Marquardt method

Procedia PDF Downloads 209
7 Bioinformatics Identification of Rare Codon Clusters in Proteins Structure of HBV

Authors: Abdorrasoul Malekpour, Mohammad Ghorbani Mojtaba Mortazavi, Mohammadreza Fattahi, Mohammad Hassan Meshkibaf, Ali Fakhrzad, Saeid Salehi, Saeideh Zahedi, Amir Ahmadimoghaddam, Parviz Farzadnia Dr., Mohammadreza Hajyani Asl Bs


Hepatitis B as an infectious disease has eight main genotypes (A–H). The aim of this study is to Bioinformatically identify Rare Codon Clusters (RCC) in proteins structure of HBV. For detection of protein family accession numbers (Pfam) of HBV proteins; used of uni-prot database and Pfam search tool were used. Obtained Pfam IDs were analyzed in Sherlocc program and RCCs in HBV proteins were detected. In further, the structures of TrEMBL entries proteins studied in PDB database and 3D structures of the HBV proteins and locations of RCCs were visualized and studied using Swiss PDB Viewer software. Pfam search tool have found nine significant hits and 0 insignificant hits in 3 frames. Results of Pfams studied in the Sherlocc program show this program not identified RCCs in the external core antigen (PF08290) and truncated HBeAg protein (PF08290). By contrast the RCCs become identified in Hepatitis core antigen (PF00906) Large envelope protein S (PF00695), X protein (PF00739), DNA polymerase (viral) N-terminal domain (PF00242) and Protein P (Pf00336). In HBV genome, seven RCC identified that found in hepatitis core antigen, large envelope protein S and DNA polymerase proteins and proteins structures of TrEMBL entries sequences that reported in Sherlocc program outputs are not complete. Based on situation of RCC in structure of HBV proteins, it suggested those RCCs are important in HBV life cycle. We hoped that this study provide a new and deep perspective in protein research and drug design for treatment of HBV.

Keywords: Infectious Disease, hepatitis B virus, rare codon clusters, bioinformatic study

Procedia PDF Downloads 321
6 Valorization of Surveillance Data and Assessment of the Sensitivity of a Surveillance System for an Infectious Disease Using a Capture-Recapture Model

Authors: Jean-Philippe Amat, Timothée Vergne, Aymeric Hans, Bénédicte Ferry, Pascal Hendrikx, Jackie Tapprest, Barbara Dufour, Agnès Leblond


The surveillance of infectious diseases is necessary to describe their occurrence and help the planning, implementation and evaluation of risk mitigation activities. However, the exact number of detected cases may remain unknown whether surveillance is based on serological tests because identifying seroconversion may be difficult. Moreover, incomplete detection of cases or outbreaks is a recurrent issue in the field of disease surveillance. This study addresses these two issues. Using a viral animal disease as an example (equine viral arteritis), the goals were to establish suitable rules for identifying seroconversion in order to estimate the number of cases and outbreaks detected by a surveillance system in France between 2006 and 2013, and to assess the sensitivity of this system by estimating the total number of outbreaks that occurred during this period (including unreported outbreaks) using a capture-recapture model. Data from horses which exhibited at least one positive result in serology using viral neutralization test between 2006 and 2013 were used for analysis (n=1,645). Data consisted of the annual antibody titers and the location of the subjects (towns). A consensus among multidisciplinary experts (specialists in the disease and its laboratory diagnosis, epidemiologists) was reached to consider seroconversion as a change in antibody titer from negative to at least 32 or as a three-fold or greater increase. The number of seroconversions was counted for each town and modeled using a unilist zero-truncated binomial (ZTB) capture-recapture model with R software. The binomial denominator was the number of horses tested in each infected town. Using the defined rules, 239 cases located in 177 towns (outbreaks) were identified from 2006 to 2013. Subsequently, the sensitivity of the surveillance system was estimated as the ratio of the number of detected outbreaks to the total number of outbreaks that occurred (including unreported outbreaks) estimated using the ZTB model. The total number of outbreaks was estimated at 215 (95% credible interval CrI95%: 195-249) and the surveillance sensitivity at 82% (CrI95%: 71-91). The rules proposed for identifying seroconversion may serve future research. Such rules, adjusted to the local environment, could conceivably be applied in other countries with surveillance programs dedicated to this disease. More generally, defining ad hoc algorithms for interpreting the antibody titer could be useful regarding other human and animal diseases and zoonosis when there is a lack of accurate information in the literature about the serological response in naturally infected subjects. This study shows how capture-recapture methods may help to estimate the sensitivity of an imperfect surveillance system and to valorize surveillance data. The sensitivity of the surveillance system of equine viral arteritis is relatively high and supports its relevance to prevent the disease spreading.

Keywords: Epidemiology, Infectious Disease, Surveillance, Bayesian Inference, capture-recapture, equine viral arteritis, seroconversion

Procedia PDF Downloads 168
5 Personalized Infectious Disease Risk Prediction System: A Knowledge Model

Authors: Retno A. Vinarti, Lucy M. Hederman


This research describes a knowledge model for a system which give personalized alert to users about infectious disease risks in the context of weather, location and time. The knowledge model is based on established epidemiological concepts augmented by information gleaned from infection-related data repositories. The existing disease risk prediction research has more focuses on utilizing raw historical data and yield seasonal patterns of infectious disease risk emergence. This research incorporates both data and epidemiological concepts gathered from Atlas of Human Infectious Disease (AHID) and Centre of Disease Control (CDC) as basic reasoning of infectious disease risk prediction. Using CommonKADS methodology, the disease risk prediction task is an assignment synthetic task, starting from knowledge identification through specification, refinement to implementation. First, knowledge is gathered from AHID primarily from the epidemiology and risk group chapters for each infectious disease. The result of this stage is five major elements (Person, Infectious Disease, Weather, Location and Time) and their properties. At the knowledge specification stage, the initial tree model of each element and detailed relationships are produced. This research also includes a validation step as part of knowledge refinement: on the basis that the best model is formed using the most common features, Frequency-based Selection (FBS) is applied. The portion of the Infectious Disease risk model relating to Person comes out strongest, with Location next, and Weather weaker. For Person attribute, Age is the strongest, Activity and Habits are moderate, and Blood type is weakest. At the Location attribute, General category (e.g. continents, region, country, and island) results much stronger than Specific category (i.e. terrain feature). For Weather attribute, Less Precise category (i.e. season) comes out stronger than Precise category (i.e. exact temperature or humidity interval). However, given that some infectious diseases are significantly more serious than others, a frequency based metric may not be appropriate. Future work will incorporate epidemiological measurements of disease seriousness (e.g. odds ratio, hazard ratio and fatality rate) into the validation metrics. This research is limited to modelling existing knowledge about epidemiology and chain of infection concepts. Further step, verification in knowledge refinement stage, might cause some minor changes on the shape of tree.

Keywords: Epidemiology, Infectious Disease, Risk, knowledge modelling, prediction

Procedia PDF Downloads 107
4 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam

Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen


Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.

Keywords: Climate, Infectious Disease, Dengue, Geospatial Data

Procedia PDF Downloads 173
3 Revisiting Classic Triad of Japanese Spotted Fever: A Case Series of Forty-Three Patients

Authors: Y. Nakashima, S. Yamauchi, Y. Kunitani, Y. Ishigami, K. Numata, M. Mizobe, Y. Homma, J. Takahashi, T. Inoue, T. Shiga, H. Funakoshi, K. Naito


Background: Japanese Spotted Fever (JSF) is one of the Rickettsial infections, caused by Rickettsia japonica, which is transmitted by ticks. JSF is seen in limited area, such as Japan and South Korea. Its clinical triad is rash, eschar and fever. It often shows leukocytopenia, thrombopenia, elevated transaminase and high C-reactive protein (CRP). Sometimes it can be life-threatening due to disseminated intravascular coagulation or multiple organ failure. Study Aim: The aim of this study is to describe the features of JSF, as this unique infection is rapidly growing in Japan. Methods: This is a case series of JSF from 2009 to 2016, in Mie Prefectural Hospital in Japan. We collected JSF cases, which were diagnosed by polymerase chain reaction (PCR) of the skin or blood serum, or the elevation of the antibody titer of paired blood samples. Results: There were 43 JSF patients (19 male, 24 female) with a median age of 71 years [IQR:65-80]. The median body temperature was 38.1°C[IQR: 37.5-39.0]. 95% had a rash, 67% had eschar and 50% had fever. The median WBC count was 6,700 [IQR: 5,750-8,200] and leukocytopenia was observed in only 7%. The median platelet count was 14x104 [IQR10x104-17x104], thrombopenia was observed in 65%. The median aspartate transaminase (AST) was 53 IU/L [IQR: 41-93]; the median alanine aminotransferase (ALT) was 34 IU/L [IQR: 24-54]; the median CRP was 10.4 mg/dL [IQR:7.2-13.9]; the median lactate dehydrogenase (LDH) was 352IU/L [IQR:282-451]. CRP and LDH were elevated in almost all of the patients. Median length of stay in hospital was 8 days [IQR: 6-11]. All patients were treated with tetracycline and quinolone on the day of the presentation. There was no fatality from JSF. Conclusion: The patients with JSF classically presents with eschar, rash and fever. However, in this study, the half of the patients were afebrile. Although JSF is not a common infectious disease worldwide, if the patient had previously visited Japan or South Korea and presented with rash and eschar with or without fever, we should consider JSF as a potential diagnosis.

Keywords: Infectious Disease, Japanese spotted fever, Rickettsial disease, Rickettsia japonica

Procedia PDF Downloads 51
2 Drug Therapy Problem and Its Contributing Factors among Pediatric Patients with Infectious Diseases Admitted to Jimma University Medical Center, South West Ethiopia: Prospective Observational Study

Authors: Desalegn Feyissa Desu


Drug therapy problem is a significant challenge to provide high quality health care service for the patients. It is associated with morbidity, mortality, increased hospital stay, and reduced quality of life. Moreover, pediatric patients are quite susceptible to drug therapy problems. Thus this study aimed to assess drug therapy problem and its contributing factors among pediatric patients diagnosed with infectious disease admitted to pediatric ward of Jimma university medical center, from April 1 to June 30, 2018. Prospective observational study was conducted among pediatric patients with infectious disease admitted from April 01 to June 30, 2018. Drug therapy problems were identified by using Cipolle’s and strand’s drug related problem classification method. Patient’s written informed consent was obtained after explaining the purpose of the study. Patient’s specific data were collected using structured questionnaire. Data were entered into Epi data version 4.0.2 and then exported to statistical software package version 21.0 for analysis. To identify predictors of drug therapy problems occurrence, multiple stepwise backward logistic regression analysis was done. The 95% CI was used to show the accuracy of data analysis and statistical significance was considered at p-value < 0.05. A total of 304 pediatric patients were included in the study. Of these, 226(74.3%) patients had at least one drug therapy problem during their hospital stay. A total of 356 drug therapy problems were identified among two hundred twenty six patients. Non-compliance (28.65%) and dose too low (27.53%) were the most common type of drug related problems while disease comorbidity [AOR=3.39, 95% CI= (1.89-6.08)], Polypharmacy [AOR=3.16, 95% CI= (1.61-6.20)] and more than six days stay in hospital [AOR=3.37, 95% CI= (1.71-6.64) were independent predictors of drug therapy problem occurrence. Drug therapy problems were common in pediatric patients with infectious disease in the study area. Presence of comorbidity, polypharmacy and prolonged hospital stay were the predictors of drug therapy problem in study area. Therefore, to overcome the significant gaps in pediatric pharmaceutical care, clinical pharmacists, Pediatricians, and other health care professionals have to work in collaboration.

Keywords: Pediatric, Infectious Disease, Ethiopia, drug therapy problem

Procedia PDF Downloads 2
1 Metagenomic analysis of Irish cattle faecal samples using Oxford Nanopore MinION Next Generation Sequencing

Authors: Niamh Higgins, Dawn Howard


The Irish agri-food sector is of major importance to Ireland’s manufacturing sector and to the Irish economy through employment and the exporting of animal products worldwide. Infectious diseases and parasites have an impact on farm animal health causing profitability and productivity to be affected. For the sustainability of Irish dairy farming, there must be the highest standard of animal health. There can be a lack of information in accounting for > 1% of complete microbial diversity in an environment. There is the tendency of culture-based methods of microbial identification to overestimate the prevalence of species which grow easily on an agar surface. There is a need for new technologies to address these issues to assist with animal health. Metagenomic approaches provide information on both the whole genome and transcriptome present through DNA sequencing of total DNA from environmental samples producing high determination of functional and taxonomic information. Nanopore Next Generation Technologies have the ability to be powerful sequencing technologies. They provide high throughput, low material requirements and produce ultra-long reads, simplifying the experimental process. The aim of this study is to use a metagenomics approach to analyze dairy cattle faecal samples using the Oxford Nanopore MinION Next Generation Sequencer and to establish an in-house pipeline for metagenomic characterization of complex samples. Faecal samples will be obtained from Irish dairy farms, DNA extracted and the MinION will be used for sequencing, followed by bioinformatics analysis. Of particular interest, will be the parasite Buxtonella sulcata, which there has been little research on and which there is no research on its presence on Irish dairy farms. Preliminary results have shown the ability of the MinION to produce hundreds of reads in a relatively short time frame of eight hours. The faecal samples were obtained from 90 dairy cows on a Galway farm. The results from Oxford Nanopore ‘What’s in my pot’ (WIMP) using the Epi2me workflow, show that from a total of 926 classified reads, 87% were from the Kingdom Bacteria, 10% were from the Kingdom Eukaryota, 3% were from the Kingdom Archaea and < 1% were from the Kingdom Viruses. The most prevalent bacteria were those from the Genus Acholeplasma (71 reads), Bacteroides (35 reads), Clostridium (33 reads), Acinetobacter (20 reads). The most prevalent species present were those from the Genus Acholeplasma and included Acholeplasma laidlawii (39 reads) and Acholeplasma brassicae (26 reads). The preliminary results show the ability of the MinION for the identification of microorganisms to species level coming from a complex sample. With ongoing optimization of the pipe-line, the number of classified reads are likely to increase. Metagenomics has the potential in animal health for diagnostics of microorganisms present on farms. This would support wprevention rather than a cure approach as is outlined in the DAFMs National Farmed Animal Health Strategy 2017-2022.

Keywords: animal health, Infectious Disease, Metagenomics, Next Generation Sequencing, buxtonella sulcata, irish dairy cattle, minION

Procedia PDF Downloads 1