Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Gamma Spectrometry Related Abstracts

4 Environmental Radioactivity Analysis by a Sequential Approach

Authors: G. Medkour Ishak-Boushaki, A. Taibi, M. Allab


Quantitative environmental radioactivity measurements are needed to determine the level of exposure of a population to ionizing radiations and for the assessment of the associated risks. Gamma spectrometry remains a very powerful tool for the analysis of radionuclides present in an environmental sample but the basic problem in such measurements is the low rate of detected events. Using large environmental samples could help to get around this difficulty but, unfortunately, new issues are raised by gamma rays attenuation and self-absorption. Recently, a new method has been suggested, to detect and identify without quantification, in a short time, a gamma ray of a low count source. This method does not require, as usually adopted in gamma spectrometry measurements, a pulse height spectrum acquisition. It is based on a chronological record of each detected photon by simultaneous measurements of its energy ε and its arrival time τ on the detector, the pair parameters [ε,τ] defining an event mode sequence (EMS). The EMS serials are analyzed sequentially by a Bayesian approach to detect the presence of a given radioactive source. The main object of the present work is to test the applicability of this sequential approach in radioactive environmental materials detection. Moreover, for an appropriate health oversight of the public and of the concerned workers, the analysis has been extended to get a reliable quantification of the radionuclides present in environmental samples. For illustration, we consider as an example, the problem of detection and quantification of 238U. Monte Carlo simulated experience is carried out consisting in the detection, by a Ge(Hp) semiconductor junction, of gamma rays of 63 keV emitted by 234Th (progeny of 238U). The generated EMS serials are analyzed by a Bayesian inference. The application of the sequential Bayesian approach, in environmental radioactivity analysis, offers the possibility of reducing the measurements time without requiring large environmental samples and consequently avoids the attached inconvenient. The work is still in progress.

Keywords: Gamma Spectrometry, monte carlo method, bayesian approach, event mode sequence

Procedia PDF Downloads 383
3 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates

Authors: R. Deju, M. Mincu, D. Gurau


During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.

Keywords: Waste Management, Gamma Spectrometry, leaching behavior, reuse and recycling of radioactive concrete

Procedia PDF Downloads 116
2 Radioactive Contamination by ¹³⁷Cs in Marine Sediments Taken up from Cuba's North and South Coast

Authors: Marisé García Batlle, Juan Manuel Navarrete Tejero


In aquatic ecosystems, the main indicators of pollution are contaminated sediments, which are the primary repository of radionuclides and chemicals elements in the marine environment. Radioactive Contamination Factor (RCF) has been proposed as a suitable unit to measure the magnitude of radioactive contamination at global scale, caused mainly by more than 2,000 nuclear explosions tests performed during the 1945-65 period. It is obtained as percentage of contaminant radioactivity (¹³⁷Cs) compared to natural radioactivity (⁴⁰K), both expressed in Bq/g of marine sediments conditioned in Marinelli containers and detected in both NaI(Tl) and HPGe detectors. So, in this paper samples of marine sediments were taken up along the occidental Cuban coasts and analyzed by gamma spectrometry for the determination of gamma-emitting radioisotopes with energies between 60 and 2000 keV. The results proved that the proposed method is simple and suitable to evaluated radioactive contamination. Also, the RCF values provide an appropriate indicator to predict which pollution levels in the future will be and if the rate will go down as disintegrates the ¹³⁷Cs present when only 2,4 half-lives have passed away.

Keywords: Marine Sediments, Radioactive Pollution, Gamma Spectrometry, Cuba

Procedia PDF Downloads 90
1 Radioactivity Assessment of Sediments in Negombo Lagoon Sri Lanka

Authors: H. M. N. L. Handagiripathira


The distributions of naturally occurring and anthropogenic radioactive materials were determined in surface sediments taken at twenty seven different locations along the bank of Negombo Lagoon in Sri Lanka. Hydrographic parameters of lagoon water and the grain size analysis of the sediment samples were also carried out for this study. The conductivity of the adjacent water was varied from 13.6 mS/cm to 55.4 mS/cm near the southern end, and the northern end of the lagoon, respectively, and equally salinity levels were varied from 7.2 psu to 32.1 psu. The average pH in the water was 7.6, and average water temperature was 28.7 °C. The grain size analysis was emphasized the mass fractions of the samples as sand (60.9 %), fine sand (30.6 %), and fine slit + clay (1.3 %) in the sampling locations. The surface sediment samples of wet weight, 1 kg each from upper 5-10 cm layer were oven dried at 105 °C for 24 hours to get a constant weight, homogenized and sieved through a 2 mm sieve (IAEA technical series no. 295). The radioactivity concentrations were determined using gamma spectrometry technique. Ultra Low Background Broad Energy High Purity Ge Detector, BEGe (Model BE5030, Canberra) was used for radioactivity measurement with Canberra Industries' Laboratory Source-less Calibration Software (LabSOCS) mathematical efficiency calibration approach and Geometry composer software. The mean activity concentration was found to be 24 ± 4, 67 ± 9, 181 ± 10, 59 ± 8, 3.5 ± 0.4 and 0.47 ± 0.08 Bq/kg for 238U, 232Th, 40K, 210Pb, 235U and 137Cs respectively. The mean absorbed dose rate in air, radium equivalent activity, external hazard index, annual gonadal dose equivalent, and annual effective dose equivalent were 60.8 nGy/h, 137.3 Bq/kg, 0.4, 425.3 mSv/year, and 74.6 mSv/year, respectively. The results of this study will provide baseline information on the natural and artificial radioactive isotopes and environmental pollution associated with information on radiological risk.

Keywords: Radioactivity, Sediments, Gamma Spectrometry, lagoon

Procedia PDF Downloads 1