Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7

Genes Related Abstracts

7 Bone Mineral Density in Egyptian Children with Familial Mediterranean Fever

Authors: S. Salah, S. A. El-Masry, H. F. Sheba, R. A. El-Banna, W. Saad


Background: Familial Mediterranean fever (FMF) has episodic or subclinical inflammation that may lead to a decrease in bone mineral density (BMD). Objective: To assess BMD in Egyptian children with FMF on genetic basis. Subjects and Methods: A cross sectional study included 45 FMF patients and 25 control children of both sexes, with age range between 3-16 years old. The patients were reclassified into 2 groups: Group I (A) 23 cases used colchicines for 1 month or less, and Group I (B) 22 cases used colchicines for more than 6 months. For both patients and control, MEFV mutations were defined using molecular genetics technique and BMD was measured by DXA at 2 sites: proximal femur and the lumber spines. Results: four frequent gene mutations were found in the patient group: E148Q (35.6%), V726A (33.3%), M680I (28.9.0%) and M694V (2.2%). There were also 4 heterozygous gene mutations in 40% of control children. Patients received colchicines treatment for less than 1 month had highly significant lower values of BMD at femur and lumber spines than control children (p<0.05). Patients received colchicines treatment for more than 6 months had improved values of BMD at femur compared to control, but there were still significant differences between them at lumbar spine (p>0.05). There are insignificant effect of type of gene mutation on BMD and the risk of osteopenia among the patients. Conclusion: FMF had significant effect on BMD. However, regular use of colchicines treatment improves this effect mainly at femur.

Keywords: Children, Genes, familial mediterranean fever, bone mineral density

Procedia PDF Downloads 285
6 New Approach to Construct Phylogenetic Tree

Authors: Ouafae Baida, Najma Hamzaoui, Maha Akbib, Abdelfettah Sedqui, Abdelouahid Lyhyaoui


Numerous scientific works present various methods to analyze the data for several domains, specially the comparison of classifications. In our recent work, we presented a new approach to help the user choose the best classification method from the results obtained by every method, by basing itself on the distances between the trees of classification. The result of our approach was in the form of a dendrogram contains methods as a succession of connections. This approach is much needed in phylogeny analysis. This discipline is intended to analyze the sequences of biological macro molecules for information on the evolutionary history of living beings, including their relationship. The product of phylogeny analysis is a phylogenetic tree. In this paper, we recommend the use of a new method of construction the phylogenetic tree based on comparison of different classifications obtained by different molecular genes.

Keywords: Genes, Classification Methods, phylogenetic analysis, hierarchical classification, structure of tree

Procedia PDF Downloads 360
5 Disturbed Cellular Iron Metabolism Genes in Neurodevelopmental Disorders is Different from Neurodegenerative Disorders

Authors: O. H. Gebril, N. A. Meguid


Background: Iron had been a focus of interest recently as a main exaggerating factor for oxidative stresses in the central nervous system and a link to various neurological disorders is suspected. Many studies with various techniques showed evidence of disturbed iron-related proteins in the cell in human and animal models of neurodegenerative disorders. Also, linkage to significant pathological changes had been evidenced e.g. apoptosis and cell signaling. On the other hand, the role of iron in neurodevelopmental disorders is still unclear. With increasing prevalence of autism worldwide, some changes in iron parameters and its stores were documented in many studies. This study includes Haemochromatosis HFE gene polymorphisms (p.H63D and p.C282Y) and ferroportin gene (SLC40A1) Q248H polymorphism in autism and control children. Materials and Methods: Whole genome DNA was extracted; p.H63D and p.C282Y genotyping was studied using specific sequence amplification followed by restriction enzyme digestion on a sample of autism patients (25 cases) and twenty controls. Results: The p.H63D is seen more than the C282Y among both autism and control samples, with no significant association of p.H63D or p.C282Y polymorphism and autism was revealed. Also, no association with Q248H polymorphism was evidenced. Conclusion: The study results do not prove the role of cellular iron genes polymorphisms as risk factors for neurodevelopmental disorders, and in turn highlights the specificity of cellular iron related pathways in neurodegeneration. These results demand further gene expression studies to elucidate the main pathophysiological pathways that are disturbed in autism and other neurodevelopmental disorders.

Keywords: Genes, Oxidative Stress, Iron, neurodevelopmental, haemohromatosis, ferroportin

Procedia PDF Downloads 265
4 Molecular Characterization of Ovine Herpesvirus 2 Strains Based on Selected Glycoprotein and Tegument Genes

Authors: Fulufhelo Amanda Doboro, Kgomotso Sebeko, Stephen Njiro, Moritz Van Vuuren


Ovine herpesvirus 2 (OvHV-2) genome obtained from the lymphopblastoid cell line of a BJ1035 cow was recently sequenced in the United States of America (USA). Information on the sequences of OvHV-2 genes obtained from South African strains from bovine or other African countries and molecular characterization of OvHV-2 is not documented. Present investigation provides information on the nucleotide and derived amino acid sequences and genetic diversity of Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes, of these genes from OvHV-2 strains circulating in South Africa. Gene-specific primers were designed and used for PCR of DNA extracted from 42 bovine blood samples that previously tested positive for OvHV-2. The expected PCR products of 495 bp, 253 bp, 890 bp and 1632 bp respectively for Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes were sequenced and multiple sequence analysis done on the selected regions of the sequenced PCR products. Two genotypes for ORF 27 and ORF 73 gene sequences, and three genotypes for Ov 7 and Ov 8 ex2 gene sequences were identified, and similar groupings for the derived amino acid sequences were obtained for each gene. Nucleotide and amino acid sequence variations that led to the identification of the different genotypes included SNPs, deletions and insertions. Sequence analysis of Ov 7 and ORF 27 genes revealed variations that distinguished between sequences from SA and reference OvHV-2 strains. The implication of geographic origin among SA sequences was difficult to evaluate because of random distribution of genotypes in the different provinces, for each gene. However, socio-economic factors such as migration of people with animals, or transportation of animals for agricultural or business use from one province to another are most likely to be responsible for this observation. The sequence variations observed in this study have no impact on the antibody binding activities of glycoproteins encoded by Ov 7, Ov 8 ex2 and ORF 27 genes, as determined by prediction of the presence of B cell epitopes using BepiPred 1.0. The findings of this study will be used for selection of gene candidates for the development of diagnostic assays and vaccine development as well.

Keywords: Genes, Genetic Diversity, Amino Acid, nucleotide

Procedia PDF Downloads 381
3 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model

Authors: Nicolae Bold, Daniel Nijloveanu


The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.

Keywords: Genes, Genetic Algorithm, Chromosomes, cropping

Procedia PDF Downloads 268
2 Biofertilization of Cucumber (Cucumis sativus L.) Using Trichoderma longibrachiatum

Authors: Kehinde T. Kareem


The need to increase the production of cucumber has led to the use of inorganic fertilizers. This chemical affects the ecological balance of nature by increasing the nitrogen and phosphorus contents of the soil. Surface runoffs into rivers and streams cause eutrophication which affects aquatic organisms as well as the consumers of aquatic animals. Therefore, this study was carried out in the screenhouse to investigate the use of a plant growth-promoting fungus; Trichoderma longibrachiatum for the growth promotion of conventional and in-vitro propagated Ashley and Marketmoor cucumber. Before planting of cucumber, spore suspension (108 cfu/ml) of Trichoderma longibrachiatum grown on Potato dextrose agar (PDA) was inoculated into the soil. Fruits were evaluated for the presence of Trichoderma longibrachiatum using a species-specific primer. Results revealed that the highest significant plant height produced by in-vitro propagated Ashley was 19 cm while the highest plant height of in-vitro propagated Marketmoor was 19.67 cm. The yield of the conventional propagated Ashley cucumber showed that the number of fruit/plant obtained from T. longibrachiatum-fertilized plants were significantly more than those of the control. The in-vitro Ashely had 7 fruits/plant while the control produced 4 fruits/plant. In-vitro Marketmoor had ten fruits/plant, and the control had a value of 4 fruits/plant. There were no traces of Trichoderma longibrachiatum genes in the harvested cucumber fruits. Therefore, the use of Trichoderma longibrachiatum as a plant growth-promoter is safe for human health as well as the environment.

Keywords: Genes, propagation, Biofertilizer, in-vitro, cucumber, growth-promoter

Procedia PDF Downloads 127
1 Unzipping the Stress Response Genes in Moringa oleifera Lam. through Transcriptomics

Authors: Vivian A. Panes, Raymond John S. Rebong, Miel Q. Diaz


Moringa oleifera Lam. is known mainly for its high nutritional value and medicinal properties contributing to its popular reputation as a 'miracle plant' in the tropical climates where it usually grows. The main objective of this study is to discover the genes and gene products involved in abiotic stress-induced activity that may impact the M. oleifera Lam. mature seeds as well as their corresponding functions. In this study, RNA-sequencing and de novo transcriptome assembly were performed using two assemblers, Trinity and Oases, which produced 177,417 and 120,818 contigs respectively. These transcripts were then subjected to various bioinformatics tools such as Blast2GO, UniProt, KEGG, and COG for gene annotation and the analysis of relevant metabolic pathways. Furthermore, FPKM analysis was performed to identify gene expression levels. The sequences were filtered according to the 'response to stress' GO term since this study dealt with stress response. Clustered Orthologous Groups (COG) showed that the highest frequencies of stress response gene functions were those of cytoskeleton which make up approximately 14% and 23% of stress-related sequences under Trinity and Oases respectively, recombination, repair and replication at 11% and 14% respectively, carbohydrate transport and metabolism at 23% and 9% respectively and defense mechanisms 16% and 12% respectively. KEGG pathway analysis determined the most abundant stress-response genes in the phenylpropanoid biosynthesis at counts of 187 and 166 pathways for Oases and Trinity respectively, purine metabolism at 123 and 230 pathways, and biosynthesis of antibiotics at 105 and 102. Unique and cumulative GO term counts revealed that majority of the stress response genes belonged to the category of cellular response to stress at cumulative counts of 1,487 to 2,187 for Oases and Trinity respectively, defense response at 754 and 1,255, and response to heat at 213 and 208, response to water deprivation at 229 and 228, and oxidative stress at 508 and 488. Lastly, FPKM was used to determine the levels of expression of each stress response gene. The most upregulated gene encodes for thiamine thiazole synthase chloroplastic-like enzyme which plays a significant role in DNA damage tolerance. Data analysis implies that M. oleifera stress response genes are directed towards the effects of climate change more than other stresses indicating the potential of M. oleifera for cultivation in harsh environments because it is resistant to climate change, pathogens, and foreign invaders.

Keywords: Transcriptomics, Genes, Stress Response, Moringa oleifera

Procedia PDF Downloads 9