Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 47

Forecasting Related Abstracts

47 Forecasting Model to Predict Dengue Incidence in Malaysia

Authors: W. Y. Wan Fairos, W. H. Wan Zakiyatussariroh, A. A. Nasuhar, Z. A. Nazatul Shahreen

Abstract:

Forecasting dengue incidence in a population can provide useful information to facilitate the planning of the public health intervention. Many studies on dengue cases in Malaysia were conducted but are limited in modeling the outbreak and forecasting incidence. This article attempts to propose the most appropriate time series model to explain the behavior of dengue incidence in Malaysia for the purpose of forecasting future dengue outbreaks. Several seasonal auto-regressive integrated moving average (SARIMA) models were developed to model Malaysia’s number of dengue incidence on weekly data collected from January 2001 to December 2011. SARIMA (2,1,1)(1,1,1)52 model was found to be the most suitable model for Malaysia’s dengue incidence with the least value of Akaike information criteria (AIC) and Bayesian information criteria (BIC) for in-sample fitting. The models further evaluate out-sample forecast accuracy using four different accuracy measures. The results indicate that SARIMA (2,1,1)(1,1,1)52 performed well for both in-sample fitting and out-sample evaluation.

Keywords: Forecasting, time series modeling, Box-Jenkins, SARIMA

Procedia PDF Downloads 340
46 The Role of Business Survey Measures in Forecasting Croatian Industrial Production

Authors: M. Cizmesija, N. Erjavec, V. Bahovec

Abstract:

While the European Union (EU) harmonized methodology is a benchmark of worldwide used business survey (BS) methodology, the choice of variables that are components of the confidence indicators, as the leading indicators, is not strictly determined and unique. Therefore, the aim of this paper is to investigate and to quantify the relationship between all business survey variables in manufacturing industry and industrial production as a reference macroeconomic series in Croatia. The assumption is that there are variables in the business survey, that are not components of Industrial Confidence Indicator (ICI) and which can accurately (and sometimes better then ICI) predict changes in Croatian industrial production. Empirical analyses are conducted using quarterly data of BS variables in manufacturing industry and Croatian industrial production over the period from the first quarter 2005 to the first quarter 2013. Research results confirmed the assumption: three BS variables which is not components of ICI (competitive position, demand and liquidity) are the best leading indicator then ICI, in forecasting changes in Croatian industrial production instantaneously, with one, two or three quarter ahead.

Keywords: Forecasting, Industrial production, Balance, business survey, confidence indicators

Procedia PDF Downloads 349
45 Volatility Model with Markov Regime Switching to Forecast Baht/USD

Authors: Nop Sopipan

Abstract:

In this paper, we forecast the volatility of Baht/USDs using Markov Regime Switching GARCH (MRS-GARCH) models. These models allow volatility to have different dynamics according to unobserved regime variables. The main purpose of this paper is to find out whether MRS-GARCH models are an improvement on the GARCH type models in terms of modeling and forecasting Baht/USD volatility. The MRS-GARCH is the best performance model for Baht/USD volatility in short term but the GARCH model is best perform for long term.

Keywords: Forecasting, volatility, Markov Regime Switching, Baht/USD

Procedia PDF Downloads 160
44 Collaborative Planning and Forecasting

Authors: Neha Asthana, Vishal Krishna Prasad

Abstract:

Collaborative planning and forecasting are the innovative and systematic approaches towards productive integration and assimilation of data synergized into information. The changing and variable market dynamics have persuaded global business chains to incorporate collaborative planning and forecasting as an imperative tool. Thus, it is essential for the supply chains to constantly improvise, update its nature, and mould as per changing global environment.

Keywords: Supply Chain Management, Optimization, Forecasting, Information Transfer

Procedia PDF Downloads 188
43 Decision Tree Modeling in Emergency Logistics Planning

Authors: Arun Kumar, Yousef Abu Nahleh, Fugen Daver, Reham Al-Hindawi

Abstract:

Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability of disaster for each country in the world by using decision tree modeling. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning.

Keywords: Forecasting, decision tree modeling, humanitarian relief, emergency supply chain

Procedia PDF Downloads 305
42 Heuristic Approaches for Injury Reductions by Reduced Car Use in Urban Areas

Authors: Stig H. Jørgensen, Trond Nordfjærn, Øyvind Teige Hedenstrøm, Torbjørn Rundmo

Abstract:

The aim of the paper is to estimate and forecast road traffic injuries in the coming 10-15 years given new targets in urban transport policy and shifts of mode of transport, including injury cross-effects of mode changes. The paper discusses possibilities and limitations in measuring and quantifying possible injury reductions. Injury data (killed and seriously injured road users) from six urban areas in Norway from 1998-2012 (N= 4709 casualties) form the basis for estimates of changing injury patterns. For the coming period calculation of number of injuries and injury rates by type of road user (categories of motorized versus non-motorized) by sex, age and type of road are made. A prognosticated population increase (25 %) in total population within 2025 in the six urban areas will curb the proceeded fall in injury figures. However, policy strategies and measures geared towards a stronger modal shift from use of private vehicles to safer public transport (bus, train) will modify this effect. On the other side will door to door transport (pedestrians on their way to/from public transport nodes) imply a higher exposure for pedestrians (bikers) converting from private vehicle use (including fall accidents not registered as traffic accidents). The overall effect is the sum of these modal shifts in the increasing urban population and in addition diminishing return to the majority of road safety countermeasures has also to be taken into account. The paper demonstrates how uncertainties in the various estimates (prediction factors) on increasing injuries as well as decreasing injury figures may partly offset each other. The paper discusses road safety policy and welfare consequences of transport mode shift, including reduced use of private vehicles, and further environmental impacts. In this regard, safety and environmental issues will as a rule concur. However pursuing environmental goals (e.g. improved air quality, reduced co2 emissions) encouraging more biking may generate more biking injuries. The study was given financial grants from the Norwegian Research Council’s Transport Safety Program.

Keywords: Forecasting, Urban, road injuries, reduced private care use, Norway

Procedia PDF Downloads 145
41 Electricity Demand Modeling and Forecasting in Singapore

Authors: Qing-Guo Wang, Ming Yu, Xian Li, Jiangshuai Huang, Jidong Liu, Tan Kok Poh

Abstract:

In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly.

Keywords: Modeling, Forecasting, Power Industry, electricity demand

Procedia PDF Downloads 376
40 A Stock Exchange Analysis in Turkish Logistics Sector: Modeling, Forecasting, and Comparison with Logistics Indices

Authors: Gizem Intepe, Eti Mizrahi

Abstract:

The geographical location of Turkey that stretches from Asia to Europe and Russia to Africa makes it an important logistics hub in the region. Although logistics is a developing sector in Turkey, the stock market representation is still low with only two companies listed in Turkey’s stock exchange since 2010. In this paper, we use the daily values of these two listed stocks as a benchmark for the logistics sector. After modeling logistics stock prices, an empirical examination is conducted between the existing logistics indices and these stock prices. The paper investigates whether the measures of logistics stocks are correlated with newly available logistics indices. It also shows the reflection of the economic activity in the logistics sector on the stock exchange market. The results presented in this paper are the first analysis of the behavior of logistics indices and logistics stock prices for Turkey.

Keywords: Modeling, Forecasting, Africa, logistic stock exchange

Procedia PDF Downloads 397
39 Application of Support Vector Machines in Forecasting Non-Residential

Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut

Abstract:

This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.

Keywords: Forecasting, Construction, Support Vector Machines, non-residential

Procedia PDF Downloads 283
38 The Term Structure of Government Bond Yields in an Emerging Market: Empirical Evidence from Pakistan Bond Market

Authors: Wali Ullah, Muhammad Nishat

Abstract:

The study investigates the extent to which the so called Nelson-Siegel model (DNS) and its extended version that accounts for time varying volatility (DNS-EGARCH) can optimally fit the yield curve and predict its future path in the context of an emerging economy. For the in-sample fit, both models fit the curve remarkably well even in the emerging markets. However, the DNS-EGARCH model fits the curve slightly better than the DNS. Moreover, both specifications of yield curve that are based on the Nelson-Siegel functional form outperform the benchmark VAR forecasts at all forecast horizons. The DNS-EGARCH comes with more precise forecasts than the DNS for the 6- and 12-month ahead forecasts, while the two have almost similar performance in terms of RMSE for the very short forecast horizons.

Keywords: Forecasting, Emerging Markets, Kalman Filter, yield curve, EGARCH

Procedia PDF Downloads 298
37 Comparative Study on Daily Discharge Estimation of Soolegan River

Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu

Abstract:

Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.

Keywords: Forecasting, Bayesian network, ANN, discharge, multi linear regression, gene expression programming

Procedia PDF Downloads 436
36 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price

Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin

Abstract:

Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.

Keywords: Forecasting, artificial bee colony, data normalization, Grey Wolf optimizer

Procedia PDF Downloads 358
35 Strategy of Inventory Analysis with Economic Order Quantity and Quick Response: Case on Filter Inventory for Heavy Equipment in Indonesia

Authors: Lim Sanny, Felix Christian

Abstract:

The use of heavy equipment in Indonesia is always increasing. Cost reduction in procurement of spare parts is the aim of the company. The spare parts in this research are focused in the kind of filters. On the early step, the choosing of priority filter will be studied further by using the ABC analysis. To find out future demand of the filter, this research is using demand forecast by utilizing the QM software for windows. And to find out the best method of inventory control for each kind of filter is by comparing the total cost of Economic Order Quantity and Quick response inventory method. For the three kind of filters which are Cartridge, Engine oil – pn : 600-211-123, Element, Transmission – pn : 424-16-11140, and Element, Hydraulic – pn : 07063-01054, the best forecasting method is Linear regression. The best method for inventory control of Cartridge, Engine oil – pn : 600-211-123 and Element, Transmission – pn : 424-16-11140, is Quick Response Inventory, while the best method for Element, Hydraulic – pn : 07063-01054 is Economic Order Quantity.

Keywords: Forecasting, Strategy, Inventory, ABC analysis, economic order quantity, quick response inventory

Procedia PDF Downloads 256
34 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects

Authors: Sami Mestiri, Abdeljelil Farhat

Abstract:

The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.

Keywords: Forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC

Procedia PDF Downloads 363
33 Mathematical Based Forecasting of Heart Attack

Authors: Razieh Khalafi

Abstract:

Myocardial infarction (MI) or acute myocardial infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analyzing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behavior of these signals were checked. Results shows this methodology can forecast the ECG and accordingly heart attack with high accuracy.

Keywords: Forecasting, ECG, heart attack, random walk, correlation dimension

Procedia PDF Downloads 372
32 A New Mathematical Method for Heart Attack Forecasting

Authors: Razi Khalafi

Abstract:

Myocardial Infarction (MI) or acute Myocardial Infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analysing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behaviour of these signals were checked. Results show this methodology can forecast the ECG and accordingly heart attack with high accuracy.

Keywords: Forecasting, ECG, heart attack, random walk, correlation dimension

Procedia PDF Downloads 334
31 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.

Keywords: Forecasting, Meteorology, generalized extreme value (GEV), return level

Procedia PDF Downloads 312
30 Forecasting the Sea Level Change in Strait of Hormuz

Authors: Hamid Goharnejad, Amir Hossein Eghbali

Abstract:

Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One models of Discrete Wavelet artificial Neural Network (DWNN) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and predictands to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 to 105 cm. Furthermore the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.

Keywords: Forecasting, sea-level rise, climate change scenarios, strait of Hormuz

Procedia PDF Downloads 154
29 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques

Authors: Umit Cali

Abstract:

The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.

Keywords: Artificial Intelligence, Data Mining, Forecasting, wind power, Big Data, Renewable Energy Sources, Energy Economics, Power Grids, power trading

Procedia PDF Downloads 391
28 Forecasting Residential Water Consumption in Hamilton, New Zealand

Authors: Farnaz Farhangi

Abstract:

Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.

Keywords: Forecasting, Hybrid Model, artificial neural network (ANN), double seasonal ARIMA

Procedia PDF Downloads 204
27 Energy Consumption Forecast Procedure for an Industrial Facility

Authors: Aleksandra Aleksandrovna Filimonova, Lev Sergeevich Kazarinov, Tatyana Aleksandrovna Barbasova, Olga Valerevna Kolesnikova

Abstract:

We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.

Keywords: Forecasting, Energy Efficiency, Energy Consumption, Forecasting Accuracy, energy consumption forecasting error

Procedia PDF Downloads 273
26 Lee-Carter Mortality Forecasting Method with Dynamic Normal Inverse Gaussian Mortality Index

Authors: Funda Kul, İsmail Gür

Abstract:

Pension scheme providers have to price mortality risk by accurate mortality forecasting method. There are many mortality-forecasting methods constructed and used in literature. The Lee-Carter model is the first model to consider stochastic improvement trends in life expectancy. It is still precisely used. Mortality forecasting is done by mortality index in the Lee-Carter model. It is assumed that mortality index fits ARIMA time series model. In this paper, we propose and use dynamic normal inverse gaussian distribution to modeling mortality indes in the Lee-Carter model. Using population mortality data for Italy, France, and Turkey, the model is forecasting capability is investigated, and a comparative analysis with other models is ensured by some well-known benchmarking criterions.

Keywords: Forecasting, Mortality, lee-carter model, normal inverse gaussian distribution

Procedia PDF Downloads 183
25 Determining the Number of Single Models in a Combined Forecast

Authors: Serkan Aras, Emrah Gulay

Abstract:

Combining various forecasting models is an important tool for researchers to attain more accurate forecasts. A great number of papers have shown that selecting single models as dissimilar models, or methods based on different information as possible leads to better forecasting performances. However, there is not a certain rule regarding the number of single models to be used in any combining methods. This study focuses on determining the optimal or near optimal number for single models with the help of statistical tests. An extensive experiment is carried out by utilizing some well-known time series data sets from diverse fields. Furthermore, many rival forecasting methods and some of the commonly used combining methods are employed. The obtained results indicate that some statistically significant performance differences can be found regarding the number of the single models in the combining methods under investigation.

Keywords: Forecasting, Time series, combined forecast, M-competition

Procedia PDF Downloads 190
24 Using Gaussian Process in Wind Power Forecasting

Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui

Abstract:

The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.

Keywords: Modelling, Forecasting, wind power, Gaussien process

Procedia PDF Downloads 256
23 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques

Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt

Abstract:

Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.

Keywords: Forecasting, Time series, ARMA, arch, auto regression

Procedia PDF Downloads 145
22 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data

Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill

Abstract:

Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.

Keywords: Data Mining, Forecasting, fuzzy regression, health-care management systems, fuzzy membership function

Procedia PDF Downloads 172
21 Estimation and Forecasting Debris Flow Phenomena on the Highway of the 'TRACECA' Corridor

Authors: Levan Tsulukidze

Abstract:

The paper considers debris flow phenomena and forecasting of them in the corridor of ‘TRACECA’ on the example of river Naokhrevistkali, as well as the debris flow -type channel passing between the villages of Vale-2 and Naokhrevi. As a result of expeditionary and reconnaissance investigations, as well as using empiric dependencies, the debris flow expenditure has been estimated in case of different debris flow provisions.

Keywords: Forecasting, debris flow, Traceca corridor, river Naokhrevistkali

Procedia PDF Downloads 207
20 Reliability, Availability and Capacity Analysis of Power Plants in Kuwait

Authors: Mehmet Savsar

Abstract:

One of the most important factors affecting power plant performance is the reliability of the turbine units operated under different conditions. Reliability directly affects plant availability and performance. Therefore, it is very important to be able to analyze turbine units, as well as power plant system reliability and availability under various operational conditions. In this paper, data related to power station failures are collected and analyzed in detail for all power stations in the state of Kuwait. Failures are characterized and categorized. Reliabilities of various power plants are analyzed and availabilities are quantified. Based on calculated availabilities of all installed power plants, actual power output is estimated. Furthermore, based on the past 15 years of data, power consumption trend is determined and the demand for power in the future is forecasted. Estimated power output is compared to the forecasted demand in order to determine the need for future capacity expansion.

Keywords: Forecasting, Reliability, Power Plants, Availability, Capacity, Preventive Maintenance

Procedia PDF Downloads 222
19 Assessing Artificial Neural Network Models on Forecasting the Return of Stock Market Index

Authors: Hamid Rostami Jaz, Kamran Ameri Siahooei

Abstract:

Up to now different methods have been used to forecast the index returns and the index rate. Artificial intelligence and artificial neural networks have been one of the methods of index returns forecasting. This study attempts to carry out a comparative study on the performance of different Radial Base Neural Network and Feed-Forward Perceptron Neural Network to forecast investment returns on the index. To achieve this goal, the return on investment in Tehran Stock Exchange index is evaluated and the performance of Radial Base Neural Network and Feed-Forward Perceptron Neural Network are compared. Neural networks performance test is applied based on the least square error in two approaches of in-sample and out-of-sample. The research results show the superiority of the radial base neural network in the in-sample approach and the superiority of perceptron neural network in the out-of-sample approach.

Keywords: Forecasting, Tehran Stock Exchange, exchange index, perceptron neural network

Procedia PDF Downloads 239
18 Detecting Financial Bubbles Using Gap between Common Stocks and Preferred Stocks

Authors: Changju Lee, Seungmo Ku, Sondo Kim, Woojin Chang

Abstract:

How to detecting financial bubble? Addressing this simple question has been the focus of a vast amount of empirical research spanning almost half a century. However, financial bubble is hard to observe and varying over the time; there needs to be more research on this area. In this paper, we used abnormal difference between common stocks price and those preferred stocks price to explain financial bubble. First, we proposed the ‘W-index’ which indicates spread between common stocks and those preferred stocks in stock market. Second, to prove that this ‘W-index’ is valid for measuring financial bubble, we showed that there is an inverse relationship between this ‘W-index’ and S&P500 rate of return. Specifically, our hypothesis is that when ‘W-index’ is comparably higher than other periods, financial bubbles are added up in stock market and vice versa; according to our hypothesis, if investors made long term investments when ‘W-index’ is high, they would have negative rate of return; however, if investors made long term investments when ‘W-index’ is low, they would have positive rate of return. By comparing correlation values and adjusted R-squared values of between W-index and S&P500 return, VIX index and S&P500 return, and TED index and S&P500 return, we showed only W-index has significant relationship between S&P500 rate of return. In addition, we figured out how long investors should hold their investment position regard the effect of financial bubble. Using this W-index, investors could measure financial bubble in the market and invest with low risk.

Keywords: Forecasting, financial bubble detection, future return, pairs trading, preferred stocks

Procedia PDF Downloads 179