Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15

Gait Analysis Related Abstracts

15 A Low-Cost of Foot Plantar Shoes for Gait Analysis

Authors: Zulkifli Ahmad, Mohd Razlan Azizan, Nasrul Hadi Johari


This paper presents a study on development and conducting of a wearable sensor system for gait analysis measurement. For validation, the method of plantar surface measurement by force plate was prepared. In general gait analysis, force plate generally represents a studies about barefoot in whole steps and do not allow analysis of repeating movement step in normal walking and running. The measurements that were usually perform do not represent the whole daily plantar pressures in the shoe insole and only obtain the ground reaction force. The force plate measurement is usually limited a few step and it is done indoor and obtaining coupling information from both feet during walking is not easily obtained. Nowadays, in order to measure pressure for a large number of steps and obtain pressure in each insole part, it could be done by placing sensors within an insole. With this method, it will provide a method for determine the plantar pressures while standing, walking or running of a shoe wearing subject. Inserting pressure sensors in the insole will provide specific information and therefore the point of the sensor placement will result in obtaining the critical part under the insole. In the wearable shoe sensor project, the device consists left and right shoe insole with ten FSR. Arduino Mega was used as a micro-controller that read the analog input from FSR. The analog inputs were transmitted via bluetooth data transmission that gains the force data in real time on smartphone. Blueterm software which is an android application was used as an interface to read the FSR reading on the shoe wearing subject. The subject consist of two healthy men with different age and weight doing test while standing, walking (1.5 m/s), jogging (5 m/s) and running (9 m/s) on treadmill. The data obtain will be saved on the android device and for making an analysis and comparison graph.

Keywords: Plantar Pressure, Gait Analysis, force plate, earable sensor

Procedia PDF Downloads 292
14 Analysis Of Fine Motor Skills in Chronic Neurodegenerative Models of Huntington’s Disease and Amyotrophic Lateral Sclerosis

Authors: T. Ahtoniemi, A. Nurmi, T. Heikkinen, J. Oksman, T. Bragge, O. Kontkanen


Motor impairment is an inherent phenotypic feature of several chronic neurodegenerative diseases, and pharmacological therapies aimed to counterbalance the motor disability have a great market potential. Animal models of chronic neurodegenerative diseases display a number deteriorating motor phenotype during the disease progression. There is a wide array of behavioral tools to evaluate motor functions in rodents. However, currently existing methods to study motor functions in rodents are often limited to evaluate gross motor functions only at advanced stages of the disease phenotype. The most commonly applied traditional motor assays used in CNS rodent models, lack the sensitivity to capture fine motor impairments or improvements. Fine motor skill characterization in rodents provides a more sensitive tool to capture more subtle motor dysfunctions and therapeutic effects. Importantly, similar approach, kinematic movement analysis, is also used in clinic, and applied both in diagnosis and determination of therapeutic response to pharmacological interventions. The aim of this study was to apply kinematic gait analysis, a novel and automated high precision movement analysis system, to characterize phenotypic deficits in three different chronic neurodegenerative animal models, a transgenic mouse model (SOD1 G93A) for amyotrophic lateral sclerosis (ALS), and R6/2 and Q175KI mouse models for Huntington’s disease (HD). The readouts from walking behavior included gait properties with kinematic data, and body movement trajectories including analysis of various points of interest such as movement and position of landmarks in the torso, tail and joints. Mice (transgenic and wild-type) from each model were analyzed for the fine motor kinematic properties at young ages, prior to the age when gross motor deficits are clearly pronounced. Fine motor kinematic Evaluation was continued in the same animals until clear motor dysfunction with conventional motor assays was evident. Time course analysis revealed clear fine motor skill impairments in each transgenic model earlier than what is seen with conventional gross motor tests. Motor changes were quantitatively analyzed for up to ~80 parameters, and the largest data sets of HD models were further processed with principal component analysis (PCA) to transform the pool of individual parameters into a smaller and focused set of mutually uncorrelated gait parameters showing strong genotype difference. Kinematic fine motor analysis of transgenic animal models described in this presentation show that this method isa sensitive, objective and fully automated tool that allows earlier and more sensitive detection of progressive neuromuscular and CNS disease phenotypes. As a result of the analysis a comprehensive set of fine motor parameters for each model is created, and these parameters provide better understanding of the disease progression and enhanced sensitivity of this assay for therapeutic testing compared to classical motor behavior tests. In SOD1 G93A, R6/2, and Q175KI mice, the alterations in gait were evident already several weeks earlier than with traditional gross motor assays. Kinematic testing can be applied to a wider set of motor readouts beyond gait in order to study whole body movement patterns such as with relation to joints and various body parts longitudinally, providing a sophisticated and translatable method for disseminating motor components in rodent disease models and evaluating therapeutic interventions.

Keywords: Gait Analysis, kinematic, motor impairment, inherent feature

Procedia PDF Downloads 243
13 Quantitative Analysis of Camera Setup for Optical Motion Capture Systems

Authors: J. T. Pitale, S. Ghassab, H. Ay, N. Berme


Biomechanics researchers commonly use marker-based optical motion capture (MoCap) systems to extract human body kinematic data. These systems use cameras to detect passive or active markers placed on the subject. The cameras use triangulation methods to form images of the markers, which typically require each marker to be visible by at least two cameras simultaneously. Cameras in a conventional optical MoCap system are mounted at a distance from the subject, typically on walls, ceiling as well as fixed or adjustable frame structures. To accommodate for space constraints and as portable force measurement systems are getting popular, there is a need for smaller and smaller capture volumes. When the efficacy of a MoCap system is investigated, it is important to consider the tradeoff amongst the camera distance from subject, pixel density, and the field of view (FOV). If cameras are mounted relatively close to a subject, the area corresponding to each pixel reduces, thus increasing the image resolution. However, the cross section of the capture volume also decreases, causing reduction of the visible area. Due to this reduction, additional cameras may be required in such applications. On the other hand, mounting cameras relatively far from the subject increases the visible area but reduces the image quality. The goal of this study was to develop a quantitative methodology to investigate marker occlusions and optimize camera placement for a given capture volume and subject postures using three-dimension computer-aided design (CAD) tools. We modeled a 4.9m x 3.7m x 2.4m (LxWxH) MoCap volume and designed a mounting structure for cameras using SOLIDWORKS (Dassault Systems, MA, USA). The FOV was used to generate the capture volume for each camera placed on the structure. A human body model with configurable posture was placed at the center of the capture volume on CAD environment. We studied three postures; initial contact, mid-stance, and early swing. The human body CAD model was adjusted for each posture based on the range of joint angles. Markers were attached to the model to enable a full body capture. The cameras were placed around the capture volume at a maximum distance of 2.7m from the subject. We used the Camera View feature in SOLIDWORKS to generate images of the subject as seen by each camera and the number of markers visible to each camera was tabulated. The approach presented in this study provides a quantitative method to investigate the efficacy and efficiency of a MoCap camera setup. This approach enables optimization of a camera setup through adjusting the position and orientation of cameras on the CAD environment and quantifying marker visibility. It is also possible to compare different camera setup options on the same quantitative basis. The flexibility of the CAD environment enables accurate representation of the capture volume, including any objects that may cause obstructions between the subject and the cameras. With this approach, it is possible to compare different camera placement options to each other, as well as optimize a given camera setup based on quantitative results.

Keywords: Biomechanics, Gait Analysis, motion capture, cameras

Procedia PDF Downloads 200
12 Design and Development of Optical Sensor Based Ground Reaction Force Measurement Platform for GAIT and Geriatric Studies

Authors: K. Chethana, A. S. Guru Prasad, S. N. Omkar, B. Vadiraj, S. Asokan


This paper describes an ab-initio design, development and calibration results of an Optical Sensor Ground Reaction Force Measurement Platform (OSGRFP) for gait and geriatric studies. The developed system employs an array of FBG sensors to measure the respective ground reaction forces from all three axes (X, Y and Z), which are perpendicular to each other. The novelty of this work is two folded. One is in its uniqueness to resolve the tri axial resultant forces during the stance in to the respective pure axis loads and the other is the applicability of inherently advantageous FBG sensors which are most suitable for biomechanical instrumentation. To validate the response of the FBG sensors installed in OSGRFP and to measure the cross sensitivity of the force applied in other directions, load sensors with indicators are used. Further in this work, relevant mathematical formulations are presented for extracting respective ground reaction forces from wavelength shifts/strain of FBG sensors on the OSGRFP. The result of this device has implications in understanding the foot function, identifying issues in gait cycle and measuring discrepancies between left and right foot. The device also provides a method to quantify and compare relative postural stability of different subjects under test, which has implications in post surgical rehabilitation, geriatrics and optimizing training protocols for sports personnel.

Keywords: Gait Analysis, balance and stability, FBG applications, optical sensor ground reaction force platform

Procedia PDF Downloads 275
11 The Effect of Foot Progression Angle on Human Lower Extremity

Authors: Sungpil Ha, Ju Yong Kang, Sangbaek Park, Seung-Ju Lee, Soo-Won Chae


The growing number of obese patients in aging societies has led to an increase in the number of patients with knee medial osteoarthritis (OA). Artificial joint insertion is the most common treatment for knee medial OA. Surgery is effective for patients with serious arthritic symptoms, but it is costly and dangerous. It is also inappropriate way to prevent a disease as an early stage. Therefore Non-operative treatments such as toe-in gait are proposed recently. Toe-in gait is one of non-surgical interventions, which restrain the progression of arthritis and relieves pain by reducing knee adduction moment (KAM) to facilitate lateral distribution of load on to knee medial cartilage. Numerous studies have measured KAM in various foot progression angle (FPA), and KAM data could be obtained by motion analysis. However, variations in stress at knee cartilage could not be directly observed or evaluated by these experiments of measuring KAM. Therefore, this study applied motion analysis to major gait points (1st peak, mid –stance, 2nd peak) with regard to FPA, and to evaluate the effects of FPA on the human lower extremity, the finite element (FE) method was employed. Three types of gait analysis (toe-in, toe-out, baseline gait) were performed with markers placed at the lower extremity. Ground reaction forces (GRF) were obtained by the force plates. The forces associated with the major muscles were computed using GRF and marker trajectory data. MRI data provided by the Visible Human Project were used to develop a human lower extremity FE model. FE analyses for three types of gait simulations were performed based on the calculated muscle force and GRF. We observed the maximum stress point during toe-in gait was lower than the other types, by comparing the results of FE analyses at the 1st peak across gait types. This is the same as the trend exhibited by KAM, measured through motion analysis in other papers. This indicates that the progression of knee medial OA could be suppressed by adopting toe-in gait. This study integrated motion analysis with FE analysis. One advantage of this method is that re-modeling is not required even with changes in posture. Therefore another type of gait simulation or various motions of lower extremity can be easily analyzed using this method.

Keywords: Finite Element Analysis, Gait Analysis, Human Model, motion capture

Procedia PDF Downloads 211
10 The Clinical Effectiveness of Off-The-Shelf Foot Orthoses on the Dynamics of Gait in Patients with Early Rheumatoid Arthritis

Authors: Vicki Cameron


Background: Rheumatoid Arthritis (RA) typically effects the feet and about 20% of patients present initially with foot and ankle symptoms. Custom moulded foot orthoses (FO) in the management of foot and ankle problems in RA is well documented in the literature. Off-the-shelf FO are thought to provide an effective alternative to custom moulded FO in patients with RA, however they are not evidence based. Objectives: To determine the effects of off-the-shelf FO on; 1. quality of life (QOL) 2. walking speed 4. peak plantar pressure in the forefoot (PPPft) Methods: Thirty-five patients (six male and 29 female) participated in the study from 11/2006 to 07/2008. The age of the patients ranged from 26 to 80 years (mean 52.4 years; standard deviation [SD] 13.3 years). A repeated measures design was used, with patients presenting at baseline, three months and six months. Patients were tested walking barefoot, shod and shod with FO. The type of orthoses used was the Slimflex Plastic ® (Algeos). The Leeds Foot Impact Scale (LFIS) was used to investigate QOL. The Vicon 612 motion analysis system was used to determine the effect of FO on walking speed. The F-scan walkway and in-shoe systems provided information of the effect on PPPft. Ethical approval was obtained on 07/2006. Data was analysed using SPSS version 15.0. Results/Discussion: The LFIS data was analysed with a repeated measures ANOVA. There was a significant improvement in the LFIS score with the use of the FO over the six months (p<0.01). A significant increase in walking speed with the orthoses was observed (p<0.01). Peak plantar pressure in the forefoot was reduced with the FO, as shown by a non-parametric Friedman’s test (chi-square = 55.314, df=2, p<0.05). Conclusion: The results show that off-the-shelf FO are effective in managing foot problems in patients with RA. Patients reported an improved QOL with the orthoses, and further objective measurements were quantified to provide a rationale for this change. Patients demonstrated an increased walking speed, which has been shown to be associated with reduced pain. The FO decreased PPPft which have been reported as a site of pain and ulceration in patients with RA. Salient Clinical Points: Off-the-shelf FO offer an effective alternative to custom moulded FO, and can be dispensed at the chair side. This is crucial in the management of foot problems associated with RA as early intervention is advocated due to the chronic and progressive nature of the disease.

Keywords: Podiatry, Rheumatoid Arthritis, Gait Analysis, foot orthoses

Procedia PDF Downloads 139
9 Analysis of the Gait Characteristics of Soldier between the Normal and Loaded Gait

Authors: Ji-il Park, Min Kyu Yu, Jong-woo Lee, Sam-hyeon Yoo


The purpose of this research is to analyze the gait strategy between the normal and loaded gait. To this end, five male participants satisfied two conditions: the normal and loaded gait (backpack load 25.2 kg). As expected, results showed that additional loads elicited not a proportional increase in vertical and shear ground reaction force (GRF) parameters but also increase of the impulse, momentum and mechanical work. However, in case of the loaded gait, the time duration of the double support phase was increased unexpectedly. It is because the double support phase which is more stable than the single support phase can reduce instability of the loaded gait. Also, the directions of the pre-collision and after-collision were moved upward and downward compared to the normal gait. As a result, regardless of the additional backpack load, the impulse-momentum diagram during the step-to-step transition was maintained such as the normal gait. It means that human walk efficiently to keep stability and minimize total net works in case of the loaded gait.

Keywords: Gait Analysis, collision, normal gait, loaded gait, impulse, mechanical work, backpack load

Procedia PDF Downloads 159
8 Stress Evaluation at Lower Extremity during Walking with Unstable Shoe

Authors: Sangbaek Park, Soo-Won Chae, Seungju Lee


Unstable shoes are known to strengthen lower extremity muscles and improve gait ability and to change the user’s gait pattern. The change in gait pattern affects human body enormously because the walking is repetitive and steady locomotion in daily life. It is possible to estimate the joint motion including joint moment, force and inertia effect using kinematic and kinetic analysis. However, the change of internal stress at the articular cartilage has not been possible to estimate. The purpose of this research is to evaluate the internal stress of human body during gait with unstable shoes. In this study, FE analysis was combined with motion capture experiment to obtain the boundary condition and loading condition during walking. Motion capture experiments were performed with a participant during walking with normal shoes and with unstable shoes. Inverse kinematics and inverse kinetic analysis was performed with OpenSim. The joint angle and muscle forces were estimated as results of inverse kinematics and kinetics analysis. A detailed finite element (FE) lower extremity model was constructed. The joint coordinate system was added to the FE model and the joint coordinate system was coincided with OpenSim model’s coordinate system. Finally, the joint angles at each phase of gait were used to transform the FE model’s posture according to actual posture from motion capture. The FE model was transformed into the postures of three major phases (1st peak of ground reaction force, mid stance and 2nd peak of ground reaction force). The direction and magnitude of muscle force were estimated by OpenSim and were applied to the FE model’s attachment point of each muscle. Then FE analysis was performed to compare the stress at knee cartilage during gait with normal shoes and unstable shoes.

Keywords: Finite Element Analysis, Gait Analysis, Human Model, motion capture

Procedia PDF Downloads 194
7 Design of a Low-Cost, Portable, Sensor Device for Longitudinal, At-Home Analysis of Gait and Balance

Authors: Claudia Norambuena, Myissa Weiss, Maria Ruiz Maya, Matthew Straley, Elijah Hammond, Benjamin Chesebrough, David Grow


The purpose of this project is to develop a low-cost, portable sensor device that can be used at home for long-term analysis of gait and balance abnormalities. One area of particular concern involves the asymmetries in movement and balance that can accompany certain types of injuries and/or the associated devices used in the repair and rehabilitation process (e.g. the use of splints and casts) which can often increase chances of falls and additional injuries. This device has the capacity to monitor a patient during the rehabilitation process after injury or operation, increasing the patient’s access to healthcare while decreasing the number of visits to the patient’s clinician. The sensor device may thereby improve the quality of the patient’s care, particularly in rural areas where access to the clinician could be limited, while simultaneously decreasing the overall cost associated with the patient’s care. The device consists of nine interconnected accelerometer/ gyroscope/compass chips (9-DOF IMU, Adafruit, New York, NY). The sensors attach to and are used to determine the orientation and acceleration of the patient’s lower abdomen, C7 vertebra (lower neck), L1 vertebra (middle back), anterior side of each thigh and tibia, and dorsal side of each foot. In addition, pressure sensors are embedded in shoe inserts with one sensor (ESS301, Tekscan, Boston, MA) beneath the heel and three sensors (Interlink 402, Interlink Electronics, Westlake Village, CA) beneath the metatarsal bones of each foot. These sensors measure the distribution of the weight applied to each foot as well as stride duration. A small microntroller (Arduino Mega, Arduino, Ivrea, Italy) is used to collect data from these sensors in a CSV file. MATLAB is then used to analyze the data and output the hip, knee, ankle, and trunk angles projected on the sagittal plane. An open-source program Processing is then used to generate an animation of the patient’s gait. The accuracy of the sensors was validated through comparison to goniometric measurements (±2° error). The sensor device was also shown to have sufficient sensitivity to observe various gait abnormalities. Several patients used the sensor device, and the data collected from each represented the patient’s movements. Further, the sensors were found to have the ability to observe gait abnormalities caused by the addition of a small amount of weight (4.5 - 9.1 kg) to one side of the patient. The user-friendly interface and portability of the sensor device will help to construct a bridge between patients and their clinicians with fewer necessary inpatient visits.

Keywords: Rehabilitation, Gait Analysis, outpatient, biomedical sensing

Procedia PDF Downloads 163
6 Interdisciplinary Approach in Vocational Training for Orthopaedic Surgery

Authors: Olivera Lupescu, Mihail Nagea, Elena Taina Avramescu, Cristina Patru


Classical education of orthopedic surgeons involves lectures, self study, workshops and cadaver dissections, and sometimes supervised practical training within surgery, which quite seldom gives the young surgeons the feeling of being unable to apply what they have learned especially in surgical practice. The purpose of this paper is to present a different approach from the classical one, which enhances the practical skills of the orthopedic trainees and prepare them for future practice. The paper presents the content of the research project 2015-1-RO01-KA202-015230, ERASMUS+ VET ‘Collaborative learning for enhancing practical skills for patient-focused interventions in gait rehabilitation after orthopedic surgery’ which, using e learning as a basic tool , delivers to the trainees not only courses, but especially practical information through videos and case scenarios including gait analysis in order to build patient focused therapeutic plans, adapted to the characteristics of each patient. The outcome of this project is to enhance the practical skills in orthopedic surgery and the results are evaluated following the answers to the questionnaires, but especially the reactions within the case scenarios. The participants will thus follow the idea that any mistake within solving the cases might represent a failure of treating a real patient. This modern approach, besides using interactivity to evaluate the theoretical and practical knowledge of the trainee, increases the sense of responsibility, as well as the ability to react properly in real cases.

Keywords: Interdisciplinary Approach, Gait Analysis, Orthopedic Surgery, Vocational training

Procedia PDF Downloads 135
5 Percentage Contribution of Lower Limb Moments to Vertical Ground Reaction Force in Normal Walking

Authors: Salam M. Elhafez, Ahmed A. Ashour, Naglaa M. Elhafez, Ghada M. Elhafez, Azza M. Abdelmohsen


Patients suffering from gait disturbances are referred by having muscle group dysfunctions. There is a need for more studies investigating the contribution of muscle moments of the lower limb to the vertical ground reaction force using 3D gait analysis system. The purpose of this study was to investigate how the hip, knee and ankle moments in the sagittal plane contribute to the vertical ground reaction force in healthy subjects during normal speed of walking. Forty healthy male individuals volunteered to participate in this study. They were filmed using six high speed (120 Hz) Pro-Reflex Infrared cameras (Qualisys) while walking on an AMTI force platform. The data collected were the percentage contribution of the moments of the hip, knee and ankle joints in the sagittal plane at the instant of occurrence of the first peak, second peak, and the trough of the vertical ground reaction force. The results revealed that at the first peak of the ground reaction force (loading response), the highest contribution was generated from the knee extension moment, followed by the hip extension moment. Knee flexion and ankle plantar flexion moments produced high contribution to the trough of the ground reaction force (midstance) with approximately equal values. The second peak of the ground reaction force was mainly produced by the ankle plantar flexion moment. Conclusion: Hip and knee flexion and extension moments and ankle plantar flexion moment play important roles in the supporting phase of normal walking.

Keywords: Gait Analysis, ground reaction force, moment contribution, normal walking

Procedia PDF Downloads 90
4 Kinematic Analysis of Heel Height Effect on Knee Direction Correction in a Patient with Genu Recurvatum: A Case Study

Authors: Parya Salimitari, Farhad Tabatabai Ghomsheh, Siyamak Khorramymehr, Hossein Taghadosi, Mohammad Hossein Dashti


The aim of this study was to evaluate the effect of heel height on the knee joint direction in Genu recurvatum patients compared to normal state. The test was performed on a patient with Genu recurvatum and a healthy person with similar and match biomechanical conditions. Subjects were tested under six different positions of shoes with heels 0, 1, 2, 3, 4 and 5 cm after marking during the gate. The results of the spatial temporal geometry obtained from Vicon Motion System (six-camera T10 model, Oxford Metrics Ltd., Oxford, UK), and were used to compute and analyze the kinematic results. In this study, we tried to determine the effect of shoe heel intervention on knee joint direction correction. The results indicate that the 1 cm heel has been optimized and significantly improved in knee joint flexion and flexion-extension angle so that the difference in knee flexion-extension angle between the patient and the healthy person at some stages of walking has reached zero (good posture). The 3 cm heel compared with the 0 cm heel has reduced the knee recurvatum index (KRI) by up to 21.74% in the patient (from 219.233 mm to 47.6714 mm). According to the findings of this study, it can be concluded that heel increase is effective in correcting knee joints in Genu recurvatum and the optimum heel height is 1 cm.

Keywords: Kinematics, Gait Analysis, joint alignment of knee, genu recurvatum, heel lift, motion-analysis

Procedia PDF Downloads 19
3 The Biomechanical Assessment of Balance and Gait for Stroke Patients and the Implications in the Diagnosis and Rehabilitation

Authors: W. Wang, A. Alzahrani, G. Arnold


Background: Stroke commonly occurs in middle-aged and elderly populations, and the diagnosis of early stroke is still difficult. Patients who have suffered a stroke have different balance and gait patterns from healthy people. Advanced techniques of motion analysis have been routinely used in the clinical assessment of cerebral palsy. However, so far, little research has been done on the direct diagnosis of early stroke patients using motion analysis. Objectives: The aim of this study was to investigate whether patients with stroke have different balance and gait from healthy people and which biomechanical parameters could be used to predict and diagnose potential patients who are at a potential risk to stroke. Methods: Thirteen patients with stroke were recruited as subjects whose gait and balance was analysed. Twenty normal subjects at the matched age participated in this study as a control group. All subjects’ gait and balance were collected using Vicon Nexus® to obtain the gait parameters, kinetic, and kinematic parameters of the hip, knee, and ankle joints in three planes of both limbs. Participants stood on force platforms to perform a single leg balance test. Then, they were asked to walk along a 10 m walkway at their comfortable speed. Participants performed 6 trials of single-leg balance for each side and 10 trials of walking. From the recorded trials, three good ones were analysed using the Vicon Plug-in-Gait model to obtain gait parameters, e.g., walking speed, cadence, stride length, and joint parameters, e.g., joint angle, force, moments, etc. Result: The temporal-spatial variables of Stroke subjects were compared with the healthy subjects; it was found that there was a significant difference (p < 0.05) between the groups. The step length, speed, cadence were lower in stroke subjects as compared to the healthy groups. The stroke patients group showed significantly decreased in gait speed (mean and SD: 0.85 ± 0.33 m/s), cadence ( 96.71 ± 16.14 step/min), and step length (0.509 ± 017 m) in compared to healthy people group whereas the gait speed was 1.2 ± 0.11 m/s, cadence 112 ± 8.33 step/min, and step length 0.648 ± 0.43 m. Moreover, it was observed that patients with stroke have significant differences in the ankle, hip, and knee joints’ kinematics in the sagittal and coronal planes. Also, the result showed that there was a significant difference between groups in the single-leg balance test, e.g., maintaining single-leg stance time in the stroke patients showed shorter duration (5.97 ± 6.36 s) in compared to healthy people group (14.36 ± 10.20 s). Conclusion: Our result showed that there are significantly differences between stroke patients and healthy subjects in the various aspects of gait analysis and balance test, as a consequences of these findings some of the biomechanical parameters such as joints kinematics, gait parameters, and single-leg stance balance test could be used in clinical practice to predict and diagnose potential patients who are at a high risk of further stroke.

Keywords: Kinetics, Kinematics, Stroke, Gait Analysis, single-leg stance

Procedia PDF Downloads 1
2 Kinematical Analysis of Tai Chi Chuan Players during Gait and Balance Test and Implication in Rehabilitation Exercise

Authors: Bijad Alqahtani, Graham Arnold, Weijie Wang


Background—Tai Chi Chuan (TCC) is a type of traditional Chinese martial art and is considered a benefiting physical fitness. Advanced techniques of motion analysis have been routinely used in the clinical assessment. However, so far, little research has been done on the biomechanical assessment of TCC players in terms of gait and balance using motion analysis. Objectives—The aim of this study was to investigate whether TCC improves the lower limb conditions and balance ability using the state of the art motion analysis technologies, i.e. motion capture system, electromyography and force platform. Methods—Twenty TCC (9 male, 11 female) with age between (42-77) years old and weight (56.2-119 Kg), and eighteen Non-TCC participants (7 male, 11 female), weight (50-110 Kg) with age (43- 78) years old at the matched age as a control group were recruited in this study. Their gait and balance were collected using Vicon Nexus® to obtain the gait parameters, and kinematic parameters of hip, knee, and ankle joints in three planes of both limbs. Participants stood on force platforms to perform a single leg balance test. Then, they were asked to walk along a 10 m walkway at their comfortable speed. Participants performed 5 trials of single-leg balance for the dominant side. Also, the participants performed 3 trials of four square step balance and 10 trials of walking. From the recorded trials, three good ones were analyzed using the Vicon Plug-in-Gait model to obtain gait parameters, e.g. walking speed, cadence, stride length, and joint parameters, e.g. joint angle, force, moments, etc. Result— The temporal-spatial variables of TCC subjects were compared with the Non-TCC subjects, it was found that there was a significant difference (p < 0.05) between the groups. Moreover, it was observed that participants of TCC have significant differences in ankle, hip, and knee joints’ kinematics in the sagittal, coronal, and transverse planes such as ankle angle (19.90±19.54 deg) for TCC while (15.34±6.50 deg) for Non-TCC, and knee angle (14.96±6.40 deg) for TCC while (17.63±5.79 deg) for Non-TCC in the transverse plane. Also, the result showed that there was a significant difference between groups in the single-leg balance test, e.g. maintaining single leg stance time in the TCC participants showed longer duration (20.85±10.53 s) in compared to Non-TCC people group (13.39±8.78 s). While the result showed that there was no significant difference between groups in the four square step balance. Conclusion—Our result showed that there are significant differences between Tai Chi Chuan and Non-Tai Chi Chuan participants in the various aspects of gait analysis and balance test, as a consequence of these findings some of biomechanical parameters such as joints kinematics, gait parameters and single leg stance balance test, the Tai Chi Chuan could improve the lower limb conditions and could reduce a risk of fall for the elderly with ageing.

Keywords: Kinematics, Gait Analysis, single leg stance, Tai Chi Chuan

Procedia PDF Downloads 1
1 Kinematical Analysis of Normal Children in Different Age Groups during Gait

Authors: Graham Arnold, Weijie Wang, Nawaf Al Khashram


Background—Gait classifying allows clinicians to differentiate gait patterns into clinically important categories that help in clinical decision making. Reliable comparison of gait data between normal and patients requires knowledge of the gait parameters of normal children's specific age group. However, there is still a lack of the gait database for normal children of different ages. Objectives—The aim of this study is to investigate the kinematics of the lower limb joints during gait for normal children in different age groups. Methods—Fifty-three normal children (34 boys, 19 girls) were recruited in this study. All the children were aged between 5 to 16 years old. Age groups were defined as three types: young child aged (5-7), child (8-11), and adolescent (12-16). When a participant agreed to take part in the project, their parents signed a consent form. Vicon® motion capture system was used to collect gait data. Participants were asked to walk at their comfortable speed along a 10-meter walkway. Each participant walked up to 20 trials. Three good trials were analyzed using the Vicon Plug-in-Gait model to obtain parameters of the gait, e.g., walking speed, cadence, stride length, and joint parameters, e.g. joint angle, force, moments, etc. Moreover, each gait cycle was divided into 8 phases. The range of motion (ROM) angle of pelvis, hip, knee, and ankle joints in three planes of both limbs were calculated using an in-house program. Results—The temporal-spatial variables of three age groups of normal children were compared between each other; it was found that there was a significant difference (p < 0.05) between the groups. The step length and walking speed were gradually increasing from young child to adolescent, while cadence was gradually decreasing from young child to adolescent group. The mean and standard deviation (SD) of the step length of young child, child and adolescent groups were 0.502 ± 0.067 m, 0.566 ± 0.061 m and 0.672 ± 0.053 m, respectively. The mean and SD of the cadence of the young child, child and adolescent groups were 140.11±15.79 step/min, 129±11.84 step/min, and a 115.96±6.47 step/min, respectively. Moreover, it was observed that there were significant differences in kinematic parameters, either whole gait cycle or each phase. For example, RoM of knee angle in the sagittal plane in whole cycle of young child group is (65.03±0.52 deg) larger than child group (63.47±0.47 deg). Conclusion—Our result showed that there are significant differences between each age group in the gait phases and thus children walking performance changes with ages. Therefore, it is important for the clinician to consider age group when analyzing the patients with lower limb disorders before any clinical treatment.

Keywords: Kinematics, Gait Analysis, age group, normal children

Procedia PDF Downloads 1